i915_gem.c 135.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_dmabuf.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/reservation.h>
39
#include <linux/shmem_fs.h>
40
#include <linux/slab.h>
41
#include <linux/swap.h>
J
Jesse Barnes 已提交
42
#include <linux/pci.h>
43
#include <linux/dma-buf.h>
44

45
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47

48 49 50 51 52 53
static bool cpu_cache_is_coherent(struct drm_device *dev,
				  enum i915_cache_level level)
{
	return HAS_LLC(dev) || level != I915_CACHE_NONE;
}

54 55
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
56 57 58
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

59 60 61 62 63 64
	if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
		return true;

	return obj->pin_display;
}

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
static int
insert_mappable_node(struct drm_i915_private *i915,
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
	return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
						   size, 0, 0, 0,
						   i915->ggtt.mappable_end,
						   DRM_MM_SEARCH_DEFAULT,
						   DRM_MM_CREATE_DEFAULT);
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

83 84
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85
				  u64 size)
86
{
87
	spin_lock(&dev_priv->mm.object_stat_lock);
88 89
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
90
	spin_unlock(&dev_priv->mm.object_stat_lock);
91 92 93
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94
				     u64 size)
95
{
96
	spin_lock(&dev_priv->mm.object_stat_lock);
97 98
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
99
	spin_unlock(&dev_priv->mm.object_stat_lock);
100 101
}

102
static int
103
i915_gem_wait_for_error(struct i915_gpu_error *error)
104 105 106
{
	int ret;

107
	if (!i915_reset_in_progress(error))
108 109
		return 0;

110 111 112 113 114
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
115
	ret = wait_event_interruptible_timeout(error->reset_queue,
116
					       !i915_reset_in_progress(error),
117
					       I915_RESET_TIMEOUT);
118 119 120 121
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
122
		return ret;
123 124
	} else {
		return 0;
125
	}
126 127
}

128
int i915_mutex_lock_interruptible(struct drm_device *dev)
129
{
130
	struct drm_i915_private *dev_priv = to_i915(dev);
131 132
	int ret;

133
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134 135 136 137 138 139 140 141 142
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
143

144 145
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146
			    struct drm_file *file)
147
{
148
	struct drm_i915_private *dev_priv = to_i915(dev);
149
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
150
	struct drm_i915_gem_get_aperture *args = data;
151
	struct i915_vma *vma;
152
	size_t pinned;
153

154
	pinned = 0;
155
	mutex_lock(&dev->struct_mutex);
156
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157
		if (i915_vma_is_pinned(vma))
158
			pinned += vma->node.size;
159
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160
		if (i915_vma_is_pinned(vma))
161
			pinned += vma->node.size;
162
	mutex_unlock(&dev->struct_mutex);
163

164
	args->aper_size = ggtt->base.total;
165
	args->aper_available_size = args->aper_size - pinned;
166

167 168 169
	return 0;
}

170 171
static int
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172
{
173
	struct address_space *mapping = obj->base.filp->f_mapping;
174 175 176 177
	char *vaddr = obj->phys_handle->vaddr;
	struct sg_table *st;
	struct scatterlist *sg;
	int i;
178

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
		return -EINVAL;

	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
		if (IS_ERR(page))
			return PTR_ERR(page);

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

195
		put_page(page);
196 197 198
		vaddr += PAGE_SIZE;
	}

199
	i915_gem_chipset_flush(to_i915(obj->base.dev));
200 201 202 203 204 205 206 207 208 209 210 211 212

	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
		return -ENOMEM;
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
213

214 215 216 217 218 219 220 221 222 223 224 225 226
	sg_dma_address(sg) = obj->phys_handle->busaddr;
	sg_dma_len(sg) = obj->base.size;

	obj->pages = st;
	return 0;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
{
	int ret;

	BUG_ON(obj->madv == __I915_MADV_PURGED);
227

228
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
229
	if (WARN_ON(ret)) {
230 231 232 233 234 235 236 237 238 239
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;

	if (obj->dirty) {
240
		struct address_space *mapping = obj->base.filp->f_mapping;
241
		char *vaddr = obj->phys_handle->vaddr;
242 243 244
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245 246 247 248 249 250 251 252 253 254 255 256 257 258
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
			if (obj->madv == I915_MADV_WILLNEED)
259
				mark_page_accessed(page);
260
			put_page(page);
261 262
			vaddr += PAGE_SIZE;
		}
263
		obj->dirty = 0;
264 265
	}

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
	drm_pci_free(obj->base.dev, obj->phys_handle);
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

282
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 284 285
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
286 287 288
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
289

290 291 292 293
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
294
	 */
295 296 297 298 299 300
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
301 302 303 304 305
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

306 307 308 309 310 311 312 313 314 315 316 317 318
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

319 320 321 322 323
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
324
{
325
	struct drm_i915_gem_request *rq;
326

327
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
328

329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
361 362
	}

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	if (rps && rq->fence.seqno == rq->engine->last_submitted_seqno) {
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
399 400
		int ret;

401 402
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
403 404 405
		if (ret)
			return ret;

406 407 408 409 410 411
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
			if (timeout <= 0)
				break;
412

413 414 415 416 417 418 419 420
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(resv);
421 422
	}

423 424 425 426 427 428
	if (excl && timeout > 0)
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);

	dma_fence_put(excl);

	return timeout;
429 430
}

431 432 433 434 435 436
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
437
 */
438 439 440 441 442
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
443
{
444
	struct reservation_object *resv;
445 446
	struct i915_gem_active *active;
	unsigned long active_mask;
447
	int idx;
448

449 450 451 452 453 454 455
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
456

457
	if (flags & I915_WAIT_ALL) {
458
		active = obj->last_read;
459
		active_mask = i915_gem_object_get_active(obj);
460 461 462 463 464
	} else {
		active_mask = 1;
		active = &obj->last_write;
	}

465
	for_each_active(active_mask, idx) {
466 467 468 469 470 471 472 473 474 475 476
		struct drm_i915_gem_request *request;

		request = i915_gem_active_get_unlocked(&active[idx]);
		if (request) {
			timeout = i915_gem_object_wait_fence(&request->fence,
							     flags, timeout,
							     rps);
			i915_gem_request_put(request);
		}
		if (timeout < 0)
			return timeout;
477 478
	}

479 480 481 482 483 484
	resv = i915_gem_object_get_dmabuf_resv(obj);
	if (resv)
		timeout = i915_gem_object_wait_reservation(resv,
							   flags, timeout,
							   rps);
	return timeout < 0 ? timeout : 0;
485 486 487 488 489 490 491 492 493
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

494 495 496 497 498
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
	drm_dma_handle_t *phys;
499
	int ret;
500 501 502 503 504 505 506 507 508 509 510 511 512 513

	if (obj->phys_handle) {
		if ((unsigned long)obj->phys_handle->vaddr & (align -1))
			return -EBUSY;

		return 0;
	}

	if (obj->madv != I915_MADV_WILLNEED)
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
514 515 516 517 518
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

	ret = i915_gem_object_put_pages(obj);
519 520 521
	if (ret)
		return ret;

522 523 524 525 526 527
	/* create a new object */
	phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
	if (!phys)
		return -ENOMEM;

	obj->phys_handle = phys;
528 529 530
	obj->ops = &i915_gem_phys_ops;

	return i915_gem_object_get_pages(obj);
531 532 533 534 535 536 537 538 539
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
	struct drm_device *dev = obj->base.dev;
	void *vaddr = obj->phys_handle->vaddr + args->offset;
540
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
541
	int ret;
542 543 544 545

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
546 547 548 549 550 551 552
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file_priv));
553 554
	if (ret)
		return ret;
555

556
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
557 558 559 560 561 562 563 564 565 566
	if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
		unsigned long unwritten;

		/* The physical object once assigned is fixed for the lifetime
		 * of the obj, so we can safely drop the lock and continue
		 * to access vaddr.
		 */
		mutex_unlock(&dev->struct_mutex);
		unwritten = copy_from_user(vaddr, user_data, args->size);
		mutex_lock(&dev->struct_mutex);
567 568 569 570
		if (unwritten) {
			ret = -EFAULT;
			goto out;
		}
571 572
	}

573
	drm_clflush_virt_range(vaddr, args->size);
574
	i915_gem_chipset_flush(to_i915(dev));
575 576

out:
577
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
578
	return ret;
579 580
}

581 582
void *i915_gem_object_alloc(struct drm_device *dev)
{
583
	struct drm_i915_private *dev_priv = to_i915(dev);
584
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
585 586 587 588
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
589
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
590
	kmem_cache_free(dev_priv->objects, obj);
591 592
}

593 594 595 596 597
static int
i915_gem_create(struct drm_file *file,
		struct drm_device *dev,
		uint64_t size,
		uint32_t *handle_p)
598
{
599
	struct drm_i915_gem_object *obj;
600 601
	int ret;
	u32 handle;
602

603
	size = roundup(size, PAGE_SIZE);
604 605
	if (size == 0)
		return -EINVAL;
606 607

	/* Allocate the new object */
608
	obj = i915_gem_object_create(dev, size);
609 610
	if (IS_ERR(obj))
		return PTR_ERR(obj);
611

612
	ret = drm_gem_handle_create(file, &obj->base, &handle);
613
	/* drop reference from allocate - handle holds it now */
614
	i915_gem_object_put_unlocked(obj);
615 616
	if (ret)
		return ret;
617

618
	*handle_p = handle;
619 620 621
	return 0;
}

622 623 624 625 626 627
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
628
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
629 630
	args->size = args->pitch * args->height;
	return i915_gem_create(file, dev,
631
			       args->size, &args->handle);
632 633 634 635
}

/**
 * Creates a new mm object and returns a handle to it.
636 637 638
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
639 640 641 642 643 644
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
	struct drm_i915_gem_create *args = data;
645

646
	return i915_gem_create(file, dev,
647
			       args->size, &args->handle);
648 649
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

676
static inline int
677 678
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

702 703 704 705 706 707
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
708
				    unsigned int *needs_clflush)
709 710 711
{
	int ret;

712
	lockdep_assert_held(&obj->base.dev->struct_mutex);
713

714
	*needs_clflush = 0;
715 716
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
717

718 719 720 721 722
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
723 724 725
	if (ret)
		return ret;

726 727 728 729 730 731
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

732 733
	i915_gem_object_flush_gtt_write_domain(obj);

734 735 736 737 738 739
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
740 741
		*needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
							obj->cache_level);
742 743 744

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
745 746 747
		if (ret)
			goto err_unpin;

748
		*needs_clflush = 0;
749 750
	}

751
	/* return with the pages pinned */
752
	return 0;
753 754 755 756

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
757 758 759 760 761 762 763
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

764 765
	lockdep_assert_held(&obj->base.dev->struct_mutex);

766 767 768 769
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

770 771 772 773 774 775
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
776 777 778
	if (ret)
		return ret;

779 780 781 782 783 784
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

	i915_gem_object_pin_pages(obj);

785 786
	i915_gem_object_flush_gtt_write_domain(obj);

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
		*needs_clflush |= cpu_write_needs_clflush(obj) << 1;

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
		*needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
							 obj->cache_level);

	if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
804 805 806
		if (ret)
			goto err_unpin;

807 808 809 810 811 812 813 814
		*needs_clflush = 0;
	}

	if ((*needs_clflush & CLFLUSH_AFTER) == 0)
		obj->cache_dirty = true;

	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
	obj->dirty = 1;
815
	/* return with the pages pinned */
816
	return 0;
817 818 819 820

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
821 822
}

823 824 825
/* Per-page copy function for the shmem pread fastpath.
 * Flushes invalid cachelines before reading the target if
 * needs_clflush is set. */
826
static int
827 828 829 830 831 832 833
shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

834
	if (unlikely(page_do_bit17_swizzling))
835 836 837 838 839 840 841 842 843 844 845
		return -EINVAL;

	vaddr = kmap_atomic(page);
	if (needs_clflush)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	ret = __copy_to_user_inatomic(user_data,
				      vaddr + shmem_page_offset,
				      page_length);
	kunmap_atomic(vaddr);

846
	return ret ? -EFAULT : 0;
847 848
}

849 850 851 852
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
853
	if (unlikely(swizzled)) {
854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

871 872 873 874 875 876 877 878 879 880 881 882
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
883 884 885
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
886 887 888 889 890 891 892 893 894 895 896

	if (page_do_bit17_swizzling)
		ret = __copy_to_user_swizzled(user_data,
					      vaddr, shmem_page_offset,
					      page_length);
	else
		ret = __copy_to_user(user_data,
				     vaddr + shmem_page_offset,
				     page_length);
	kunmap(page);

897
	return ret ? - EFAULT : 0;
898 899
}

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
static inline unsigned long
slow_user_access(struct io_mapping *mapping,
		 uint64_t page_base, int page_offset,
		 char __user *user_data,
		 unsigned long length, bool pwrite)
{
	void __iomem *ioaddr;
	void *vaddr;
	uint64_t unwritten;

	ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force *)ioaddr + page_offset;
	if (pwrite)
		unwritten = __copy_from_user(vaddr, user_data, length);
	else
		unwritten = __copy_to_user(user_data, vaddr, length);

	io_mapping_unmap(ioaddr);
	return unwritten;
}

static int
i915_gem_gtt_pread(struct drm_device *dev,
		   struct drm_i915_gem_object *obj, uint64_t size,
		   uint64_t data_offset, uint64_t data_ptr)
{
927
	struct drm_i915_private *dev_priv = to_i915(dev);
928
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
C
Chris Wilson 已提交
929
	struct i915_vma *vma;
930 931 932 933 934 935
	struct drm_mm_node node;
	char __user *user_data;
	uint64_t remain;
	uint64_t offset;
	int ret;

936
	intel_runtime_pm_get(to_i915(dev));
C
Chris Wilson 已提交
937
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
938 939 940
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
941
		ret = i915_vma_put_fence(vma);
942 943 944 945 946
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
947
	if (IS_ERR(vma)) {
948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
		ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

	user_data = u64_to_user_ptr(data_ptr);
	remain = size;
	offset = data_offset;

	mutex_unlock(&dev->struct_mutex);
	if (likely(!i915.prefault_disable)) {
971
		ret = fault_in_pages_writeable(user_data, remain);
972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
		if (ret) {
			mutex_lock(&dev->struct_mutex);
			goto out_unpin;
		}
	}

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start,
					       I915_CACHE_NONE, 0);
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
		/* This is a slow read/write as it tries to read from
		 * and write to user memory which may result into page
		 * faults, and so we cannot perform this under struct_mutex.
		 */
1003
		if (slow_user_access(&ggtt->mappable, page_base,
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
				     page_offset, user_data,
				     page_length, false)) {
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

	mutex_lock(&dev->struct_mutex);
	if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
		/* The user has modified the object whilst we tried
		 * reading from it, and we now have no idea what domain
		 * the pages should be in. As we have just been touching
		 * them directly, flush everything back to the GTT
		 * domain.
		 */
		ret = i915_gem_object_set_to_gtt_domain(obj, false);
	}

out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1030
				       node.start, node.size);
1031 1032 1033
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1034
		i915_vma_unpin(vma);
1035 1036
	}
out:
1037
	intel_runtime_pm_put(to_i915(dev));
1038 1039 1040
	return ret;
}

1041
static int
1042 1043 1044 1045
i915_gem_shmem_pread(struct drm_device *dev,
		     struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args,
		     struct drm_file *file)
1046
{
1047
	char __user *user_data;
1048
	ssize_t remain;
1049
	loff_t offset;
1050
	int shmem_page_offset, page_length, ret = 0;
1051
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1052
	int prefaulted = 0;
1053
	int needs_clflush = 0;
1054
	struct sg_page_iter sg_iter;
1055

1056
	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1057 1058 1059
	if (ret)
		return ret;

1060 1061
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1062
	offset = args->offset;
1063
	remain = args->size;
1064

1065 1066
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1067
		struct page *page = sg_page_iter_page(&sg_iter);
1068 1069 1070 1071

		if (remain <= 0)
			break;

1072 1073 1074 1075 1076
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1077
		shmem_page_offset = offset_in_page(offset);
1078 1079 1080 1081
		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1082 1083 1084
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1085 1086 1087 1088 1089
		ret = shmem_pread_fast(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
		if (ret == 0)
			goto next_page;
1090 1091 1092

		mutex_unlock(&dev->struct_mutex);

1093
		if (likely(!i915.prefault_disable) && !prefaulted) {
1094
			ret = fault_in_pages_writeable(user_data, remain);
1095 1096 1097 1098 1099 1100 1101
			/* Userspace is tricking us, but we've already clobbered
			 * its pages with the prefault and promised to write the
			 * data up to the first fault. Hence ignore any errors
			 * and just continue. */
			(void)ret;
			prefaulted = 1;
		}
1102

1103 1104 1105
		ret = shmem_pread_slow(page, shmem_page_offset, page_length,
				       user_data, page_do_bit17_swizzling,
				       needs_clflush);
1106

1107
		mutex_lock(&dev->struct_mutex);
1108 1109

		if (ret)
1110 1111
			goto out;

1112
next_page:
1113
		remain -= page_length;
1114
		user_data += page_length;
1115 1116 1117
		offset += page_length;
	}

1118
out:
1119
	i915_gem_obj_finish_shmem_access(obj);
1120

1121 1122 1123
	return ret;
}

1124 1125
/**
 * Reads data from the object referenced by handle.
1126 1127 1128
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1129 1130 1131 1132 1133
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1134
		     struct drm_file *file)
1135 1136
{
	struct drm_i915_gem_pread *args = data;
1137
	struct drm_i915_gem_object *obj;
1138
	int ret = 0;
1139

1140 1141 1142 1143
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1144
		       u64_to_user_ptr(args->data_ptr),
1145 1146 1147
		       args->size))
		return -EFAULT;

1148
	obj = i915_gem_object_lookup(file, args->handle);
1149 1150
	if (!obj)
		return -ENOENT;
1151

1152
	/* Bounds check source.  */
1153 1154
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1155
		ret = -EINVAL;
1156
		goto err;
C
Chris Wilson 已提交
1157 1158
	}

C
Chris Wilson 已提交
1159 1160
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1161 1162 1163 1164
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1165 1166 1167 1168 1169 1170 1171
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err;

1172
	ret = i915_gem_shmem_pread(dev, obj, args, file);
1173

1174
	/* pread for non shmem backed objects */
1175
	if (ret == -EFAULT || ret == -ENODEV)
1176 1177 1178
		ret = i915_gem_gtt_pread(dev, obj, args->size,
					args->offset, args->data_ptr);

1179
	i915_gem_object_put(obj);
1180
	mutex_unlock(&dev->struct_mutex);
1181 1182 1183 1184 1185

	return ret;

err:
	i915_gem_object_put_unlocked(obj);
1186
	return ret;
1187 1188
}

1189 1190
/* This is the fast write path which cannot handle
 * page faults in the source data
1191
 */
1192 1193 1194 1195 1196 1197

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
1198
{
1199 1200
	void __iomem *vaddr_atomic;
	void *vaddr;
1201
	unsigned long unwritten;
1202

P
Peter Zijlstra 已提交
1203
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1204 1205 1206
	/* We can use the cpu mem copy function because this is X86. */
	vaddr = (void __force*)vaddr_atomic + page_offset;
	unwritten = __copy_from_user_inatomic_nocache(vaddr,
1207
						      user_data, length);
P
Peter Zijlstra 已提交
1208
	io_mapping_unmap_atomic(vaddr_atomic);
1209
	return unwritten;
1210 1211
}

1212 1213 1214
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1215
 * @i915: i915 device private data
1216 1217 1218
 * @obj: i915 gem object
 * @args: pwrite arguments structure
 * @file: drm file pointer
1219
 */
1220
static int
1221
i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1222
			 struct drm_i915_gem_object *obj,
1223
			 struct drm_i915_gem_pwrite *args,
1224
			 struct drm_file *file)
1225
{
1226
	struct i915_ggtt *ggtt = &i915->ggtt;
1227
	struct drm_device *dev = obj->base.dev;
C
Chris Wilson 已提交
1228
	struct i915_vma *vma;
1229 1230
	struct drm_mm_node node;
	uint64_t remain, offset;
1231
	char __user *user_data;
1232
	int ret;
1233 1234
	bool hit_slow_path = false;

1235
	if (i915_gem_object_is_tiled(obj))
1236
		return -EFAULT;
D
Daniel Vetter 已提交
1237

1238
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1239
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1240
				       PIN_MAPPABLE | PIN_NONBLOCK);
1241 1242 1243
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1244
		ret = i915_vma_put_fence(vma);
1245 1246 1247 1248 1249
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1250
	if (IS_ERR(vma)) {
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
		ret = insert_mappable_node(i915, &node, PAGE_SIZE);
		if (ret)
			goto out;

		ret = i915_gem_object_get_pages(obj);
		if (ret) {
			remove_mappable_node(&node);
			goto out;
		}

		i915_gem_object_pin_pages(obj);
	}
D
Daniel Vetter 已提交
1263 1264 1265 1266 1267

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1268
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1269
	obj->dirty = true;
1270

1271 1272 1273 1274
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1275 1276
		/* Operation in this page
		 *
1277 1278 1279
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1280
		 */
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1294
		/* If we get a fault while copying data, then (presumably) our
1295 1296
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1297 1298
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1299
		 */
1300
		if (fast_user_write(&ggtt->mappable, page_base,
D
Daniel Vetter 已提交
1301
				    page_offset, user_data, page_length)) {
1302 1303
			hit_slow_path = true;
			mutex_unlock(&dev->struct_mutex);
1304
			if (slow_user_access(&ggtt->mappable,
1305 1306 1307 1308 1309 1310 1311 1312 1313
					     page_base,
					     page_offset, user_data,
					     page_length, true)) {
				ret = -EFAULT;
				mutex_lock(&dev->struct_mutex);
				goto out_flush;
			}

			mutex_lock(&dev->struct_mutex);
D
Daniel Vetter 已提交
1314
		}
1315

1316 1317 1318
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1319 1320
	}

1321
out_flush:
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	if (hit_slow_path) {
		if (ret == 0 &&
		    (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
			/* The user has modified the object whilst we tried
			 * reading from it, and we now have no idea what domain
			 * the pages should be in. As we have just been touching
			 * them directly, flush everything back to the GTT
			 * domain.
			 */
			ret = i915_gem_object_set_to_gtt_domain(obj, false);
		}
	}

1335
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
D
Daniel Vetter 已提交
1336
out_unpin:
1337 1338 1339
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1340
				       node.start, node.size);
1341 1342 1343
		i915_gem_object_unpin_pages(obj);
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1344
		i915_vma_unpin(vma);
1345
	}
D
Daniel Vetter 已提交
1346
out:
1347
	intel_runtime_pm_put(i915);
1348
	return ret;
1349 1350
}

1351 1352 1353 1354
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set. */
1355
static int
1356 1357 1358 1359 1360
shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1361
{
1362
	char *vaddr;
1363
	int ret;
1364

1365
	if (unlikely(page_do_bit17_swizzling))
1366
		return -EINVAL;
1367

1368 1369 1370 1371
	vaddr = kmap_atomic(page);
	if (needs_clflush_before)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
1372 1373
	ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
					user_data, page_length);
1374 1375 1376 1377
	if (needs_clflush_after)
		drm_clflush_virt_range(vaddr + shmem_page_offset,
				       page_length);
	kunmap_atomic(vaddr);
1378

1379
	return ret ? -EFAULT : 0;
1380 1381
}

1382 1383
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
1384
static int
1385 1386 1387 1388 1389
shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1390
{
1391 1392
	char *vaddr;
	int ret;
1393

1394
	vaddr = kmap(page);
1395
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1396 1397 1398
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1399 1400
	if (page_do_bit17_swizzling)
		ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1401 1402
						user_data,
						page_length);
1403 1404 1405 1406 1407
	else
		ret = __copy_from_user(vaddr + shmem_page_offset,
				       user_data,
				       page_length);
	if (needs_clflush_after)
1408 1409 1410
		shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
					     page_length,
					     page_do_bit17_swizzling);
1411
	kunmap(page);
1412

1413
	return ret ? -EFAULT : 0;
1414 1415 1416
}

static int
1417 1418 1419 1420
i915_gem_shmem_pwrite(struct drm_device *dev,
		      struct drm_i915_gem_object *obj,
		      struct drm_i915_gem_pwrite *args,
		      struct drm_file *file)
1421 1422
{
	ssize_t remain;
1423 1424
	loff_t offset;
	char __user *user_data;
1425
	int shmem_page_offset, page_length, ret = 0;
1426
	int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1427
	int hit_slowpath = 0;
1428
	unsigned int needs_clflush;
1429
	struct sg_page_iter sg_iter;
1430

1431
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1432 1433 1434
	if (ret)
		return ret;

1435 1436
	obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
	user_data = u64_to_user_ptr(args->data_ptr);
1437
	offset = args->offset;
1438
	remain = args->size;
1439

1440 1441
	for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
			 offset >> PAGE_SHIFT) {
1442
		struct page *page = sg_page_iter_page(&sg_iter);
1443
		int partial_cacheline_write;
1444

1445 1446 1447
		if (remain <= 0)
			break;

1448 1449 1450 1451 1452
		/* Operation in this page
		 *
		 * shmem_page_offset = offset within page in shmem file
		 * page_length = bytes to copy for this page
		 */
1453
		shmem_page_offset = offset_in_page(offset);
1454 1455 1456 1457 1458

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;

1459 1460 1461
		/* If we don't overwrite a cacheline completely we need to be
		 * careful to have up-to-date data by first clflushing. Don't
		 * overcomplicate things and flush the entire patch. */
1462
		partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1463 1464 1465
			((shmem_page_offset | page_length)
				& (boot_cpu_data.x86_clflush_size - 1));

1466 1467 1468
		page_do_bit17_swizzling = obj_do_bit17_swizzling &&
			(page_to_phys(page) & (1 << 17)) != 0;

1469 1470 1471
		ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1472
					needs_clflush & CLFLUSH_AFTER);
1473 1474
		if (ret == 0)
			goto next_page;
1475 1476 1477

		hit_slowpath = 1;
		mutex_unlock(&dev->struct_mutex);
1478 1479 1480
		ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
					user_data, page_do_bit17_swizzling,
					partial_cacheline_write,
1481
					needs_clflush & CLFLUSH_AFTER);
1482

1483
		mutex_lock(&dev->struct_mutex);
1484 1485

		if (ret)
1486 1487
			goto out;

1488
next_page:
1489
		remain -= page_length;
1490
		user_data += page_length;
1491
		offset += page_length;
1492 1493
	}

1494
out:
1495
	i915_gem_obj_finish_shmem_access(obj);
1496

1497
	if (hit_slowpath) {
1498 1499 1500 1501 1502
		/*
		 * Fixup: Flush cpu caches in case we didn't flush the dirty
		 * cachelines in-line while writing and the object moved
		 * out of the cpu write domain while we've dropped the lock.
		 */
1503
		if (!(needs_clflush & CLFLUSH_AFTER) &&
1504
		    obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1505
			if (i915_gem_clflush_object(obj, obj->pin_display))
1506
				needs_clflush |= CLFLUSH_AFTER;
1507
		}
1508
	}
1509

1510
	if (needs_clflush & CLFLUSH_AFTER)
1511
		i915_gem_chipset_flush(to_i915(dev));
1512

1513
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1514
	return ret;
1515 1516 1517 1518
}

/**
 * Writes data to the object referenced by handle.
1519 1520 1521
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1522 1523 1524 1525 1526
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1527
		      struct drm_file *file)
1528
{
1529
	struct drm_i915_private *dev_priv = to_i915(dev);
1530
	struct drm_i915_gem_pwrite *args = data;
1531
	struct drm_i915_gem_object *obj;
1532 1533 1534 1535 1536 1537
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1538
		       u64_to_user_ptr(args->data_ptr),
1539 1540 1541
		       args->size))
		return -EFAULT;

1542
	if (likely(!i915.prefault_disable)) {
1543
		ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1544 1545 1546 1547
						   args->size);
		if (ret)
			return -EFAULT;
	}
1548

1549
	obj = i915_gem_object_lookup(file, args->handle);
1550 1551
	if (!obj)
		return -ENOENT;
1552

1553
	/* Bounds check destination. */
1554 1555
	if (args->offset > obj->base.size ||
	    args->size > obj->base.size - args->offset) {
C
Chris Wilson 已提交
1556
		ret = -EINVAL;
1557
		goto err;
C
Chris Wilson 已提交
1558 1559
	}

C
Chris Wilson 已提交
1560 1561
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1562 1563 1564 1565 1566
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (ret)
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;

D
Daniel Vetter 已提交
1576
	ret = -EFAULT;
1577 1578 1579 1580 1581 1582
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1583
	if (!i915_gem_object_has_struct_page(obj) ||
1584
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1585 1586
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1587 1588 1589
		 * textures). Fallback to the shmem path in that case.
		 */
		ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1590

1591
	if (ret == -EFAULT || ret == -ENOSPC) {
1592 1593
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1594
		else
1595
			ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1596
	}
1597

1598
	i915_gem_object_put(obj);
1599
	mutex_unlock(&dev->struct_mutex);
1600 1601
	intel_runtime_pm_put(dev_priv);

1602
	return ret;
1603 1604 1605 1606 1607 1608

err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1609 1610
}

1611
static inline enum fb_op_origin
1612 1613
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1614 1615
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1616 1617
}

1618
/**
1619 1620
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1621 1622 1623
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1624 1625 1626
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1627
			  struct drm_file *file)
1628 1629
{
	struct drm_i915_gem_set_domain *args = data;
1630
	struct drm_i915_gem_object *obj;
1631 1632
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1633 1634
	int ret;

1635
	/* Only handle setting domains to types used by the CPU. */
1636
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1637 1638 1639 1640 1641 1642 1643 1644
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1645
	obj = i915_gem_object_lookup(file, args->handle);
1646 1647
	if (!obj)
		return -ENOENT;
1648

1649 1650 1651 1652
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1653 1654 1655 1656 1657
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1658 1659 1660 1661
	if (ret)
		goto err;

	ret = i915_mutex_lock_interruptible(dev);
1662
	if (ret)
1663
		goto err;
1664

1665
	if (read_domains & I915_GEM_DOMAIN_GTT)
1666
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1667
	else
1668
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1669

1670
	if (write_domain != 0)
1671
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1672

1673
	i915_gem_object_put(obj);
1674 1675
	mutex_unlock(&dev->struct_mutex);
	return ret;
1676 1677 1678 1679

err:
	i915_gem_object_put_unlocked(obj);
	return ret;
1680 1681 1682 1683
}

/**
 * Called when user space has done writes to this buffer
1684 1685 1686
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1687 1688 1689
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1690
			 struct drm_file *file)
1691 1692
{
	struct drm_i915_gem_sw_finish *args = data;
1693
	struct drm_i915_gem_object *obj;
1694
	int err = 0;
1695

1696
	obj = i915_gem_object_lookup(file, args->handle);
1697 1698
	if (!obj)
		return -ENOENT;
1699 1700

	/* Pinned buffers may be scanout, so flush the cache */
1701 1702 1703 1704 1705 1706 1707
	if (READ_ONCE(obj->pin_display)) {
		err = i915_mutex_lock_interruptible(dev);
		if (!err) {
			i915_gem_object_flush_cpu_write_domain(obj);
			mutex_unlock(&dev->struct_mutex);
		}
	}
1708

1709 1710
	i915_gem_object_put_unlocked(obj);
	return err;
1711 1712 1713
}

/**
1714 1715 1716 1717 1718
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1719 1720 1721
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1732 1733 1734
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1735
		    struct drm_file *file)
1736 1737
{
	struct drm_i915_gem_mmap *args = data;
1738
	struct drm_i915_gem_object *obj;
1739 1740
	unsigned long addr;

1741 1742 1743
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1744
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1745 1746
		return -ENODEV;

1747 1748
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1749
		return -ENOENT;
1750

1751 1752 1753
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1754
	if (!obj->base.filp) {
1755
		i915_gem_object_put_unlocked(obj);
1756 1757 1758
		return -EINVAL;
	}

1759
	addr = vm_mmap(obj->base.filp, 0, args->size,
1760 1761
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1762 1763 1764 1765
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1766
		if (down_write_killable(&mm->mmap_sem)) {
1767
			i915_gem_object_put_unlocked(obj);
1768 1769
			return -EINTR;
		}
1770 1771 1772 1773 1774 1775 1776
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1777 1778

		/* This may race, but that's ok, it only gets set */
1779
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1780
	}
1781
	i915_gem_object_put_unlocked(obj);
1782 1783 1784 1785 1786 1787 1788 1789
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
	u64 size;

	size = i915_gem_object_get_stride(obj);
	size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;

	return size >> PAGE_SHIFT;
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1850 1851
/**
 * i915_gem_fault - fault a page into the GTT
C
Chris Wilson 已提交
1852
 * @area: CPU VMA in question
1853
 * @vmf: fault info
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1865 1866 1867
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1868
 */
C
Chris Wilson 已提交
1869
int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1870
{
1871
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
C
Chris Wilson 已提交
1872
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1873
	struct drm_device *dev = obj->base.dev;
1874 1875
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1876
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1877
	struct i915_vma *vma;
1878
	pgoff_t page_offset;
1879
	unsigned int flags;
1880
	int ret;
1881

1882
	/* We don't use vmf->pgoff since that has the fake offset */
C
Chris Wilson 已提交
1883
	page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1884 1885
		PAGE_SHIFT;

C
Chris Wilson 已提交
1886 1887
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1888
	/* Try to flush the object off the GPU first without holding the lock.
1889
	 * Upon acquiring the lock, we will perform our sanity checks and then
1890 1891 1892
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1893 1894 1895 1896
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1897
	if (ret)
1898 1899 1900 1901 1902 1903 1904
		goto err;

	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1905

1906 1907
	/* Access to snoopable pages through the GTT is incoherent. */
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1908
		ret = -EFAULT;
1909
		goto err_unlock;
1910 1911
	}

1912 1913 1914 1915 1916 1917 1918 1919
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1920
	/* Now pin it into the GTT as needed */
1921
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1922 1923
	if (IS_ERR(vma)) {
		struct i915_ggtt_view view;
1924 1925
		unsigned int chunk_size;

1926
		/* Use a partial view if it is bigger than available space */
1927 1928 1929
		chunk_size = MIN_CHUNK_PAGES;
		if (i915_gem_object_is_tiled(obj))
			chunk_size = max(chunk_size, tile_row_pages(obj));
1930

1931 1932 1933 1934
		memset(&view, 0, sizeof(view));
		view.type = I915_GGTT_VIEW_PARTIAL;
		view.params.partial.offset = rounddown(page_offset, chunk_size);
		view.params.partial.size =
1935
			min_t(unsigned int, chunk_size,
1936
			      vma_pages(area) - view.params.partial.offset);
1937

1938 1939 1940 1941 1942 1943
		/* If the partial covers the entire object, just create a
		 * normal VMA.
		 */
		if (chunk_size >= obj->base.size >> PAGE_SHIFT)
			view.type = I915_GGTT_VIEW_NORMAL;

1944 1945 1946 1947 1948
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1949 1950
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1951 1952
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1953
		goto err_unlock;
C
Chris Wilson 已提交
1954
	}
1955

1956 1957
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1958
		goto err_unpin;
1959

1960
	ret = i915_vma_get_fence(vma);
1961
	if (ret)
1962
		goto err_unpin;
1963

1964
	/* Mark as being mmapped into userspace for later revocation */
1965
	assert_rpm_wakelock_held(dev_priv);
1966 1967 1968
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1969
	/* Finally, remap it using the new GTT offset */
1970 1971 1972 1973 1974
	ret = remap_io_mapping(area,
			       area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1975

1976
err_unpin:
C
Chris Wilson 已提交
1977
	__i915_vma_unpin(vma);
1978
err_unlock:
1979
	mutex_unlock(&dev->struct_mutex);
1980 1981 1982
err_rpm:
	intel_runtime_pm_put(dev_priv);
err:
1983
	switch (ret) {
1984
	case -EIO:
1985 1986 1987 1988 1989 1990 1991
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1992 1993 1994
			ret = VM_FAULT_SIGBUS;
			break;
		}
1995
	case -EAGAIN:
D
Daniel Vetter 已提交
1996 1997 1998 1999
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2000
		 */
2001 2002
	case 0:
	case -ERESTARTSYS:
2003
	case -EINTR:
2004 2005 2006 2007 2008
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2009 2010
		ret = VM_FAULT_NOPAGE;
		break;
2011
	case -ENOMEM:
2012 2013
		ret = VM_FAULT_OOM;
		break;
2014
	case -ENOSPC:
2015
	case -EFAULT:
2016 2017
		ret = VM_FAULT_SIGBUS;
		break;
2018
	default:
2019
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2020 2021
		ret = VM_FAULT_SIGBUS;
		break;
2022
	}
2023
	return ret;
2024 2025
}

2026 2027 2028 2029
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2030
 * Preserve the reservation of the mmapping with the DRM core code, but
2031 2032 2033 2034 2035 2036 2037 2038 2039
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2040
void
2041
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2042
{
2043 2044
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2045 2046 2047
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2048 2049 2050 2051
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2052
	 */
2053
	lockdep_assert_held(&i915->drm.struct_mutex);
2054
	intel_runtime_pm_get(i915);
2055

2056
	if (list_empty(&obj->userfault_link))
2057
		goto out;
2058

2059
	list_del_init(&obj->userfault_link);
2060 2061
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2062 2063 2064 2065 2066 2067 2068 2069 2070

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2071 2072 2073

out:
	intel_runtime_pm_put(i915);
2074 2075
}

2076
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2077
{
2078
	struct drm_i915_gem_object *obj, *on;
2079
	int i;
2080

2081 2082 2083 2084 2085 2086
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2087

2088 2089 2090
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2091 2092 2093
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

		if (WARN_ON(reg->pin_count))
			continue;

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2111 2112
}

2113 2114
/**
 * i915_gem_get_ggtt_size - return required global GTT size for an object
2115
 * @dev_priv: i915 device
2116 2117 2118 2119 2120 2121
 * @size: object size
 * @tiling_mode: tiling mode
 *
 * Return the required global GTT size for an object, taking into account
 * potential fence register mapping.
 */
2122 2123
u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
			   u64 size, int tiling_mode)
2124
{
2125
	u64 ggtt_size;
2126

2127 2128
	GEM_BUG_ON(size == 0);

2129
	if (INTEL_GEN(dev_priv) >= 4 ||
2130 2131
	    tiling_mode == I915_TILING_NONE)
		return size;
2132 2133

	/* Previous chips need a power-of-two fence region when tiling */
2134
	if (IS_GEN3(dev_priv))
2135
		ggtt_size = 1024*1024;
2136
	else
2137
		ggtt_size = 512*1024;
2138

2139 2140
	while (ggtt_size < size)
		ggtt_size <<= 1;
2141

2142
	return ggtt_size;
2143 2144
}

2145
/**
2146
 * i915_gem_get_ggtt_alignment - return required global GTT alignment
2147
 * @dev_priv: i915 device
2148 2149
 * @size: object size
 * @tiling_mode: tiling mode
2150
 * @fenced: is fenced alignment required or not
2151
 *
2152
 * Return the required global GTT alignment for an object, taking into account
2153
 * potential fence register mapping.
2154
 */
2155
u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
2156
				int tiling_mode, bool fenced)
2157
{
2158 2159
	GEM_BUG_ON(size == 0);

2160 2161 2162 2163
	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
2164
	if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2165
	    tiling_mode == I915_TILING_NONE)
2166 2167
		return 4096;

2168 2169 2170 2171
	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
2172
	return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2173 2174
}

2175 2176
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2177
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2178
	int err;
2179

2180 2181 2182
	err = drm_gem_create_mmap_offset(&obj->base);
	if (!err)
		return 0;
2183

2184 2185 2186
	/* We can idle the GPU locklessly to flush stale objects, but in order
	 * to claim that space for ourselves, we need to take the big
	 * struct_mutex to free the requests+objects and allocate our slot.
2187
	 */
2188
	err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2189 2190 2191 2192 2193 2194 2195 2196 2197
	if (err)
		return err;

	err = i915_mutex_lock_interruptible(&dev_priv->drm);
	if (!err) {
		i915_gem_retire_requests(dev_priv);
		err = drm_gem_create_mmap_offset(&obj->base);
		mutex_unlock(&dev_priv->drm.struct_mutex);
	}
2198

2199
	return err;
2200 2201 2202 2203 2204 2205 2206
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2207
int
2208 2209
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2210
		  uint32_t handle,
2211
		  uint64_t *offset)
2212
{
2213
	struct drm_i915_gem_object *obj;
2214 2215
	int ret;

2216
	obj = i915_gem_object_lookup(file, handle);
2217 2218
	if (!obj)
		return -ENOENT;
2219

2220
	ret = i915_gem_object_create_mmap_offset(obj);
2221 2222
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2223

2224
	i915_gem_object_put_unlocked(obj);
2225
	return ret;
2226 2227
}

2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2249
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2250 2251
}

D
Daniel Vetter 已提交
2252 2253 2254
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2255
{
2256
	i915_gem_object_free_mmap_offset(obj);
2257

2258 2259
	if (obj->base.filp == NULL)
		return;
2260

D
Daniel Vetter 已提交
2261 2262 2263 2264 2265
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2266
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
D
Daniel Vetter 已提交
2267 2268
	obj->madv = __I915_MADV_PURGED;
}
2269

2270 2271 2272
/* Try to discard unwanted pages */
static void
i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2273
{
2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285
	struct address_space *mapping;

	switch (obj->madv) {
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2286
	mapping = obj->base.filp->f_mapping,
2287
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2288 2289
}

2290
static void
2291
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2292
{
2293 2294
	struct sgt_iter sgt_iter;
	struct page *page;
2295
	int ret;
2296

2297
	BUG_ON(obj->madv == __I915_MADV_PURGED);
2298

C
Chris Wilson 已提交
2299
	ret = i915_gem_object_set_to_cpu_domain(obj, true);
2300
	if (WARN_ON(ret)) {
C
Chris Wilson 已提交
2301 2302 2303
		/* In the event of a disaster, abandon all caches and
		 * hope for the best.
		 */
2304
		i915_gem_clflush_object(obj, true);
C
Chris Wilson 已提交
2305 2306 2307
		obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	}

I
Imre Deak 已提交
2308 2309
	i915_gem_gtt_finish_object(obj);

2310
	if (i915_gem_object_needs_bit17_swizzle(obj))
2311 2312
		i915_gem_object_save_bit_17_swizzle(obj);

2313 2314
	if (obj->madv == I915_MADV_DONTNEED)
		obj->dirty = 0;
2315

2316
	for_each_sgt_page(page, sgt_iter, obj->pages) {
2317
		if (obj->dirty)
2318
			set_page_dirty(page);
2319

2320
		if (obj->madv == I915_MADV_WILLNEED)
2321
			mark_page_accessed(page);
2322

2323
		put_page(page);
2324
	}
2325
	obj->dirty = 0;
2326

2327 2328
	sg_free_table(obj->pages);
	kfree(obj->pages);
2329
}
C
Chris Wilson 已提交
2330

2331
int
2332 2333 2334 2335
i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
{
	const struct drm_i915_gem_object_ops *ops = obj->ops;

2336
	if (obj->pages == NULL)
2337 2338
		return 0;

2339 2340 2341
	if (obj->pages_pin_count)
		return -EBUSY;

2342
	GEM_BUG_ON(obj->bind_count);
B
Ben Widawsky 已提交
2343

2344 2345 2346
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2347
	list_del(&obj->global_list);
2348

2349
	if (obj->mapping) {
2350 2351 2352 2353 2354
		void *ptr;

		ptr = ptr_mask_bits(obj->mapping);
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2355
		else
2356 2357
			kunmap(kmap_to_page(ptr));

2358 2359 2360
		obj->mapping = NULL;
	}

2361
	ops->put_pages(obj);
2362
	obj->pages = NULL;
2363

2364
	i915_gem_object_invalidate(obj);
C
Chris Wilson 已提交
2365 2366 2367 2368

	return 0;
}

2369
static unsigned int swiotlb_max_size(void)
2370 2371 2372 2373 2374 2375 2376 2377
{
#if IS_ENABLED(CONFIG_SWIOTLB)
	return rounddown(swiotlb_nr_tbl() << IO_TLB_SHIFT, PAGE_SIZE);
#else
	return 0;
#endif
}

2378
static int
C
Chris Wilson 已提交
2379
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2380
{
2381
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2382 2383
	int page_count, i;
	struct address_space *mapping;
2384 2385
	struct sg_table *st;
	struct scatterlist *sg;
2386
	struct sgt_iter sgt_iter;
2387
	struct page *page;
2388
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2389
	unsigned int max_segment;
I
Imre Deak 已提交
2390
	int ret;
C
Chris Wilson 已提交
2391
	gfp_t gfp;
2392

C
Chris Wilson 已提交
2393 2394 2395 2396 2397 2398 2399
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
	BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);

2400 2401
	max_segment = swiotlb_max_size();
	if (!max_segment)
2402
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2403

2404 2405 2406 2407
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
		return -ENOMEM;

2408
	page_count = obj->base.size / PAGE_SIZE;
2409 2410
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2411
		return -ENOMEM;
2412
	}
2413

2414 2415 2416 2417 2418
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2419
	mapping = obj->base.filp->f_mapping;
2420
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2421
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2422 2423 2424
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2425 2426
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		if (IS_ERR(page)) {
2427 2428 2429 2430 2431
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2432 2433 2434 2435 2436 2437 2438
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
		if (IS_ERR(page)) {
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
			 */
2439
			page = shmem_read_mapping_page(mapping, i);
I
Imre Deak 已提交
2440 2441
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
C
Chris Wilson 已提交
2442
				goto err_pages;
I
Imre Deak 已提交
2443
			}
C
Chris Wilson 已提交
2444
		}
2445 2446 2447
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2448 2449 2450 2451 2452 2453 2454 2455
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2456 2457 2458

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2459
	}
2460
	if (sg) /* loop terminated early; short sg table */
2461
		sg_mark_end(sg);
2462 2463
	obj->pages = st;

I
Imre Deak 已提交
2464 2465 2466 2467
	ret = i915_gem_gtt_prepare_object(obj);
	if (ret)
		goto err_pages;

2468
	if (i915_gem_object_needs_bit17_swizzle(obj))
2469 2470
		i915_gem_object_do_bit_17_swizzle(obj);

2471
	if (i915_gem_object_is_tiled(obj) &&
2472 2473 2474
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
		i915_gem_object_pin_pages(obj);

2475 2476 2477
	return 0;

err_pages:
2478
	sg_mark_end(sg);
2479 2480
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2481 2482
	sg_free_table(st);
	kfree(st);
2483 2484 2485 2486 2487 2488 2489 2490 2491

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2492 2493 2494 2495
	if (ret == -ENOSPC)
		ret = -ENOMEM;

	return ret;
2496 2497
}

2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
/* Ensure that the associated pages are gathered from the backing storage
 * and pinned into our object. i915_gem_object_get_pages() may be called
 * multiple times before they are released by a single call to
 * i915_gem_object_put_pages() - once the pages are no longer referenced
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
int
i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
2508
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2509 2510 2511
	const struct drm_i915_gem_object_ops *ops = obj->ops;
	int ret;

2512
	if (obj->pages)
2513 2514
		return 0;

2515
	if (obj->madv != I915_MADV_WILLNEED) {
2516
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
2517
		return -EFAULT;
2518 2519
	}

2520 2521
	BUG_ON(obj->pages_pin_count);

2522 2523 2524 2525
	ret = ops->get_pages(obj);
	if (ret)
		return ret;

2526
	list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2527 2528 2529 2530

	obj->get_page.sg = obj->pages->sgl;
	obj->get_page.last = 0;

2531
	return 0;
2532 2533
}

2534
/* The 'mapping' part of i915_gem_object_pin_map() below */
2535 2536
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2537 2538 2539
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
	struct sg_table *sgt = obj->pages;
2540 2541
	struct sgt_iter sgt_iter;
	struct page *page;
2542 2543
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2544
	unsigned long i = 0;
2545
	pgprot_t pgprot;
2546 2547 2548
	void *addr;

	/* A single page can always be kmapped */
2549
	if (n_pages == 1 && type == I915_MAP_WB)
2550 2551
		return kmap(sg_page(sgt->sgl));

2552 2553 2554 2555 2556 2557
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2558

2559 2560
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2561 2562 2563 2564

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2565 2566 2567 2568 2569 2570 2571 2572 2573
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2574

2575 2576
	if (pages != stack_pages)
		drm_free_large(pages);
2577 2578 2579 2580 2581

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2582 2583
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2584
{
2585 2586 2587
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2588 2589 2590
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
2591
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2592 2593 2594 2595 2596 2597

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ERR_PTR(ret);

	i915_gem_object_pin_pages(obj);
2598
	pinned = obj->pages_pin_count > 1;
2599

2600 2601 2602 2603 2604
	ptr = ptr_unpack_bits(obj->mapping, has_type);
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
			goto err;
2605
		}
2606 2607 2608 2609 2610 2611 2612

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

		ptr = obj->mapping = NULL;
2613 2614
	}

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
			goto err;
		}

		obj->mapping = ptr_pack_bits(ptr, type);
	}

	return ptr;

err:
	i915_gem_object_unpin_pages(obj);
	return ERR_PTR(ret);
2630 2631
}

2632
static void
2633 2634
i915_gem_object_retire__write(struct i915_gem_active *active,
			      struct drm_i915_gem_request *request)
B
Ben Widawsky 已提交
2635
{
2636 2637
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_write);
2638

2639
	intel_fb_obj_flush(obj, true, ORIGIN_CS);
B
Ben Widawsky 已提交
2640 2641
}

2642
static void
2643 2644
i915_gem_object_retire__read(struct i915_gem_active *active,
			     struct drm_i915_gem_request *request)
2645
{
2646 2647 2648
	int idx = request->engine->id;
	struct drm_i915_gem_object *obj =
		container_of(active, struct drm_i915_gem_object, last_read[idx]);
2649

2650
	GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2651

2652 2653
	i915_gem_object_clear_active(obj, idx);
	if (i915_gem_object_is_active(obj))
2654
		return;
2655

2656 2657 2658 2659
	/* Bump our place on the bound list to keep it roughly in LRU order
	 * so that we don't steal from recently used but inactive objects
	 * (unless we are forced to ofc!)
	 */
2660 2661 2662
	if (obj->bind_count)
		list_move_tail(&obj->global_list,
			       &request->i915->mm.bound_list);
2663

2664 2665 2666 2667
	if (i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_clear_active_reference(obj);
		i915_gem_object_put(obj);
	}
2668 2669
}

2670
static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2671
{
2672
	unsigned long elapsed;
2673

2674
	if (ctx->hang_stats.banned)
2675 2676
		return true;

2677
	elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2678 2679
	if (ctx->hang_stats.ban_period_seconds &&
	    elapsed <= ctx->hang_stats.ban_period_seconds) {
2680 2681
		DRM_DEBUG("context hanging too fast, banning!\n");
		return true;
2682 2683 2684 2685 2686
	}

	return false;
}

2687
static void i915_set_reset_status(struct i915_gem_context *ctx,
2688
				  const bool guilty)
2689
{
2690
	struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2691 2692

	if (guilty) {
2693
		hs->banned = i915_context_is_banned(ctx);
2694 2695 2696 2697
		hs->batch_active++;
		hs->guilty_ts = get_seconds();
	} else {
		hs->batch_pending++;
2698 2699 2700
	}
}

2701
struct drm_i915_gem_request *
2702
i915_gem_find_active_request(struct intel_engine_cs *engine)
2703
{
2704 2705
	struct drm_i915_gem_request *request;

2706 2707 2708 2709 2710 2711 2712 2713
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2714
	list_for_each_entry(request, &engine->request_list, link) {
2715
		if (i915_gem_request_completed(request))
2716
			continue;
2717

2718 2719 2720
		if (!i915_sw_fence_done(&request->submit))
			break;

2721
		return request;
2722
	}
2723 2724 2725 2726

	return NULL;
}

2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744
static void reset_request(struct drm_i915_gem_request *request)
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
}

static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2745 2746
{
	struct drm_i915_gem_request *request;
2747
	struct i915_gem_context *incomplete_ctx;
2748 2749
	bool ring_hung;

2750 2751 2752
	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2753
	request = i915_gem_find_active_request(engine);
2754
	if (!request)
2755 2756
		return;

2757
	ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2758 2759 2760
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine))
		ring_hung = false;

2761
	i915_set_reset_status(request->ctx, ring_hung);
2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
	if (!ring_hung)
		return;

	DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
			 engine->name, request->fence.seqno);

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);

	/* Users of the default context do not rely on logical state
	 * preserved between batches. They have to emit full state on
	 * every batch and so it is safe to execute queued requests following
	 * the hang.
	 *
	 * Other contexts preserve state, now corrupt. We want to skip all
	 * queued requests that reference the corrupt context.
	 */
	incomplete_ctx = request->ctx;
	if (i915_gem_context_is_default(incomplete_ctx))
		return;

2783
	list_for_each_entry_continue(request, &engine->request_list, link)
2784 2785
		if (request->ctx == incomplete_ctx)
			reset_request(request);
2786
}
2787

2788
void i915_gem_reset(struct drm_i915_private *dev_priv)
2789
{
2790
	struct intel_engine_cs *engine;
2791
	enum intel_engine_id id;
2792

2793 2794
	i915_gem_retire_requests(dev_priv);

2795
	for_each_engine(engine, dev_priv, id)
2796 2797 2798
		i915_gem_reset_engine(engine);

	i915_gem_restore_fences(&dev_priv->drm);
2799 2800 2801 2802 2803 2804 2805

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2806 2807 2808 2809 2810 2811 2812 2813 2814
}

static void nop_submit_request(struct drm_i915_gem_request *request)
{
}

static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
{
	engine->submit_request = nop_submit_request;
2815

2816 2817 2818 2819
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2820
	intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2821

2822 2823 2824 2825 2826 2827
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2828
	if (i915.enable_execlists) {
2829 2830 2831 2832 2833 2834
		spin_lock(&engine->execlist_lock);
		INIT_LIST_HEAD(&engine->execlist_queue);
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
		spin_unlock(&engine->execlist_lock);
2835 2836
	}

2837
	engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2838 2839
}

2840
void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2841
{
2842
	struct intel_engine_cs *engine;
2843
	enum intel_engine_id id;
2844

2845 2846
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2847

2848
	i915_gem_context_lost(dev_priv);
2849
	for_each_engine(engine, dev_priv, id)
2850
		i915_gem_cleanup_engine(engine);
2851
	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2852

2853
	i915_gem_retire_requests(dev_priv);
2854 2855
}

2856
static void
2857 2858
i915_gem_retire_work_handler(struct work_struct *work)
{
2859
	struct drm_i915_private *dev_priv =
2860
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
2861
	struct drm_device *dev = &dev_priv->drm;
2862

2863
	/* Come back later if the device is busy... */
2864
	if (mutex_trylock(&dev->struct_mutex)) {
2865
		i915_gem_retire_requests(dev_priv);
2866
		mutex_unlock(&dev->struct_mutex);
2867
	}
2868 2869 2870 2871 2872

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
2873 2874
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
2875 2876
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
2877
				   round_jiffies_up_relative(HZ));
2878
	}
2879
}
2880

2881 2882 2883 2884
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
2885
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
2886
	struct drm_device *dev = &dev_priv->drm;
2887
	struct intel_engine_cs *engine;
2888
	enum intel_engine_id id;
2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

	if (READ_ONCE(dev_priv->gt.active_engines))
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

	if (dev_priv->gt.active_engines)
		goto out_unlock;
2910

2911
	for_each_engine(engine, dev_priv, id)
2912
		i915_gem_batch_pool_fini(&engine->batch_pool);
2913

2914 2915 2916
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
2917

2918 2919 2920 2921 2922
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
2923

2924 2925 2926 2927
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
2928
	}
2929 2930
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
2941 2942 2943 2944 2945 2946

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
2947 2948 2949
	mutex_unlock(&obj->base.dev->struct_mutex);
}

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

2961 2962
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2963 2964 2965
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
2990 2991
	ktime_t start;
	long ret;
2992

2993 2994 2995
	if (args->flags != 0)
		return -EINVAL;

2996
	obj = i915_gem_object_lookup(file, args->bo_handle);
2997
	if (!obj)
2998 2999
		return -ENOENT;

3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3011 3012
	}

3013
	i915_gem_object_put_unlocked(obj);
3014
	return ret;
3015 3016
}

3017 3018
static void __i915_vma_iounmap(struct i915_vma *vma)
{
3019
	GEM_BUG_ON(i915_vma_is_pinned(vma));
3020 3021 3022 3023 3024 3025 3026 3027

	if (vma->iomap == NULL)
		return;

	io_mapping_unmap(vma->iomap);
	vma->iomap = NULL;
}

3028
int i915_vma_unbind(struct i915_vma *vma)
3029
{
3030
	struct drm_i915_gem_object *obj = vma->obj;
3031
	unsigned long active;
3032
	int ret;
3033

3034 3035 3036 3037
	/* First wait upon any activity as retiring the request may
	 * have side-effects such as unpinning or even unbinding this vma.
	 */
	active = i915_vma_get_active(vma);
3038
	if (active) {
3039 3040
		int idx;

3041 3042 3043 3044 3045
		/* When a closed VMA is retired, it is unbound - eek.
		 * In order to prevent it from being recursively closed,
		 * take a pin on the vma so that the second unbind is
		 * aborted.
		 */
3046
		__i915_vma_pin(vma);
3047

3048 3049 3050 3051
		for_each_active(active, idx) {
			ret = i915_gem_active_retire(&vma->last_read[idx],
						   &vma->vm->dev->struct_mutex);
			if (ret)
3052
				break;
3053 3054
		}

3055
		__i915_vma_unpin(vma);
3056 3057 3058
		if (ret)
			return ret;

3059 3060 3061
		GEM_BUG_ON(i915_vma_is_active(vma));
	}

3062
	if (i915_vma_is_pinned(vma))
3063 3064
		return -EBUSY;

3065 3066
	if (!drm_mm_node_allocated(&vma->node))
		goto destroy;
3067

3068 3069
	GEM_BUG_ON(obj->bind_count == 0);
	GEM_BUG_ON(!obj->pages);
3070

3071
	if (i915_vma_is_map_and_fenceable(vma)) {
3072
		/* release the fence reg _after_ flushing */
3073
		ret = i915_vma_put_fence(vma);
3074 3075
		if (ret)
			return ret;
3076

3077 3078 3079
		/* Force a pagefault for domain tracking on next user access */
		i915_gem_release_mmap(obj);

3080
		__i915_vma_iounmap(vma);
3081
		vma->flags &= ~I915_VMA_CAN_FENCE;
3082
	}
3083

3084 3085 3086 3087
	if (likely(!vma->vm->closed)) {
		trace_i915_vma_unbind(vma);
		vma->vm->unbind_vma(vma);
	}
3088
	vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
3089

3090 3091 3092
	drm_mm_remove_node(&vma->node);
	list_move_tail(&vma->vm_link, &vma->vm->unbound_list);

3093 3094 3095 3096
	if (vma->pages != obj->pages) {
		GEM_BUG_ON(!vma->pages);
		sg_free_table(vma->pages);
		kfree(vma->pages);
3097
	}
3098
	vma->pages = NULL;
3099

B
Ben Widawsky 已提交
3100
	/* Since the unbound list is global, only move to that list if
3101
	 * no more VMAs exist. */
3102 3103 3104
	if (--obj->bind_count == 0)
		list_move_tail(&obj->global_list,
			       &to_i915(obj->base.dev)->mm.unbound_list);
3105

3106 3107 3108 3109 3110 3111
	/* And finally now the object is completely decoupled from this vma,
	 * we can drop its hold on the backing storage and allow it to be
	 * reaped by the shrinker.
	 */
	i915_gem_object_unpin_pages(obj);

3112
destroy:
3113
	if (unlikely(i915_vma_is_closed(vma)))
3114 3115
		i915_vma_destroy(vma);

3116
	return 0;
3117 3118
}

3119
int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3120
			   unsigned int flags)
3121
{
3122
	struct intel_engine_cs *engine;
3123
	enum intel_engine_id id;
3124
	int ret;
3125

3126
	for_each_engine(engine, dev_priv, id) {
3127 3128 3129
		if (engine->last_context == NULL)
			continue;

3130
		ret = intel_engine_idle(engine, flags);
3131 3132 3133
		if (ret)
			return ret;
	}
3134

3135
	return 0;
3136 3137
}

3138
static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3139 3140
				     unsigned long cache_level)
{
3141
	struct drm_mm_node *gtt_space = &vma->node;
3142 3143
	struct drm_mm_node *other;

3144 3145 3146 3147 3148 3149
	/*
	 * On some machines we have to be careful when putting differing types
	 * of snoopable memory together to avoid the prefetcher crossing memory
	 * domains and dying. During vm initialisation, we decide whether or not
	 * these constraints apply and set the drm_mm.color_adjust
	 * appropriately.
3150
	 */
3151
	if (vma->vm->mm.color_adjust == NULL)
3152 3153
		return true;

3154
	if (!drm_mm_node_allocated(gtt_space))
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
		return true;

	if (list_empty(&gtt_space->node_list))
		return true;

	other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
	if (other->allocated && !other->hole_follows && other->color != cache_level)
		return false;

	other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
	if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
		return false;

	return true;
}

3171
/**
3172 3173
 * i915_vma_insert - finds a slot for the vma in its address space
 * @vma: the vma
3174
 * @size: requested size in bytes (can be larger than the VMA)
3175
 * @alignment: required alignment
3176
 * @flags: mask of PIN_* flags to use
3177 3178 3179 3180 3181 3182 3183
 *
 * First we try to allocate some free space that meets the requirements for
 * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
 * preferrably the oldest idle entry to make room for the new VMA.
 *
 * Returns:
 * 0 on success, negative error code otherwise.
3184
 */
3185 3186
static int
i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3187
{
3188 3189
	struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
	struct drm_i915_gem_object *obj = vma->obj;
3190
	u64 start, end;
3191
	int ret;
3192

3193
	GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3194
	GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3195 3196 3197

	size = max(size, vma->size);
	if (flags & PIN_MAPPABLE)
3198 3199
		size = i915_gem_get_ggtt_size(dev_priv, size,
					      i915_gem_object_get_tiling(obj));
3200

3201 3202 3203 3204
	alignment = max(max(alignment, vma->display_alignment),
			i915_gem_get_ggtt_alignment(dev_priv, size,
						    i915_gem_object_get_tiling(obj),
						    flags & PIN_MAPPABLE));
3205

3206
	start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3207 3208

	end = vma->vm->total;
3209
	if (flags & PIN_MAPPABLE)
3210
		end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3211
	if (flags & PIN_ZONE_4G)
3212
		end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3213

3214 3215 3216
	/* If binding the object/GGTT view requires more space than the entire
	 * aperture has, reject it early before evicting everything in a vain
	 * attempt to find space.
3217
	 */
3218
	if (size > end) {
3219
		DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3220
			  size, obj->base.size,
3221
			  flags & PIN_MAPPABLE ? "mappable" : "total",
3222
			  end);
3223
		return -E2BIG;
3224 3225
	}

3226
	ret = i915_gem_object_get_pages(obj);
C
Chris Wilson 已提交
3227
	if (ret)
3228
		return ret;
C
Chris Wilson 已提交
3229

3230 3231
	i915_gem_object_pin_pages(obj);

3232
	if (flags & PIN_OFFSET_FIXED) {
3233
		u64 offset = flags & PIN_OFFSET_MASK;
3234
		if (offset & (alignment - 1) || offset > end - size) {
3235
			ret = -EINVAL;
3236
			goto err_unpin;
3237
		}
3238

3239 3240 3241
		vma->node.start = offset;
		vma->node.size = size;
		vma->node.color = obj->cache_level;
3242
		ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3243 3244 3245
		if (ret) {
			ret = i915_gem_evict_for_vma(vma);
			if (ret == 0)
3246 3247 3248
				ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
			if (ret)
				goto err_unpin;
3249
		}
3250
	} else {
3251 3252
		u32 search_flag, alloc_flag;

3253 3254 3255 3256 3257 3258 3259
		if (flags & PIN_HIGH) {
			search_flag = DRM_MM_SEARCH_BELOW;
			alloc_flag = DRM_MM_CREATE_TOP;
		} else {
			search_flag = DRM_MM_SEARCH_DEFAULT;
			alloc_flag = DRM_MM_CREATE_DEFAULT;
		}
3260

3261 3262 3263 3264 3265 3266 3267 3268 3269
		/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
		 * so we know that we always have a minimum alignment of 4096.
		 * The drm_mm range manager is optimised to return results
		 * with zero alignment, so where possible use the optimal
		 * path.
		 */
		if (alignment <= 4096)
			alignment = 0;

3270
search_free:
3271 3272
		ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
							  &vma->node,
3273 3274 3275 3276 3277 3278
							  size, alignment,
							  obj->cache_level,
							  start, end,
							  search_flag,
							  alloc_flag);
		if (ret) {
3279
			ret = i915_gem_evict_something(vma->vm, size, alignment,
3280 3281 3282 3283 3284
						       obj->cache_level,
						       start, end,
						       flags);
			if (ret == 0)
				goto search_free;
3285

3286
			goto err_unpin;
3287
		}
3288 3289 3290

		GEM_BUG_ON(vma->node.start < start);
		GEM_BUG_ON(vma->node.start + vma->node.size > end);
3291
	}
3292
	GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3293

3294
	list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3295
	list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3296
	obj->bind_count++;
3297

3298
	return 0;
B
Ben Widawsky 已提交
3299

3300
err_unpin:
B
Ben Widawsky 已提交
3301
	i915_gem_object_unpin_pages(obj);
3302
	return ret;
3303 3304
}

3305
bool
3306 3307
i915_gem_clflush_object(struct drm_i915_gem_object *obj,
			bool force)
3308 3309 3310 3311 3312
{
	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
3313
	if (obj->pages == NULL)
3314
		return false;
3315

3316 3317 3318 3319
	/*
	 * Stolen memory is always coherent with the GPU as it is explicitly
	 * marked as wc by the system, or the system is cache-coherent.
	 */
3320
	if (obj->stolen || obj->phys_handle)
3321
		return false;
3322

3323 3324 3325 3326 3327 3328 3329 3330
	/* If the GPU is snooping the contents of the CPU cache,
	 * we do not need to manually clear the CPU cache lines.  However,
	 * the caches are only snooped when the render cache is
	 * flushed/invalidated.  As we always have to emit invalidations
	 * and flushes when moving into and out of the RENDER domain, correct
	 * snooping behaviour occurs naturally as the result of our domain
	 * tracking.
	 */
3331 3332
	if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
		obj->cache_dirty = true;
3333
		return false;
3334
	}
3335

C
Chris Wilson 已提交
3336
	trace_i915_gem_object_clflush(obj);
3337
	drm_clflush_sg(obj->pages);
3338
	obj->cache_dirty = false;
3339 3340

	return true;
3341 3342 3343 3344
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
3345
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3346
{
3347
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3348

3349
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3350 3351
		return;

3352
	/* No actual flushing is required for the GTT write domain.  Writes
3353
	 * to it "immediately" go to main memory as far as we know, so there's
3354
	 * no chipset flush.  It also doesn't land in render cache.
3355 3356 3357 3358
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3359 3360 3361 3362 3363 3364 3365
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3366
	 */
3367
	wmb();
3368
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3369
		POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3370

3371
	intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3372

3373
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3374
	trace_i915_gem_object_change_domain(obj,
3375
					    obj->base.read_domains,
3376
					    I915_GEM_DOMAIN_GTT);
3377 3378 3379 3380
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3381
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3382
{
3383
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3384 3385
		return;

3386
	if (i915_gem_clflush_object(obj, obj->pin_display))
3387
		i915_gem_chipset_flush(to_i915(obj->base.dev));
3388

3389
	intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3390

3391
	obj->base.write_domain = 0;
C
Chris Wilson 已提交
3392
	trace_i915_gem_object_change_domain(obj,
3393
					    obj->base.read_domains,
3394
					    I915_GEM_DOMAIN_CPU);
3395 3396
}

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
			continue;

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}
}

3415 3416
/**
 * Moves a single object to the GTT read, and possibly write domain.
3417 3418
 * @obj: object to act on
 * @write: ask for write access or read only
3419 3420 3421 3422
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3423
int
3424
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3425
{
C
Chris Wilson 已提交
3426
	uint32_t old_write_domain, old_read_domains;
3427
	int ret;
3428

3429 3430 3431 3432 3433 3434 3435
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3436 3437 3438
	if (ret)
		return ret;

3439 3440 3441
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_get_pages(obj);
	if (ret)
		return ret;

3454
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3455

3456 3457 3458 3459 3460 3461 3462
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3463 3464
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3465

3466 3467 3468
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3469 3470
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3471
	if (write) {
3472 3473 3474
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
		obj->dirty = 1;
3475 3476
	}

C
Chris Wilson 已提交
3477 3478 3479 3480
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3481
	/* And bump the LRU for this access */
3482
	i915_gem_object_bump_inactive_ggtt(obj);
3483

3484 3485 3486
	return 0;
}

3487 3488
/**
 * Changes the cache-level of an object across all VMA.
3489 3490
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3502 3503 3504
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3505
	struct i915_vma *vma;
3506
	int ret = 0;
3507 3508

	if (obj->cache_level == cache_level)
3509
		goto out;
3510

3511 3512 3513 3514 3515
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3516 3517
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3518 3519 3520
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3521
		if (i915_vma_is_pinned(vma)) {
3522 3523 3524 3525
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3538 3539
	}

3540 3541 3542 3543 3544 3545 3546
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3547
	if (obj->bind_count) {
3548 3549 3550 3551
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3552 3553 3554 3555 3556 3557
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3558 3559 3560
		if (ret)
			return ret;

3561
		if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3578 3579 3580 3581 3582
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3583 3584 3585 3586 3587 3588 3589 3590
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3591 3592
		}

3593
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3594 3595 3596 3597 3598 3599 3600
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3601 3602
	}

3603
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3604 3605 3606
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3607
out:
3608 3609 3610 3611
	/* Flush the dirty CPU caches to the backing storage so that the
	 * object is now coherent at its new cache level (with respect
	 * to the access domain).
	 */
3612
	if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3613
		if (i915_gem_clflush_object(obj, true))
3614
			i915_gem_chipset_flush(to_i915(obj->base.dev));
3615 3616 3617 3618 3619
	}

	return 0;
}

B
Ben Widawsky 已提交
3620 3621
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3622
{
B
Ben Widawsky 已提交
3623
	struct drm_i915_gem_caching *args = data;
3624 3625
	struct drm_i915_gem_object *obj;

3626 3627
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
3628
		return -ENOENT;
3629

3630 3631 3632 3633 3634 3635
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3636 3637 3638 3639
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3640 3641 3642 3643
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3644

3645
	i915_gem_object_put_unlocked(obj);
3646
	return 0;
3647 3648
}

B
Ben Widawsky 已提交
3649 3650
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3651
{
3652
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3653
	struct drm_i915_gem_caching *args = data;
3654 3655 3656 3657
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
	int ret;

B
Ben Widawsky 已提交
3658 3659
	switch (args->caching) {
	case I915_CACHING_NONE:
3660 3661
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3662
	case I915_CACHING_CACHED:
3663 3664 3665 3666 3667 3668
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3669
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3670 3671
			return -ENODEV;

3672 3673
		level = I915_CACHE_LLC;
		break;
3674
	case I915_CACHING_DISPLAY:
3675
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3676
		break;
3677 3678 3679 3680
	default:
		return -EINVAL;
	}

B
Ben Widawsky 已提交
3681 3682
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
3683
		return ret;
B
Ben Widawsky 已提交
3684

3685 3686
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj) {
3687 3688 3689 3690 3691
		ret = -ENOENT;
		goto unlock;
	}

	ret = i915_gem_object_set_cache_level(obj, level);
3692
	i915_gem_object_put(obj);
3693 3694 3695 3696 3697
unlock:
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

3698
/*
3699 3700 3701
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3702
 */
C
Chris Wilson 已提交
3703
struct i915_vma *
3704 3705
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3706
				     const struct i915_ggtt_view *view)
3707
{
C
Chris Wilson 已提交
3708
	struct i915_vma *vma;
3709
	u32 old_read_domains, old_write_domain;
3710 3711
	int ret;

3712 3713 3714
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3715
	obj->pin_display++;
3716

3717 3718 3719 3720 3721 3722 3723 3724 3725
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3726
	ret = i915_gem_object_set_cache_level(obj,
3727 3728
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3729 3730
	if (ret) {
		vma = ERR_PTR(ret);
3731
		goto err_unpin_display;
C
Chris Wilson 已提交
3732
	}
3733

3734 3735
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3736 3737 3738 3739
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3740
	 */
3741 3742 3743 3744 3745 3746
	vma = ERR_PTR(-ENOSPC);
	if (view->type == I915_GGTT_VIEW_NORMAL)
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
	if (IS_ERR(vma))
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
C
Chris Wilson 已提交
3747
	if (IS_ERR(vma))
3748
		goto err_unpin_display;
3749

3750 3751
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3752
	i915_gem_object_flush_cpu_write_domain(obj);
3753

3754
	old_write_domain = obj->base.write_domain;
3755
	old_read_domains = obj->base.read_domains;
3756 3757 3758 3759

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3760
	obj->base.write_domain = 0;
3761
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3762 3763 3764

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
3765
					    old_write_domain);
3766

C
Chris Wilson 已提交
3767
	return vma;
3768 3769

err_unpin_display:
3770
	obj->pin_display--;
C
Chris Wilson 已提交
3771
	return vma;
3772 3773 3774
}

void
C
Chris Wilson 已提交
3775
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3776
{
C
Chris Wilson 已提交
3777
	if (WARN_ON(vma->obj->pin_display == 0))
3778 3779
		return;

3780 3781
	if (--vma->obj->pin_display == 0)
		vma->display_alignment = 0;
3782

3783 3784 3785 3786
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
	if (!i915_vma_is_active(vma))
		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);

C
Chris Wilson 已提交
3787
	i915_vma_unpin(vma);
3788 3789
}

3790 3791
/**
 * Moves a single object to the CPU read, and possibly write domain.
3792 3793
 * @obj: object to act on
 * @write: requesting write or read-only access
3794 3795 3796 3797
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3798
int
3799
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3800
{
C
Chris Wilson 已提交
3801
	uint32_t old_write_domain, old_read_domains;
3802 3803
	int ret;

3804 3805 3806 3807 3808 3809 3810
	lockdep_assert_held(&obj->base.dev->struct_mutex);
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3811 3812 3813
	if (ret)
		return ret;

3814 3815 3816
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3817
	i915_gem_object_flush_gtt_write_domain(obj);
3818

3819 3820
	old_write_domain = obj->base.write_domain;
	old_read_domains = obj->base.read_domains;
C
Chris Wilson 已提交
3821

3822
	/* Flush the CPU cache if it's still invalid. */
3823
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3824
		i915_gem_clflush_object(obj, false);
3825

3826
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3827 3828 3829 3830 3831
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3832
	BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3833 3834 3835 3836 3837

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3838 3839
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3840
	}
3841

C
Chris Wilson 已提交
3842 3843 3844 3845
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

3846 3847 3848
	return 0;
}

3849 3850 3851
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3852 3853 3854 3855
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3856 3857 3858
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3859
static int
3860
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3861
{
3862
	struct drm_i915_private *dev_priv = to_i915(dev);
3863
	struct drm_i915_file_private *file_priv = file->driver_priv;
3864
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3865
	struct drm_i915_gem_request *request, *target = NULL;
3866
	long ret;
3867

3868 3869 3870
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3871

3872
	spin_lock(&file_priv->mm.lock);
3873
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3874 3875
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3876

3877 3878 3879 3880 3881 3882 3883
		/*
		 * Note that the request might not have been submitted yet.
		 * In which case emitted_jiffies will be zero.
		 */
		if (!request->emitted_jiffies)
			continue;

3884
		target = request;
3885
	}
3886
	if (target)
3887
		i915_gem_request_get(target);
3888
	spin_unlock(&file_priv->mm.lock);
3889

3890
	if (target == NULL)
3891
		return 0;
3892

3893 3894 3895
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3896
	i915_gem_request_put(target);
3897

3898
	return ret < 0 ? ret : 0;
3899 3900
}

3901
static bool
3902
i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3903
{
3904 3905 3906
	if (!drm_mm_node_allocated(&vma->node))
		return false;

3907 3908 3909 3910
	if (vma->node.size < size)
		return true;

	if (alignment && vma->node.start & (alignment - 1))
3911 3912
		return true;

3913
	if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3914 3915 3916 3917 3918 3919
		return true;

	if (flags & PIN_OFFSET_BIAS &&
	    vma->node.start < (flags & PIN_OFFSET_MASK))
		return true;

3920 3921 3922 3923
	if (flags & PIN_OFFSET_FIXED &&
	    vma->node.start != (flags & PIN_OFFSET_MASK))
		return true;

3924 3925 3926
	return false;
}

3927 3928 3929
void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
{
	struct drm_i915_gem_object *obj = vma->obj;
3930
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3931 3932 3933
	bool mappable, fenceable;
	u32 fence_size, fence_alignment;

3934
	fence_size = i915_gem_get_ggtt_size(dev_priv,
3935
					    vma->size,
3936
					    i915_gem_object_get_tiling(obj));
3937
	fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3938
						      vma->size,
3939
						      i915_gem_object_get_tiling(obj),
3940
						      true);
3941 3942 3943 3944 3945

	fenceable = (vma->node.size == fence_size &&
		     (vma->node.start & (fence_alignment - 1)) == 0);

	mappable = (vma->node.start + fence_size <=
3946
		    dev_priv->ggtt.mappable_end);
3947

3948 3949 3950 3951 3952 3953
	/*
	 * Explicitly disable for rotated VMA since the display does not
	 * need the fence and the VMA is not accessible to other users.
	 */
	if (mappable && fenceable &&
	    vma->ggtt_view.type != I915_GGTT_VIEW_ROTATED)
3954 3955 3956
		vma->flags |= I915_VMA_CAN_FENCE;
	else
		vma->flags &= ~I915_VMA_CAN_FENCE;
3957 3958
}

3959 3960
int __i915_vma_do_pin(struct i915_vma *vma,
		      u64 size, u64 alignment, u64 flags)
3961
{
3962
	unsigned int bound = vma->flags;
3963 3964
	int ret;

3965
	GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3966
	GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
B
Ben Widawsky 已提交
3967

3968 3969 3970 3971
	if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
		ret = -EBUSY;
		goto err;
	}
3972

3973
	if ((bound & I915_VMA_BIND_MASK) == 0) {
3974 3975 3976
		ret = i915_vma_insert(vma, size, alignment, flags);
		if (ret)
			goto err;
3977
	}
3978

3979
	ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3980
	if (ret)
3981
		goto err;
3982

3983
	if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3984
		__i915_vma_set_map_and_fenceable(vma);
3985

3986
	GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3987 3988
	return 0;

3989 3990 3991
err:
	__i915_vma_unpin(vma);
	return ret;
3992 3993
}

C
Chris Wilson 已提交
3994
struct i915_vma *
3995 3996
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3997
			 u64 size,
3998 3999
			 u64 alignment,
			 u64 flags)
4000
{
4001 4002
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4003 4004
	struct i915_vma *vma;
	int ret;
4005

C
Chris Wilson 已提交
4006
	vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
4007
	if (IS_ERR(vma))
C
Chris Wilson 已提交
4008
		return vma;
4009 4010 4011 4012

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4013
			return ERR_PTR(-ENOSPC);
4014

4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049
		if (flags & PIN_MAPPABLE) {
			u32 fence_size;

			fence_size = i915_gem_get_ggtt_size(dev_priv, vma->size,
							    i915_gem_object_get_tiling(obj));
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
			if (fence_size > dev_priv->ggtt.mappable_end)
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
			    fence_size > dev_priv->ggtt.mappable_end / 2)
				return ERR_PTR(-ENOSPC);
		}

4050 4051
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4052 4053 4054
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4055
		     !!(flags & PIN_MAPPABLE),
4056
		     i915_vma_is_map_and_fenceable(vma));
4057 4058
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4059
			return ERR_PTR(ret);
4060 4061
	}

C
Chris Wilson 已提交
4062 4063 4064
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4065

C
Chris Wilson 已提交
4066
	return vma;
4067 4068
}

4069
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4084 4085 4086 4087 4088 4089 4090 4091 4092
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4093 4094
}

4095
static __always_inline unsigned int
4096 4097 4098
__busy_set_if_active(const struct i915_gem_active *active,
		     unsigned int (*flag)(unsigned int id))
{
4099
	struct drm_i915_gem_request *request;
4100

4101 4102 4103
	request = rcu_dereference(active->request);
	if (!request || i915_gem_request_completed(request))
		return 0;
4104

4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
	/* This is racy. See __i915_gem_active_get_rcu() for an in detail
	 * discussion of how to handle the race correctly, but for reporting
	 * the busy state we err on the side of potentially reporting the
	 * wrong engine as being busy (but we guarantee that the result
	 * is at least self-consistent).
	 *
	 * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
	 * whilst we are inspecting it, even under the RCU read lock as we are.
	 * This means that there is a small window for the engine and/or the
	 * seqno to have been overwritten. The seqno will always be in the
	 * future compared to the intended, and so we know that if that
	 * seqno is idle (on whatever engine) our request is idle and the
	 * return 0 above is correct.
	 *
	 * The issue is that if the engine is switched, it is just as likely
	 * to report that it is busy (but since the switch happened, we know
	 * the request should be idle). So there is a small chance that a busy
	 * result is actually the wrong engine.
	 *
	 * So why don't we care?
	 *
	 * For starters, the busy ioctl is a heuristic that is by definition
	 * racy. Even with perfect serialisation in the driver, the hardware
	 * state is constantly advancing - the state we report to the user
	 * is stale.
	 *
	 * The critical information for the busy-ioctl is whether the object
	 * is idle as userspace relies on that to detect whether its next
	 * access will stall, or if it has missed submitting commands to
	 * the hardware allowing the GPU to stall. We never generate a
	 * false-positive for idleness, thus busy-ioctl is reliable at the
	 * most fundamental level, and we maintain the guarantee that a
	 * busy object left to itself will eventually become idle (and stay
	 * idle!).
	 *
	 * We allow ourselves the leeway of potentially misreporting the busy
	 * state because that is an optimisation heuristic that is constantly
	 * in flux. Being quickly able to detect the busy/idle state is much
	 * more important than accurate logging of exactly which engines were
	 * busy.
	 *
	 * For accuracy in reporting the engine, we could use
	 *
	 *	result = 0;
	 *	request = __i915_gem_active_get_rcu(active);
	 *	if (request) {
	 *		if (!i915_gem_request_completed(request))
	 *			result = flag(request->engine->exec_id);
	 *		i915_gem_request_put(request);
	 *	}
	 *
	 * but that still remains susceptible to both hardware and userspace
	 * races. So we accept making the result of that race slightly worse,
	 * given the rarity of the race and its low impact on the result.
	 */
	return flag(READ_ONCE(request->engine->exec_id));
4161 4162
}

4163
static __always_inline unsigned int
4164 4165 4166 4167 4168
busy_check_reader(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_read_flag);
}

4169
static __always_inline unsigned int
4170 4171 4172 4173 4174
busy_check_writer(const struct i915_gem_active *active)
{
	return __busy_set_if_active(active, __busy_write_id);
}

4175 4176
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4177
		    struct drm_file *file)
4178 4179
{
	struct drm_i915_gem_busy *args = data;
4180
	struct drm_i915_gem_object *obj;
4181
	unsigned long active;
4182

4183
	obj = i915_gem_object_lookup(file, args->handle);
4184 4185
	if (!obj)
		return -ENOENT;
4186

4187
	args->busy = 0;
4188 4189 4190
	active = __I915_BO_ACTIVE(obj);
	if (active) {
		int idx;
4191

4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207
		/* Yes, the lookups are intentionally racy.
		 *
		 * First, we cannot simply rely on __I915_BO_ACTIVE. We have
		 * to regard the value as stale and as our ABI guarantees
		 * forward progress, we confirm the status of each active
		 * request with the hardware.
		 *
		 * Even though we guard the pointer lookup by RCU, that only
		 * guarantees that the pointer and its contents remain
		 * dereferencable and does *not* mean that the request we
		 * have is the same as the one being tracked by the object.
		 *
		 * Consider that we lookup the request just as it is being
		 * retired and freed. We take a local copy of the pointer,
		 * but before we add its engine into the busy set, the other
		 * thread reallocates it and assigns it to a task on another
4208 4209 4210 4211 4212 4213
		 * engine with a fresh and incomplete seqno. Guarding against
		 * that requires careful serialisation and reference counting,
		 * i.e. using __i915_gem_active_get_request_rcu(). We don't,
		 * instead we expect that if the result is busy, which engines
		 * are busy is not completely reliable - we only guarantee
		 * that the object was busy.
4214 4215 4216 4217 4218 4219 4220
		 */
		rcu_read_lock();

		for_each_active(active, idx)
			args->busy |= busy_check_reader(&obj->last_read[idx]);

		/* For ABI sanity, we only care that the write engine is in
4221 4222 4223 4224 4225
		 * the set of read engines. This should be ensured by the
		 * ordering of setting last_read/last_write in
		 * i915_vma_move_to_active(), and then in reverse in retire.
		 * However, for good measure, we always report the last_write
		 * request as a busy read as well as being a busy write.
4226 4227 4228 4229 4230 4231 4232 4233 4234
		 *
		 * We don't care that the set of active read/write engines
		 * may change during construction of the result, as it is
		 * equally liable to change before userspace can inspect
		 * the result.
		 */
		args->busy |= busy_check_writer(&obj->last_write);

		rcu_read_unlock();
4235
	}
4236

4237 4238
	i915_gem_object_put_unlocked(obj);
	return 0;
4239 4240 4241 4242 4243 4244
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4245
	return i915_gem_ring_throttle(dev, file_priv);
4246 4247
}

4248 4249 4250 4251
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4252
	struct drm_i915_private *dev_priv = to_i915(dev);
4253
	struct drm_i915_gem_madvise *args = data;
4254
	struct drm_i915_gem_object *obj;
4255
	int ret;
4256 4257 4258 4259 4260 4261 4262 4263 4264

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4265 4266 4267 4268
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;

4269 4270
	obj = i915_gem_object_lookup(file_priv, args->handle);
	if (!obj) {
4271 4272
		ret = -ENOENT;
		goto unlock;
4273 4274
	}

4275
	if (obj->pages &&
4276
	    i915_gem_object_is_tiled(obj) &&
4277 4278 4279 4280 4281 4282 4283
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		if (obj->madv == I915_MADV_WILLNEED)
			i915_gem_object_unpin_pages(obj);
		if (args->madv == I915_MADV_WILLNEED)
			i915_gem_object_pin_pages(obj);
	}

4284 4285
	if (obj->madv != __I915_MADV_PURGED)
		obj->madv = args->madv;
4286

C
Chris Wilson 已提交
4287
	/* if the object is no longer attached, discard its backing storage */
4288
	if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4289 4290
		i915_gem_object_truncate(obj);

4291
	args->retained = obj->madv != __I915_MADV_PURGED;
C
Chris Wilson 已提交
4292

4293
	i915_gem_object_put(obj);
4294
unlock:
4295
	mutex_unlock(&dev->struct_mutex);
4296
	return ret;
4297 4298
}

4299 4300
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4301
{
4302 4303
	int i;

4304
	INIT_LIST_HEAD(&obj->global_list);
4305
	INIT_LIST_HEAD(&obj->userfault_link);
4306
	for (i = 0; i < I915_NUM_ENGINES; i++)
4307 4308 4309 4310
		init_request_active(&obj->last_read[i],
				    i915_gem_object_retire__read);
	init_request_active(&obj->last_write,
			    i915_gem_object_retire__write);
4311
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4312
	INIT_LIST_HEAD(&obj->vma_list);
4313
	INIT_LIST_HEAD(&obj->batch_pool_link);
4314

4315 4316
	obj->ops = ops;

4317
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4318 4319
	obj->madv = I915_MADV_WILLNEED;

4320
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4321 4322
}

4323
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4324
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4325 4326 4327 4328
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
};

4329 4330 4331 4332 4333 4334
/* Note we don't consider signbits :| */
#define overflows_type(x, T) \
	(sizeof(x) > sizeof(T) && (x) >> (sizeof(T) * BITS_PER_BYTE))

struct drm_i915_gem_object *
i915_gem_object_create(struct drm_device *dev, u64 size)
4335
{
4336
	struct drm_i915_gem_object *obj;
4337
	struct address_space *mapping;
D
Daniel Vetter 已提交
4338
	gfp_t mask;
4339
	int ret;
4340

4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4352
	obj = i915_gem_object_alloc(dev);
4353
	if (obj == NULL)
4354
		return ERR_PTR(-ENOMEM);
4355

4356 4357 4358
	ret = drm_gem_object_init(dev, &obj->base, size);
	if (ret)
		goto fail;
4359

4360 4361 4362 4363 4364 4365 4366
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
	if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4367
	mapping = obj->base.filp->f_mapping;
4368
	mapping_set_gfp_mask(mapping, mask);
4369

4370
	i915_gem_object_init(obj, &i915_gem_object_ops);
4371

4372 4373
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4374

4375 4376
	if (HAS_LLC(dev)) {
		/* On some devices, we can have the GPU use the LLC (the CPU
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4392 4393
	trace_i915_gem_object_create(obj);

4394
	return obj;
4395 4396 4397 4398 4399

fail:
	i915_gem_object_free(obj);

	return ERR_PTR(ret);
4400 4401
}

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

	if (obj->madv != I915_MADV_WILLNEED)
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4426
void i915_gem_free_object(struct drm_gem_object *gem_obj)
4427
{
4428
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4429
	struct drm_device *dev = obj->base.dev;
4430
	struct drm_i915_private *dev_priv = to_i915(dev);
4431
	struct i915_vma *vma, *next;
4432

4433 4434
	intel_runtime_pm_get(dev_priv);

4435 4436
	trace_i915_gem_object_destroy(obj);

4437 4438 4439 4440 4441 4442 4443
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4444
	list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4445
		GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4446
		GEM_BUG_ON(i915_vma_is_active(vma));
4447
		vma->flags &= ~I915_VMA_PIN_MASK;
4448
		i915_vma_close(vma);
4449
	}
4450
	GEM_BUG_ON(obj->bind_count);
4451

B
Ben Widawsky 已提交
4452 4453 4454 4455 4456
	/* Stolen objects don't hold a ref, but do hold pin count. Fix that up
	 * before progressing. */
	if (obj->stolen)
		i915_gem_object_unpin_pages(obj);

4457
	WARN_ON(atomic_read(&obj->frontbuffer_bits));
4458

4459 4460
	if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4461
	    i915_gem_object_is_tiled(obj))
4462 4463
		i915_gem_object_unpin_pages(obj);

B
Ben Widawsky 已提交
4464 4465
	if (WARN_ON(obj->pages_pin_count))
		obj->pages_pin_count = 0;
4466
	if (discard_backing_storage(obj))
4467
		obj->madv = I915_MADV_DONTNEED;
4468
	i915_gem_object_put_pages(obj);
4469

4470 4471
	BUG_ON(obj->pages);

4472 4473
	if (obj->base.import_attach)
		drm_prime_gem_destroy(&obj->base, NULL);
4474

4475 4476 4477
	if (obj->ops->release)
		obj->ops->release(obj);

4478 4479
	drm_gem_object_release(&obj->base);
	i915_gem_info_remove_obj(dev_priv, obj->base.size);
4480

4481
	kfree(obj->bit_17);
4482
	i915_gem_object_free(obj);
4483 4484

	intel_runtime_pm_put(dev_priv);
4485 4486
}

4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4498
int i915_gem_suspend(struct drm_device *dev)
4499
{
4500
	struct drm_i915_private *dev_priv = to_i915(dev);
4501
	int ret;
4502

4503 4504
	intel_suspend_gt_powersave(dev_priv);

4505
	mutex_lock(&dev->struct_mutex);
4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
		goto err;

4519 4520 4521
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4522
	if (ret)
4523
		goto err;
4524

4525
	i915_gem_retire_requests(dev_priv);
4526

4527
	i915_gem_context_lost(dev_priv);
4528 4529
	mutex_unlock(&dev->struct_mutex);

4530
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4531 4532
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
	flush_delayed_work(&dev_priv->gt.idle_work);
4533

4534 4535 4536
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4537
	WARN_ON(dev_priv->gt.awake);
4538

4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
	if (HAS_HW_CONTEXTS(dev)) {
		int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}

4563
	return 0;
4564 4565 4566 4567

err:
	mutex_unlock(&dev->struct_mutex);
	return ret;
4568 4569
}

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
void i915_gem_resume(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	mutex_lock(&dev->struct_mutex);
	i915_gem_restore_gtt_mappings(dev);

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4581
	dev_priv->gt.resume(dev_priv);
4582 4583 4584 4585

	mutex_unlock(&dev->struct_mutex);
}

4586 4587
void i915_gem_init_swizzling(struct drm_device *dev)
{
4588
	struct drm_i915_private *dev_priv = to_i915(dev);
4589

4590
	if (INTEL_INFO(dev)->gen < 5 ||
4591 4592 4593 4594 4595 4596
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4597
	if (IS_GEN5(dev_priv))
4598 4599
		return;

4600
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4601
	if (IS_GEN6(dev_priv))
4602
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4603
	else if (IS_GEN7(dev_priv))
4604
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4605
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4606
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4607 4608
	else
		BUG();
4609
}
D
Daniel Vetter 已提交
4610

4611
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4612 4613 4614 4615 4616 4617 4618
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4619
static void init_unused_rings(struct drm_i915_private *dev_priv)
4620
{
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4633 4634 4635
	}
}

4636 4637 4638
int
i915_gem_init_hw(struct drm_device *dev)
{
4639
	struct drm_i915_private *dev_priv = to_i915(dev);
4640
	struct intel_engine_cs *engine;
4641
	enum intel_engine_id id;
C
Chris Wilson 已提交
4642
	int ret;
4643

4644 4645
	dev_priv->gt.last_init_time = ktime_get();

4646 4647 4648
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4649
	if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4650
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4651

4652
	if (IS_HASWELL(dev_priv))
4653
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4654
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4655

4656
	if (HAS_PCH_NOP(dev_priv)) {
4657
		if (IS_IVYBRIDGE(dev_priv)) {
4658 4659 4660 4661 4662 4663 4664 4665
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
		} else if (INTEL_INFO(dev)->gen >= 7) {
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4666 4667
	}

4668 4669
	i915_gem_init_swizzling(dev);

4670 4671 4672 4673 4674 4675
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4676
	init_unused_rings(dev_priv);
4677

4678
	BUG_ON(!dev_priv->kernel_context);
4679

4680 4681 4682 4683 4684 4685 4686
	ret = i915_ppgtt_init_hw(dev);
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4687
	for_each_engine(engine, dev_priv, id) {
4688
		ret = engine->init_hw(engine);
D
Daniel Vetter 已提交
4689
		if (ret)
4690
			goto out;
D
Daniel Vetter 已提交
4691
	}
4692

4693 4694
	intel_mocs_init_l3cc_table(dev);

4695
	/* We can't enable contexts until all firmware is loaded */
4696 4697 4698
	ret = intel_guc_setup(dev);
	if (ret)
		goto out;
4699

4700 4701
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4702
	return ret;
4703 4704
}

4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4726 4727
int i915_gem_init(struct drm_device *dev)
{
4728
	struct drm_i915_private *dev_priv = to_i915(dev);
4729 4730 4731
	int ret;

	mutex_lock(&dev->struct_mutex);
4732

4733
	if (!i915.enable_execlists) {
4734
		dev_priv->gt.resume = intel_legacy_submission_resume;
4735
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4736
	} else {
4737
		dev_priv->gt.resume = intel_lr_context_resume;
4738
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4739 4740
	}

4741 4742 4743 4744 4745 4746 4747 4748
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4749
	i915_gem_init_userptr(dev_priv);
4750 4751 4752 4753

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4754

4755
	ret = i915_gem_context_init(dev);
4756 4757
	if (ret)
		goto out_unlock;
4758

4759
	ret = intel_engines_init(dev);
D
Daniel Vetter 已提交
4760
	if (ret)
4761
		goto out_unlock;
4762

4763
	ret = i915_gem_init_hw(dev);
4764
	if (ret == -EIO) {
4765
		/* Allow engine initialisation to fail by marking the GPU as
4766 4767 4768 4769
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4770
		i915_gem_set_wedged(dev_priv);
4771
		ret = 0;
4772
	}
4773 4774

out_unlock:
4775
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4776
	mutex_unlock(&dev->struct_mutex);
4777

4778
	return ret;
4779 4780
}

4781
void
4782
i915_gem_cleanup_engines(struct drm_device *dev)
4783
{
4784
	struct drm_i915_private *dev_priv = to_i915(dev);
4785
	struct intel_engine_cs *engine;
4786
	enum intel_engine_id id;
4787

4788
	for_each_engine(engine, dev_priv, id)
4789
		dev_priv->gt.cleanup_engine(engine);
4790 4791
}

4792 4793 4794
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4795
	struct drm_device *dev = &dev_priv->drm;
4796
	int i;
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
	else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
		 IS_I945GM(dev_priv) || IS_G33(dev_priv))
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4807
	if (intel_vgpu_active(dev_priv))
4808 4809 4810 4811
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4812 4813 4814 4815 4816 4817 4818
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4819 4820 4821 4822 4823
	i915_gem_restore_fences(dev);

	i915_gem_detect_bit_6_swizzle(dev);
}

4824
void
4825
i915_gem_load_init(struct drm_device *dev)
4826
{
4827
	struct drm_i915_private *dev_priv = to_i915(dev);
4828

4829
	dev_priv->objects =
4830 4831 4832 4833
		kmem_cache_create("i915_gem_object",
				  sizeof(struct drm_i915_gem_object), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4834 4835 4836 4837 4838
	dev_priv->vmas =
		kmem_cache_create("i915_gem_vma",
				  sizeof(struct i915_vma), 0,
				  SLAB_HWCACHE_ALIGN,
				  NULL);
4839 4840 4841
	dev_priv->requests =
		kmem_cache_create("i915_gem_request",
				  sizeof(struct drm_i915_gem_request), 0,
4842 4843 4844
				  SLAB_HWCACHE_ALIGN |
				  SLAB_RECLAIM_ACCOUNT |
				  SLAB_DESTROY_BY_RCU,
4845
				  NULL);
4846

4847
	INIT_LIST_HEAD(&dev_priv->context_list);
C
Chris Wilson 已提交
4848 4849
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4850
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4851
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4852
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4853
			  i915_gem_retire_work_handler);
4854
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4855
			  i915_gem_idle_work_handler);
4856
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4857
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4858

4859 4860
	dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;

4861
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4862

4863 4864
	dev_priv->mm.interruptible = true;

4865 4866
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4867
	spin_lock_init(&dev_priv->fb_tracking.lock);
4868
}
4869

4870 4871 4872 4873 4874 4875 4876
void i915_gem_load_cleanup(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = to_i915(dev);

	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4877 4878 4879

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4880 4881
}

4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	intel_runtime_pm_get(dev_priv);

	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	intel_runtime_pm_put(dev_priv);

	return 0;
}

4895 4896 4897
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4898 4899 4900 4901 4902
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4913 4914 4915
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4916 4917
	 */

4918 4919
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4920

4921 4922 4923 4924 4925
	for (p = phases; *p; p++) {
		list_for_each_entry(obj, *p, global_list) {
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4926
	}
4927
	mutex_unlock(&dev_priv->drm.struct_mutex);
4928 4929 4930 4931

	return 0;
}

4932
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4933
{
4934
	struct drm_i915_file_private *file_priv = file->driver_priv;
4935
	struct drm_i915_gem_request *request;
4936 4937 4938 4939 4940

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4941
	spin_lock(&file_priv->mm.lock);
4942
	list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4943
		request->file_priv = NULL;
4944
	spin_unlock(&file_priv->mm.lock);
4945

4946
	if (!list_empty(&file_priv->rps.link)) {
4947
		spin_lock(&to_i915(dev)->rps.client_lock);
4948
		list_del(&file_priv->rps.link);
4949
		spin_unlock(&to_i915(dev)->rps.client_lock);
4950
	}
4951 4952 4953 4954 4955
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4956
	int ret;
4957 4958 4959 4960 4961 4962 4963 4964

	DRM_DEBUG_DRIVER("\n");

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4965
	file_priv->dev_priv = to_i915(dev);
4966
	file_priv->file = file;
4967
	INIT_LIST_HEAD(&file_priv->rps.link);
4968 4969 4970 4971

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4972
	file_priv->bsd_engine = -1;
4973

4974 4975 4976
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4977

4978
	return ret;
4979 4980
}

4981 4982
/**
 * i915_gem_track_fb - update frontbuffer tracking
4983 4984 4985
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4986 4987 4988 4989
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4990 4991 4992 4993
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4994 4995 4996 4997 4998 4999 5000 5001 5002
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5003
	if (old) {
5004 5005
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5006 5007 5008
	}

	if (new) {
5009 5010
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5011 5012 5013
	}
}

5014 5015 5016 5017 5018 5019 5020
/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
{
	struct page *page;

	/* Only default objects have per-page dirty tracking */
5021
	if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5022 5023 5024 5025 5026 5027 5028
		return NULL;

	page = i915_gem_object_get_page(obj, n);
	set_page_dirty(page);
	return page;
}

5029 5030 5031 5032 5033 5034 5035 5036 5037 5038
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
i915_gem_object_create_from_data(struct drm_device *dev,
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
	struct sg_table *sg;
	size_t bytes;
	int ret;

5039
	obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5040
	if (IS_ERR(obj))
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053
		return obj;

	ret = i915_gem_object_set_to_cpu_domain(obj, true);
	if (ret)
		goto fail;

	ret = i915_gem_object_get_pages(obj);
	if (ret)
		goto fail;

	i915_gem_object_pin_pages(obj);
	sg = obj->pages;
	bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5054
	obj->dirty = 1;		/* Backing store is now out of date */
5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065
	i915_gem_object_unpin_pages(obj);

	if (WARN_ON(bytes != size)) {
		DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
		ret = -EFAULT;
		goto fail;
	}

	return obj;

fail:
5066
	i915_gem_object_put(obj);
5067 5068
	return ERR_PTR(ret);
}