i915_gem.c 143.6 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
391
			gen6_rps_boost(rq, rps);
392 393
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
411
	unsigned int seq = __read_seqcount_begin(&resv->seq);
412
	struct dma_fence *excl;
413
	bool prune_fences = false;
414 415 416 417

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
418 419
		int ret;

420 421
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
422 423 424
		if (ret)
			return ret;

425 426 427 428
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
429
			if (timeout < 0)
430
				break;
431

432 433 434 435 436 437
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
438 439

		prune_fences = count && timeout >= 0;
440 441
	} else {
		excl = reservation_object_get_excl_rcu(resv);
442 443
	}

444
	if (excl && timeout >= 0) {
445
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 447
		prune_fences = timeout >= 0;
	}
448 449 450

	dma_fence_put(excl);

451 452 453 454
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
455
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 457 458 459 460
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
461 462
	}

463
	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
567
		     struct drm_file *file)
568 569
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
570
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 572 573 574

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
575
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 577
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
578

579
	drm_clflush_virt_range(vaddr, args->size);
580
	i915_gem_chipset_flush(to_i915(obj->base.dev));
581

582
	intel_fb_obj_flush(obj, ORIGIN_CPU);
583
	return 0;
584 585
}

586
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587
{
588
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 590 591 592
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
593
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594
	kmem_cache_free(dev_priv->objects, obj);
595 596
}

597 598
static int
i915_gem_create(struct drm_file *file,
599
		struct drm_i915_private *dev_priv,
600 601
		uint64_t size,
		uint32_t *handle_p)
602
{
603
	struct drm_i915_gem_object *obj;
604 605
	int ret;
	u32 handle;
606

607
	size = roundup(size, PAGE_SIZE);
608 609
	if (size == 0)
		return -EINVAL;
610 611

	/* Allocate the new object */
612
	obj = i915_gem_object_create(dev_priv, size);
613 614
	if (IS_ERR(obj))
		return PTR_ERR(obj);
615

616
	ret = drm_gem_handle_create(file, &obj->base, &handle);
617
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
618
	i915_gem_object_put(obj);
619 620
	if (ret)
		return ret;
621

622
	*handle_p = handle;
623 624 625
	return 0;
}

626 627 628 629 630 631
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
632
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633
	args->size = args->pitch * args->height;
634
	return i915_gem_create(file, to_i915(dev),
635
			       args->size, &args->handle);
636 637
}

638 639 640 641 642 643
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

644 645
/**
 * Creates a new mm object and returns a handle to it.
646 647 648
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
649 650 651 652 653
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
654
	struct drm_i915_private *dev_priv = to_i915(dev);
655
	struct drm_i915_gem_create *args = data;
656

657
	i915_gem_flush_free_objects(dev_priv);
658

659
	return i915_gem_create(file, dev_priv,
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
				spin_lock_irq(&dev_priv->uncore.lock);
				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
				spin_unlock_irq(&dev_priv->uncore.lock);
				intel_runtime_pm_put(dev_priv);
			}
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
713 714 715 716 717

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
718 719 720 721 722
	}

	obj->base.write_domain = 0;
}

723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

749
static inline int
750 751
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

775 776 777 778 779 780
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781
				    unsigned int *needs_clflush)
782 783 784
{
	int ret;

785
	lockdep_assert_held(&obj->base.dev->struct_mutex);
786

787
	*needs_clflush = 0;
788 789
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
790

791 792 793 794 795
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
796 797 798
	if (ret)
		return ret;

C
Chris Wilson 已提交
799
	ret = i915_gem_object_pin_pages(obj);
800 801 802
	if (ret)
		return ret;

803 804
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
805 806 807 808 809 810 811
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

812
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
813

814 815 816 817 818
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
819 820
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
821
		*needs_clflush = CLFLUSH_BEFORE;
822

823
out:
824
	/* return with the pages pinned */
825
	return 0;
826 827 828 829

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
830 831 832 833 834 835 836
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

837 838
	lockdep_assert_held(&obj->base.dev->struct_mutex);

839 840 841 842
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

843 844 845 846 847 848
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
849 850 851
	if (ret)
		return ret;

C
Chris Wilson 已提交
852
	ret = i915_gem_object_pin_pages(obj);
853 854 855
	if (ret)
		return ret;

856 857
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
858 859 860 861 862 863 864
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

865
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866

867 868 869 870 871
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
872
	if (!obj->cache_dirty) {
873
		*needs_clflush |= CLFLUSH_AFTER;
874

875 876 877 878 879 880 881
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
882

883
out:
884
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
885
	obj->mm.dirty = true;
886
	/* return with the pages pinned */
887
	return 0;
888 889 890 891

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
892 893
}

894 895 896 897
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
898
	if (unlikely(swizzled)) {
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

916 917 918
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
919
shmem_pread_slow(struct page *page, int offset, int length,
920 921 922 923 924 925 926 927
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
928
		shmem_clflush_swizzled_range(vaddr + offset, length,
929
					     page_do_bit17_swizzling);
930 931

	if (page_do_bit17_swizzling)
932
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
933
	else
934
		ret = __copy_to_user(user_data, vaddr + offset, length);
935 936
	kunmap(page);

937
	return ret ? - EFAULT : 0;
938 939
}

940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1016 1017
{
	void *vaddr;
1018
	unsigned long unwritten;
1019 1020

	/* We can use the cpu mem copy function because this is X86. */
1021 1022 1023 1024 1025 1026 1027 1028 1029
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1030 1031 1032 1033
	return unwritten;
}

static int
1034 1035
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1036
{
1037 1038
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1039
	struct drm_mm_node node;
1040 1041 1042
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1043 1044
	int ret;

1045 1046 1047 1048 1049 1050 1051
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1052 1053 1054
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1055
		ret = i915_vma_put_fence(vma);
1056 1057 1058 1059 1060
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1061
	if (IS_ERR(vma)) {
1062
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1063
		if (ret)
1064 1065
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1066 1067 1068 1069 1070 1071
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1072
	mutex_unlock(&i915->drm.struct_mutex);
1073

1074 1075 1076
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1093
					       node.start, I915_CACHE_NONE, 0);
1094 1095 1096 1097
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1098 1099 1100

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1101 1102 1103 1104 1105 1106 1107 1108 1109
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1110
	mutex_lock(&i915->drm.struct_mutex);
1111 1112 1113 1114
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1115
				       node.start, node.size);
1116 1117
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1118
		i915_vma_unpin(vma);
1119
	}
1120 1121 1122
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1123

1124 1125 1126
	return ret;
}

1127 1128
/**
 * Reads data from the object referenced by handle.
1129 1130 1131
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1132 1133 1134 1135 1136
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1137
		     struct drm_file *file)
1138 1139
{
	struct drm_i915_gem_pread *args = data;
1140
	struct drm_i915_gem_object *obj;
1141
	int ret;
1142

1143 1144 1145 1146
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1147
		       u64_to_user_ptr(args->data_ptr),
1148 1149 1150
		       args->size))
		return -EFAULT;

1151
	obj = i915_gem_object_lookup(file, args->handle);
1152 1153
	if (!obj)
		return -ENOENT;
1154

1155
	/* Bounds check source.  */
1156
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1157
		ret = -EINVAL;
1158
		goto out;
C
Chris Wilson 已提交
1159 1160
	}

C
Chris Wilson 已提交
1161 1162
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1163 1164 1165 1166
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1167
	if (ret)
1168
		goto out;
1169

1170
	ret = i915_gem_object_pin_pages(obj);
1171
	if (ret)
1172
		goto out;
1173

1174
	ret = i915_gem_shmem_pread(obj, args);
1175
	if (ret == -EFAULT || ret == -ENODEV)
1176
		ret = i915_gem_gtt_pread(obj, args);
1177

1178 1179
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1180
	i915_gem_object_put(obj);
1181
	return ret;
1182 1183
}

1184 1185
/* This is the fast write path which cannot handle
 * page faults in the source data
1186
 */
1187

1188 1189 1190 1191
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1192
{
1193
	void *vaddr;
1194
	unsigned long unwritten;
1195

1196
	/* We can use the cpu mem copy function because this is X86. */
1197 1198
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1199
						      user_data, length);
1200 1201 1202 1203 1204 1205 1206
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1207 1208 1209 1210

	return unwritten;
}

1211 1212 1213
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1214
 * @obj: i915 GEM object
1215
 * @args: pwrite arguments structure
1216
 */
1217
static int
1218 1219
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1220
{
1221
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1222 1223
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1224 1225 1226
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1227
	int ret;
1228

1229 1230 1231
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1232

1233
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1234
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1235
				       PIN_MAPPABLE | PIN_NONBLOCK);
1236 1237 1238
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1239
		ret = i915_vma_put_fence(vma);
1240 1241 1242 1243 1244
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1245
	if (IS_ERR(vma)) {
1246
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1247
		if (ret)
1248 1249
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1250
	}
D
Daniel Vetter 已提交
1251 1252 1253 1254 1255

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1256 1257
	mutex_unlock(&i915->drm.struct_mutex);

1258
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1259

1260 1261 1262 1263
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1264 1265
		/* Operation in this page
		 *
1266 1267 1268
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1269
		 */
1270
		u32 page_base = node.start;
1271 1272
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1283
		/* If we get a fault while copying data, then (presumably) our
1284 1285
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1286 1287
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1288
		 */
1289 1290 1291 1292
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1293
		}
1294

1295 1296 1297
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1298
	}
1299
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1300 1301

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1302
out_unpin:
1303 1304 1305
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1306
				       node.start, node.size);
1307 1308
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1309
		i915_vma_unpin(vma);
1310
	}
1311
out_unlock:
1312
	intel_runtime_pm_put(i915);
1313
	mutex_unlock(&i915->drm.struct_mutex);
1314
	return ret;
1315 1316
}

1317
static int
1318
shmem_pwrite_slow(struct page *page, int offset, int length,
1319 1320 1321 1322
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1323
{
1324 1325
	char *vaddr;
	int ret;
1326

1327
	vaddr = kmap(page);
1328
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1329
		shmem_clflush_swizzled_range(vaddr + offset, length,
1330
					     page_do_bit17_swizzling);
1331
	if (page_do_bit17_swizzling)
1332 1333
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1334
	else
1335
		ret = __copy_from_user(vaddr + offset, user_data, length);
1336
	if (needs_clflush_after)
1337
		shmem_clflush_swizzled_range(vaddr + offset, length,
1338
					     page_do_bit17_swizzling);
1339
	kunmap(page);
1340

1341
	return ret ? -EFAULT : 0;
1342 1343
}

1344 1345 1346 1347 1348
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1349
static int
1350 1351 1352 1353
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1354
{
1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1387
	unsigned int needs_clflush;
1388 1389
	unsigned int offset, idx;
	int ret;
1390

1391
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1392 1393 1394
	if (ret)
		return ret;

1395 1396 1397 1398
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1399

1400 1401 1402
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1403

1404 1405 1406 1407 1408 1409 1410
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1411

1412 1413 1414 1415 1416 1417
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1418

1419 1420 1421
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1422

1423 1424 1425 1426
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1427
		if (ret)
1428
			break;
1429

1430 1431 1432
		remain -= length;
		user_data += length;
		offset = 0;
1433
	}
1434

1435
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1436
	i915_gem_obj_finish_shmem_access(obj);
1437
	return ret;
1438 1439 1440 1441
}

/**
 * Writes data to the object referenced by handle.
1442 1443 1444
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1445 1446 1447 1448 1449
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1450
		      struct drm_file *file)
1451 1452
{
	struct drm_i915_gem_pwrite *args = data;
1453
	struct drm_i915_gem_object *obj;
1454 1455 1456 1457 1458 1459
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1460
		       u64_to_user_ptr(args->data_ptr),
1461 1462 1463
		       args->size))
		return -EFAULT;

1464
	obj = i915_gem_object_lookup(file, args->handle);
1465 1466
	if (!obj)
		return -ENOENT;
1467

1468
	/* Bounds check destination. */
1469
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1470
		ret = -EINVAL;
1471
		goto err;
C
Chris Wilson 已提交
1472 1473
	}

C
Chris Wilson 已提交
1474 1475
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1476 1477 1478 1479 1480 1481
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1482 1483 1484 1485 1486
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1487 1488 1489
	if (ret)
		goto err;

1490
	ret = i915_gem_object_pin_pages(obj);
1491
	if (ret)
1492
		goto err;
1493

D
Daniel Vetter 已提交
1494
	ret = -EFAULT;
1495 1496 1497 1498 1499 1500
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1501
	if (!i915_gem_object_has_struct_page(obj) ||
1502
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1503 1504
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1505 1506
		 * textures). Fallback to the shmem path in that case.
		 */
1507
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1508

1509
	if (ret == -EFAULT || ret == -ENOSPC) {
1510 1511
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1512
		else
1513
			ret = i915_gem_shmem_pwrite(obj, args);
1514
	}
1515

1516
	i915_gem_object_unpin_pages(obj);
1517
err:
C
Chris Wilson 已提交
1518
	i915_gem_object_put(obj);
1519
	return ret;
1520 1521
}

1522 1523 1524 1525 1526 1527 1528 1529
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1530
			break;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1543
	list_move_tail(&obj->global_link, list);
1544 1545
}

1546
/**
1547 1548
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1549 1550 1551
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1552 1553 1554
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555
			  struct drm_file *file)
1556 1557
{
	struct drm_i915_gem_set_domain *args = data;
1558
	struct drm_i915_gem_object *obj;
1559 1560
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1561
	int err;
1562

1563
	/* Only handle setting domains to types used by the CPU. */
1564
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1565 1566 1567 1568 1569 1570 1571 1572
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1573
	obj = i915_gem_object_lookup(file, args->handle);
1574 1575
	if (!obj)
		return -ENOENT;
1576

1577 1578 1579 1580
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1581
	err = i915_gem_object_wait(obj,
1582 1583 1584 1585
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1586
	if (err)
C
Chris Wilson 已提交
1587
		goto out;
1588

1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1599
		goto out;
1600 1601 1602

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1603
		goto out_unpin;
1604

1605 1606 1607 1608
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1609
	else
1610
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1611

1612 1613
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1614

1615
	mutex_unlock(&dev->struct_mutex);
1616

1617
	if (write_domain != 0)
1618 1619
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1620

C
Chris Wilson 已提交
1621
out_unpin:
1622
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1623 1624
out:
	i915_gem_object_put(obj);
1625
	return err;
1626 1627 1628 1629
}

/**
 * Called when user space has done writes to this buffer
1630 1631 1632
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1633 1634 1635
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1636
			 struct drm_file *file)
1637 1638
{
	struct drm_i915_gem_sw_finish *args = data;
1639
	struct drm_i915_gem_object *obj;
1640

1641
	obj = i915_gem_object_lookup(file, args->handle);
1642 1643
	if (!obj)
		return -ENOENT;
1644 1645

	/* Pinned buffers may be scanout, so flush the cache */
1646
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1647
	i915_gem_object_put(obj);
1648 1649

	return 0;
1650 1651 1652
}

/**
1653 1654 1655 1656 1657
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1658 1659 1660
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1661 1662 1663 1664 1665 1666 1667 1668 1669 1670
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1671 1672 1673
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1674
		    struct drm_file *file)
1675 1676
{
	struct drm_i915_gem_mmap *args = data;
1677
	struct drm_i915_gem_object *obj;
1678 1679
	unsigned long addr;

1680 1681 1682
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1683
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1684 1685
		return -ENODEV;

1686 1687
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1688
		return -ENOENT;
1689

1690 1691 1692
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1693
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1694
		i915_gem_object_put(obj);
1695 1696 1697
		return -EINVAL;
	}

1698
	addr = vm_mmap(obj->base.filp, 0, args->size,
1699 1700
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1701 1702 1703 1704
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1705
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1706
			i915_gem_object_put(obj);
1707 1708
			return -EINTR;
		}
1709 1710 1711 1712 1713 1714 1715
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1716 1717

		/* This may race, but that's ok, it only gets set */
1718
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1719
	}
C
Chris Wilson 已提交
1720
	i915_gem_object_put(obj);
1721 1722 1723 1724 1725 1726 1727 1728
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1729 1730
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1731
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1732 1733
}

1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1754 1755 1756
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1784
	return 2;
1785 1786
}

1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1798 1799
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1800
		min_t(unsigned int, chunk,
1801
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1802 1803 1804 1805 1806 1807 1808 1809

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1810 1811
/**
 * i915_gem_fault - fault a page into the GTT
1812
 * @vmf: fault info
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1824 1825 1826
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1827
 */
1828
int i915_gem_fault(struct vm_fault *vmf)
1829
{
1830
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1831
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1832
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1833
	struct drm_device *dev = obj->base.dev;
1834 1835
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1836
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1837
	struct i915_vma *vma;
1838
	pgoff_t page_offset;
1839
	unsigned int flags;
1840
	int ret;
1841

1842
	/* We don't use vmf->pgoff since that has the fake offset */
1843
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1844

C
Chris Wilson 已提交
1845 1846
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1847
	/* Try to flush the object off the GPU first without holding the lock.
1848
	 * Upon acquiring the lock, we will perform our sanity checks and then
1849 1850 1851
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1852 1853 1854 1855
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1856
	if (ret)
1857 1858
		goto err;

1859 1860 1861 1862
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1863 1864 1865 1866 1867
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1868

1869
	/* Access to snoopable pages through the GTT is incoherent. */
1870
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1871
		ret = -EFAULT;
1872
		goto err_unlock;
1873 1874
	}

1875 1876 1877 1878 1879 1880 1881 1882
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1883
	/* Now pin it into the GTT as needed */
1884
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1885 1886
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1887
		struct i915_ggtt_view view =
1888
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1889

1890 1891 1892 1893 1894
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1895 1896
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1897 1898
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1899
		goto err_unlock;
C
Chris Wilson 已提交
1900
	}
1901

1902 1903
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1904
		goto err_unpin;
1905

1906
	ret = i915_vma_get_fence(vma);
1907
	if (ret)
1908
		goto err_unpin;
1909

1910
	/* Mark as being mmapped into userspace for later revocation */
1911
	assert_rpm_wakelock_held(dev_priv);
1912 1913 1914
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1915
	/* Finally, remap it using the new GTT offset */
1916
	ret = remap_io_mapping(area,
1917
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1918 1919 1920
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1921

1922
err_unpin:
C
Chris Wilson 已提交
1923
	__i915_vma_unpin(vma);
1924
err_unlock:
1925
	mutex_unlock(&dev->struct_mutex);
1926 1927
err_rpm:
	intel_runtime_pm_put(dev_priv);
1928
	i915_gem_object_unpin_pages(obj);
1929
err:
1930
	switch (ret) {
1931
	case -EIO:
1932 1933 1934 1935 1936 1937 1938
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1939 1940 1941
			ret = VM_FAULT_SIGBUS;
			break;
		}
1942
	case -EAGAIN:
D
Daniel Vetter 已提交
1943 1944 1945 1946
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1947
		 */
1948 1949
	case 0:
	case -ERESTARTSYS:
1950
	case -EINTR:
1951 1952 1953 1954 1955
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1956 1957
		ret = VM_FAULT_NOPAGE;
		break;
1958
	case -ENOMEM:
1959 1960
		ret = VM_FAULT_OOM;
		break;
1961
	case -ENOSPC:
1962
	case -EFAULT:
1963 1964
		ret = VM_FAULT_SIGBUS;
		break;
1965
	default:
1966
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1967 1968
		ret = VM_FAULT_SIGBUS;
		break;
1969
	}
1970
	return ret;
1971 1972
}

1973 1974 1975 1976
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1977
 * Preserve the reservation of the mmapping with the DRM core code, but
1978 1979 1980 1981 1982 1983 1984 1985 1986
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1987
void
1988
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1989
{
1990 1991
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1992 1993 1994
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1995 1996 1997 1998
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1999
	 */
2000
	lockdep_assert_held(&i915->drm.struct_mutex);
2001
	intel_runtime_pm_get(i915);
2002

2003
	if (list_empty(&obj->userfault_link))
2004
		goto out;
2005

2006
	list_del_init(&obj->userfault_link);
2007 2008
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2009 2010 2011 2012 2013 2014 2015 2016 2017

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2018 2019 2020

out:
	intel_runtime_pm_put(i915);
2021 2022
}

2023
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2024
{
2025
	struct drm_i915_gem_object *obj, *on;
2026
	int i;
2027

2028 2029 2030 2031 2032 2033
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2034

2035 2036 2037
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2038 2039 2040
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2041 2042 2043 2044 2045 2046 2047 2048

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2059 2060 2061 2062 2063 2064 2065

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2066 2067
}

2068 2069
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2070
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2071
	int err;
2072

2073
	err = drm_gem_create_mmap_offset(&obj->base);
2074
	if (likely(!err))
2075
		return 0;
2076

2077 2078 2079 2080 2081
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2082

2083
		i915_gem_drain_freed_objects(dev_priv);
2084
		err = drm_gem_create_mmap_offset(&obj->base);
2085 2086 2087 2088
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2089

2090
	return err;
2091 2092 2093 2094 2095 2096 2097
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2098
int
2099 2100
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2101
		  uint32_t handle,
2102
		  uint64_t *offset)
2103
{
2104
	struct drm_i915_gem_object *obj;
2105 2106
	int ret;

2107
	obj = i915_gem_object_lookup(file, handle);
2108 2109
	if (!obj)
		return -ENOENT;
2110

2111
	ret = i915_gem_object_create_mmap_offset(obj);
2112 2113
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2114

C
Chris Wilson 已提交
2115
	i915_gem_object_put(obj);
2116
	return ret;
2117 2118
}

2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2140
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2141 2142
}

D
Daniel Vetter 已提交
2143 2144 2145
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2146
{
2147
	i915_gem_object_free_mmap_offset(obj);
2148

2149 2150
	if (obj->base.filp == NULL)
		return;
2151

D
Daniel Vetter 已提交
2152 2153 2154 2155 2156
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2157
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2158
	obj->mm.madv = __I915_MADV_PURGED;
2159
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2160
}
2161

2162
/* Try to discard unwanted pages */
2163
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2164
{
2165 2166
	struct address_space *mapping;

2167 2168 2169
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2170
	switch (obj->mm.madv) {
2171 2172 2173 2174 2175 2176 2177 2178 2179
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2180
	mapping = obj->base.filp->f_mapping,
2181
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2182 2183
}

2184
static void
2185 2186
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2187
{
2188 2189
	struct sgt_iter sgt_iter;
	struct page *page;
2190

2191
	__i915_gem_object_release_shmem(obj, pages, true);
2192

2193
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2194

2195
	if (i915_gem_object_needs_bit17_swizzle(obj))
2196
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2197

2198
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2199
		if (obj->mm.dirty)
2200
			set_page_dirty(page);
2201

C
Chris Wilson 已提交
2202
		if (obj->mm.madv == I915_MADV_WILLNEED)
2203
			mark_page_accessed(page);
2204

2205
		put_page(page);
2206
	}
C
Chris Wilson 已提交
2207
	obj->mm.dirty = false;
2208

2209 2210
	sg_free_table(pages);
	kfree(pages);
2211
}
C
Chris Wilson 已提交
2212

2213 2214 2215 2216 2217
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2218 2219
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 2221
}

2222 2223
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2224
{
2225
	struct sg_table *pages;
2226

C
Chris Wilson 已提交
2227
	if (i915_gem_object_has_pinned_pages(obj))
2228
		return;
2229

2230
	GEM_BUG_ON(obj->bind_count);
2231 2232 2233 2234
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2235
	mutex_lock_nested(&obj->mm.lock, subclass);
2236 2237
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2238

2239 2240 2241
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2242 2243
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2244

C
Chris Wilson 已提交
2245
	if (obj->mm.mapping) {
2246 2247
		void *ptr;

2248
		ptr = page_mask_bits(obj->mm.mapping);
2249 2250
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2251
		else
2252 2253
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2254
		obj->mm.mapping = NULL;
2255 2256
	}

2257 2258
	__i915_gem_object_reset_page_iter(obj);

2259 2260 2261
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2262 2263
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2264 2265
}

2266
static bool i915_sg_trim(struct sg_table *orig_st)
2267 2268 2269 2270 2271 2272
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2273
		return false;
2274

2275
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2276
		return false;
2277 2278 2279 2280 2281 2282 2283

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2284
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2285 2286 2287 2288

	sg_free_table(orig_st);

	*orig_st = new_st;
2289
	return true;
2290 2291
}

2292
static struct sg_table *
C
Chris Wilson 已提交
2293
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2294
{
2295
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2296 2297
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2298
	struct address_space *mapping;
2299 2300
	struct sg_table *st;
	struct scatterlist *sg;
2301
	struct sgt_iter sgt_iter;
2302
	struct page *page;
2303
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2304
	unsigned int max_segment;
2305
	gfp_t noreclaim;
I
Imre Deak 已提交
2306
	int ret;
2307

C
Chris Wilson 已提交
2308 2309 2310 2311
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2312 2313
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2314

2315
	max_segment = swiotlb_max_segment();
2316
	if (!max_segment)
2317
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2318

2319 2320
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2321
		return ERR_PTR(-ENOMEM);
2322

2323
rebuild_st:
2324 2325
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2326
		return ERR_PTR(-ENOMEM);
2327
	}
2328

2329 2330 2331 2332 2333
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2334
	mapping = obj->base.filp->f_mapping;
2335
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2336 2337
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2338 2339 2340
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2341 2342 2343 2344 2345 2346 2347
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2348
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2359

C
Chris Wilson 已提交
2360 2361 2362
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2363 2364 2365 2366
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2367
			 */
2368 2369 2370
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2383
				 * this we want __GFP_RETRY_MAYFAIL.
2384
				 */
M
Michal Hocko 已提交
2385
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2386
			}
2387 2388
		} while (1);

2389 2390 2391
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2392 2393 2394 2395 2396 2397 2398 2399
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2400 2401 2402

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2403
	}
2404
	if (sg) /* loop terminated early; short sg table */
2405
		sg_mark_end(sg);
2406

2407 2408 2409
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2410
	ret = i915_gem_gtt_prepare_pages(obj, st);
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2430

2431
	if (i915_gem_object_needs_bit17_swizzle(obj))
2432
		i915_gem_object_do_bit_17_swizzle(obj, st);
2433

2434
	return st;
2435

2436
err_sg:
2437
	sg_mark_end(sg);
2438
err_pages:
2439 2440
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2441 2442
	sg_free_table(st);
	kfree(st);
2443 2444 2445 2446 2447 2448 2449 2450 2451

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2452 2453 2454
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2455 2456 2457 2458 2459 2460
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2461
	lockdep_assert_held(&obj->mm.lock);
2462 2463 2464 2465 2466

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2467 2468 2469 2470 2471 2472 2473

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2474 2475 2476 2477 2478 2479
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2480 2481
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2493 2494
}

2495
/* Ensure that the associated pages are gathered from the backing storage
2496
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2497
 * multiple times before they are released by a single call to
2498
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2499 2500 2501
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2502
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2503
{
2504
	int err;
2505

2506 2507 2508
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2509

2510
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2511 2512 2513
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2514

2515 2516 2517
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2518

2519 2520
unlock:
	mutex_unlock(&obj->mm.lock);
2521
	return err;
2522 2523
}

2524
/* The 'mapping' part of i915_gem_object_pin_map() below */
2525 2526
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2527 2528
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2529
	struct sg_table *sgt = obj->mm.pages;
2530 2531
	struct sgt_iter sgt_iter;
	struct page *page;
2532 2533
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2534
	unsigned long i = 0;
2535
	pgprot_t pgprot;
2536 2537 2538
	void *addr;

	/* A single page can always be kmapped */
2539
	if (n_pages == 1 && type == I915_MAP_WB)
2540 2541
		return kmap(sg_page(sgt->sgl));

2542 2543
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2544
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2545 2546 2547
		if (!pages)
			return NULL;
	}
2548

2549 2550
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2551 2552 2553 2554

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2555
	switch (type) {
2556 2557 2558
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2559 2560 2561 2562 2563 2564 2565 2566
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2567

2568
	if (pages != stack_pages)
M
Michal Hocko 已提交
2569
		kvfree(pages);
2570 2571 2572 2573 2574

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2575 2576
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2577
{
2578 2579 2580
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2581 2582
	int ret;

2583
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2584

2585
	ret = mutex_lock_interruptible(&obj->mm.lock);
2586 2587 2588
	if (ret)
		return ERR_PTR(ret);

2589 2590 2591
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2592
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2593
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2594 2595 2596
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2597

2598 2599 2600
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2601 2602 2603
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2604

2605
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2606 2607 2608
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2609
			goto err_unpin;
2610
		}
2611 2612 2613 2614 2615 2616

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2617
		ptr = obj->mm.mapping = NULL;
2618 2619
	}

2620 2621 2622 2623
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2624
			goto err_unpin;
2625 2626
		}

2627
		obj->mm.mapping = page_pack_bits(ptr, type);
2628 2629
	}

2630 2631
out_unlock:
	mutex_unlock(&obj->mm.lock);
2632 2633
	return ptr;

2634 2635 2636 2637 2638
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2639 2640
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2710 2711
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2712
{
2713
	return (i915_gem_context_is_bannable(ctx) &&
2714
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2715 2716
}

2717
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2718
{
2719 2720
	unsigned int score;
	bool banned;
2721

2722
	atomic_inc(&ctx->guilty_count);
2723

2724 2725 2726 2727 2728
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2729 2730
		return;

2731 2732 2733 2734 2735 2736
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2737 2738 2739 2740
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2741
	atomic_inc(&ctx->active_count);
2742 2743
}

2744
struct drm_i915_gem_request *
2745
i915_gem_find_active_request(struct intel_engine_cs *engine)
2746
{
2747 2748
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2749

2750 2751 2752 2753 2754 2755 2756 2757
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2758
	spin_lock_irqsave(&engine->timeline->lock, flags);
2759
	list_for_each_entry(request, &engine->timeline->requests, link) {
2760 2761
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2762
			continue;
2763

2764
		GEM_BUG_ON(request->engine != engine);
2765 2766
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2767 2768 2769

		active = request;
		break;
2770
	}
2771
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2772

2773
	return active;
2774 2775
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

	/* Prevent the signaler thread from updating the request
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

	/* Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
	tasklet_kill(&engine->irq_tasklet);
	tasklet_disable(&engine->irq_tasklet);

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2824 2825 2826
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2827 2828 2829 2830

	return request;
}

2831
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2832 2833
{
	struct intel_engine_cs *engine;
2834
	struct drm_i915_gem_request *request;
2835
	enum intel_engine_id id;
2836
	int err = 0;
2837

2838
	for_each_engine(engine, dev_priv, id) {
2839 2840 2841 2842
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2843
		}
2844 2845

		engine->hangcheck.active_request = request;
2846 2847
	}

2848
	i915_gem_revoke_fences(dev_priv);
2849 2850

	return err;
2851 2852
}

2853
static void skip_request(struct drm_i915_gem_request *request)
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2868 2869

	dma_fence_set_error(&request->fence, -EIO);
2870 2871
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2895 2896 2897 2898
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2899
{
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2921
	if (engine_stalled(engine)) {
2922 2923
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2924 2925 2926 2927

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2928
	} else {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
2946 2947
	}

2948
	return request;
2949 2950
}

2951 2952
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
2953
{
2954 2955
	engine->irq_posted = 0;

2956 2957 2958 2959
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
2960 2961 2962
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
2963 2964 2965

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2966
}
2967

2968
void i915_gem_reset(struct drm_i915_private *dev_priv)
2969
{
2970
	struct intel_engine_cs *engine;
2971
	enum intel_engine_id id;
2972

2973 2974
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2975 2976
	i915_gem_retire_requests(dev_priv);

2977 2978 2979
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2980
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2981 2982 2983 2984
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2985

2986
	i915_gem_restore_fences(dev_priv);
2987 2988 2989 2990 2991 2992 2993

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2994 2995
}

2996 2997 2998 2999 3000 3001
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->irq_tasklet);
	kthread_unpark(engine->breadcrumbs.signaler);
}

3002 3003
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3004 3005 3006
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3007
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3008

3009
	for_each_engine(engine, dev_priv, id) {
3010
		engine->hangcheck.active_request = NULL;
3011
		i915_gem_reset_finish_engine(engine);
3012
	}
3013 3014
}

3015 3016
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3017
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3018
	dma_fence_set_error(&request->fence, -EIO);
3019 3020
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3021 3022
}

3023
static void engine_set_wedged(struct intel_engine_cs *engine)
3024
{
3025 3026 3027
	struct drm_i915_gem_request *request;
	unsigned long flags;

3028 3029 3030 3031 3032 3033
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3034
	engine->submit_request = nop_submit_request;
3035

3036 3037 3038
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
3039 3040
		if (!i915_gem_request_completed(request))
			dma_fence_set_error(&request->fence, -EIO);
3041 3042
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3043 3044 3045 3046 3047 3048
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3049
	if (i915.enable_execlists) {
3050
		struct execlist_port *port = engine->execlist_port;
3051
		unsigned long flags;
3052
		unsigned int n;
3053 3054 3055

		spin_lock_irqsave(&engine->timeline->lock, flags);

3056 3057
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3058
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3059 3060
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3061 3062

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3063 3064 3065 3066 3067 3068 3069

		/* The port is checked prior to scheduling a tasklet, but
		 * just in case we have suspended the tasklet to do the
		 * wedging make sure that when it wakes, it decides there
		 * is no work to do by clearing the irq_posted bit.
		 */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3070
	}
3071 3072 3073 3074 3075 3076 3077

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3078 3079
}

3080
static int __i915_gem_set_wedged_BKL(void *data)
3081
{
3082
	struct drm_i915_private *i915 = data;
3083
	struct intel_engine_cs *engine;
3084
	enum intel_engine_id id;
3085

3086
	for_each_engine(engine, i915, id)
3087
		engine_set_wedged(engine);
3088

3089 3090 3091
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3092 3093 3094 3095 3096 3097
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3098 3099
}

3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3152
	i915_gem_contexts_lost(i915);
3153 3154 3155 3156 3157 3158 3159

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3160
static void
3161 3162
i915_gem_retire_work_handler(struct work_struct *work)
{
3163
	struct drm_i915_private *dev_priv =
3164
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3165
	struct drm_device *dev = &dev_priv->drm;
3166

3167
	/* Come back later if the device is busy... */
3168
	if (mutex_trylock(&dev->struct_mutex)) {
3169
		i915_gem_retire_requests(dev_priv);
3170
		mutex_unlock(&dev->struct_mutex);
3171
	}
3172 3173 3174 3175 3176

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3177 3178
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3179 3180
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3181
				   round_jiffies_up_relative(HZ));
3182
	}
3183
}
3184

3185 3186 3187 3188
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3189
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3190
	struct drm_device *dev = &dev_priv->drm;
3191 3192 3193 3194 3195
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3196 3197 3198 3199
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3200
	wait_for(intel_engines_are_idle(dev_priv), 10);
3201
	if (READ_ONCE(dev_priv->gt.active_requests))
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3215 3216 3217 3218 3219 3220 3221
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3222
	if (dev_priv->gt.active_requests)
3223
		goto out_unlock;
3224

3225
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3226 3227
		DRM_ERROR("Timeout waiting for engines to idle\n");

3228
	intel_engines_mark_idle(dev_priv);
3229
	i915_gem_timelines_mark_idle(dev_priv);
3230

3231 3232 3233
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3234

3235 3236 3237 3238 3239
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3240

3241 3242 3243 3244
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3245
	}
3246 3247
}

3248 3249
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3250
	struct drm_i915_private *i915 = to_i915(gem->dev);
3251 3252
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3253
	struct i915_lut_handle *lut, *ln;
3254

3255 3256 3257 3258 3259 3260
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3261
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3262 3263 3264 3265
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3266 3267 3268 3269 3270 3271 3272
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3273
			i915_vma_close(vma);
3274

3275 3276
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3277

3278 3279
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3280
	}
3281 3282

	mutex_unlock(&i915->drm.struct_mutex);
3283 3284
}

3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3296 3297
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3298 3299 3300
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3301 3302 3303 3304 3305 3306 3307
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3308
 *  -EAGAIN: incomplete, restart syscall
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3325 3326
	ktime_t start;
	long ret;
3327

3328 3329 3330
	if (args->flags != 0)
		return -EINVAL;

3331
	obj = i915_gem_object_lookup(file, args->bo_handle);
3332
	if (!obj)
3333 3334
		return -ENOENT;

3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3346 3347 3348 3349 3350 3351 3352 3353 3354 3355

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3356 3357 3358 3359

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3360 3361
	}

C
Chris Wilson 已提交
3362
	i915_gem_object_put(obj);
3363
	return ret;
3364 3365
}

3366
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3367
{
3368
	int ret, i;
3369

3370 3371 3372 3373 3374
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3375

3376 3377 3378
	return 0;
}

3379 3380
static int wait_for_engines(struct drm_i915_private *i915)
{
3381 3382 3383 3384
	if (wait_for(intel_engines_are_idle(i915), 50)) {
		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
		i915_gem_set_wedged(i915);
		return -EIO;
3385 3386 3387 3388 3389
	}

	return 0;
}

3390 3391 3392 3393
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3394 3395 3396 3397
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3408 3409 3410

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3411 3412

		ret = wait_for_engines(i915);
3413 3414
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3415
	}
3416

3417
	return ret;
3418 3419
}

3420 3421
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3422 3423 3424 3425 3426 3427 3428
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3505 3506
/**
 * Moves a single object to the GTT read, and possibly write domain.
3507 3508
 * @obj: object to act on
 * @write: ask for write access or read only
3509 3510 3511 3512
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3513
int
3514
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3515
{
3516
	int ret;
3517

3518
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3519

3520 3521 3522 3523 3524 3525
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3526 3527 3528
	if (ret)
		return ret;

3529 3530 3531
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3532 3533 3534 3535 3536 3537 3538 3539
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3540
	ret = i915_gem_object_pin_pages(obj);
3541 3542 3543
	if (ret)
		return ret;

3544
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3545

3546 3547 3548 3549 3550 3551 3552
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3553 3554 3555
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3556
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3557
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3558
	if (write) {
3559 3560
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3561
		obj->mm.dirty = true;
3562 3563
	}

C
Chris Wilson 已提交
3564
	i915_gem_object_unpin_pages(obj);
3565 3566 3567
	return 0;
}

3568 3569
/**
 * Changes the cache-level of an object across all VMA.
3570 3571
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3583 3584 3585
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3586
	struct i915_vma *vma;
3587
	int ret;
3588

3589 3590
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3591
	if (obj->cache_level == cache_level)
3592
		return 0;
3593

3594 3595 3596 3597 3598
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3599 3600
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3601 3602 3603
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3604
		if (i915_vma_is_pinned(vma)) {
3605 3606 3607 3608
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3621 3622
	}

3623 3624 3625 3626 3627 3628 3629
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3630
	if (obj->bind_count) {
3631 3632 3633 3634
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3635 3636 3637 3638 3639 3640
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3641 3642 3643
		if (ret)
			return ret;

3644 3645
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3662 3663 3664 3665 3666
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3667 3668 3669 3670 3671 3672 3673 3674
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3675 3676
		}

3677
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3678 3679 3680 3681 3682 3683 3684
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3685 3686
	}

3687
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3688
		vma->node.color = cache_level;
3689
	i915_gem_object_set_cache_coherency(obj, cache_level);
3690
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3691

3692 3693 3694
	return 0;
}

B
Ben Widawsky 已提交
3695 3696
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3697
{
B
Ben Widawsky 已提交
3698
	struct drm_i915_gem_caching *args = data;
3699
	struct drm_i915_gem_object *obj;
3700
	int err = 0;
3701

3702 3703 3704 3705 3706 3707
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3708

3709 3710 3711 3712 3713 3714
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3715 3716 3717 3718
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3719 3720 3721 3722
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3723 3724 3725
out:
	rcu_read_unlock();
	return err;
3726 3727
}

B
Ben Widawsky 已提交
3728 3729
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3730
{
3731
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3732
	struct drm_i915_gem_caching *args = data;
3733 3734
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3735
	int ret = 0;
3736

B
Ben Widawsky 已提交
3737 3738
	switch (args->caching) {
	case I915_CACHING_NONE:
3739 3740
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3741
	case I915_CACHING_CACHED:
3742 3743 3744 3745 3746 3747
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3748
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3749 3750
			return -ENODEV;

3751 3752
		level = I915_CACHE_LLC;
		break;
3753
	case I915_CACHING_DISPLAY:
3754
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3755
		break;
3756 3757 3758 3759
	default:
		return -EINVAL;
	}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3771
	if (ret)
3772
		goto out;
B
Ben Widawsky 已提交
3773

3774 3775 3776
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3777 3778 3779

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3780 3781 3782

out:
	i915_gem_object_put(obj);
3783 3784 3785
	return ret;
}

3786
/*
3787 3788 3789
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3790
 */
C
Chris Wilson 已提交
3791
struct i915_vma *
3792 3793
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3794
				     const struct i915_ggtt_view *view)
3795
{
C
Chris Wilson 已提交
3796
	struct i915_vma *vma;
3797 3798
	int ret;

3799 3800
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3801 3802 3803
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3804
	obj->pin_display++;
3805

3806 3807 3808 3809 3810 3811 3812 3813 3814
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3815
	ret = i915_gem_object_set_cache_level(obj,
3816 3817
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3818 3819
	if (ret) {
		vma = ERR_PTR(ret);
3820
		goto err_unpin_display;
C
Chris Wilson 已提交
3821
	}
3822

3823 3824
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3825 3826 3827 3828
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3829
	 */
3830
	vma = ERR_PTR(-ENOSPC);
3831
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3832 3833
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3850
	if (IS_ERR(vma))
3851
		goto err_unpin_display;
3852

3853 3854
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3855
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3856
	__i915_gem_object_flush_for_display(obj);
3857
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3858

3859 3860 3861
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3862
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3863

C
Chris Wilson 已提交
3864
	return vma;
3865 3866

err_unpin_display:
3867
	obj->pin_display--;
C
Chris Wilson 已提交
3868
	return vma;
3869 3870 3871
}

void
C
Chris Wilson 已提交
3872
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3873
{
3874
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3875

C
Chris Wilson 已提交
3876
	if (WARN_ON(vma->obj->pin_display == 0))
3877 3878
		return;

3879
	if (--vma->obj->pin_display == 0)
3880
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3881

3882
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3883
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3884

C
Chris Wilson 已提交
3885
	i915_vma_unpin(vma);
3886 3887
}

3888 3889
/**
 * Moves a single object to the CPU read, and possibly write domain.
3890 3891
 * @obj: object to act on
 * @write: requesting write or read-only access
3892 3893 3894 3895
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3896
int
3897
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3898 3899 3900
{
	int ret;

3901
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3902

3903 3904 3905 3906 3907 3908
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3909 3910 3911
	if (ret)
		return ret;

3912
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3913

3914
	/* Flush the CPU cache if it's still invalid. */
3915
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3916
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3917
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3918 3919 3920 3921 3922
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3923
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3924 3925 3926 3927

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3928 3929
	if (write)
		__start_cpu_write(obj);
3930 3931 3932 3933

	return 0;
}

3934 3935 3936
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3937 3938 3939 3940
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3941 3942 3943
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3944
static int
3945
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3946
{
3947
	struct drm_i915_private *dev_priv = to_i915(dev);
3948
	struct drm_i915_file_private *file_priv = file->driver_priv;
3949
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3950
	struct drm_i915_gem_request *request, *target = NULL;
3951
	long ret;
3952

3953 3954 3955
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3956

3957
	spin_lock(&file_priv->mm.lock);
3958
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3959 3960
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3961

3962 3963 3964 3965
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3966

3967
		target = request;
3968
	}
3969
	if (target)
3970
		i915_gem_request_get(target);
3971
	spin_unlock(&file_priv->mm.lock);
3972

3973
	if (target == NULL)
3974
		return 0;
3975

3976 3977 3978
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3979
	i915_gem_request_put(target);
3980

3981
	return ret < 0 ? ret : 0;
3982 3983
}

C
Chris Wilson 已提交
3984
struct i915_vma *
3985 3986
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3987
			 u64 size,
3988 3989
			 u64 alignment,
			 u64 flags)
3990
{
3991 3992
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3993 3994
	struct i915_vma *vma;
	int ret;
3995

3996 3997
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3998
	vma = i915_vma_instance(obj, vm, view);
3999
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4000
		return vma;
4001 4002 4003 4004

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4005
			return ERR_PTR(-ENOSPC);
4006

4007 4008 4009 4010 4011 4012 4013 4014
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4015
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4034
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4035 4036 4037
				return ERR_PTR(-ENOSPC);
		}

4038 4039
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4040 4041 4042
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4043
		     !!(flags & PIN_MAPPABLE),
4044
		     i915_vma_is_map_and_fenceable(vma));
4045 4046
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4047
			return ERR_PTR(ret);
4048 4049
	}

C
Chris Wilson 已提交
4050 4051 4052
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4053

C
Chris Wilson 已提交
4054
	return vma;
4055 4056
}

4057
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4072 4073 4074 4075 4076 4077 4078 4079 4080
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4081 4082
}

4083
static __always_inline unsigned int
4084
__busy_set_if_active(const struct dma_fence *fence,
4085 4086
		     unsigned int (*flag)(unsigned int id))
{
4087
	struct drm_i915_gem_request *rq;
4088

4089 4090 4091 4092
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4093
	 *
4094
	 * Note we only report on the status of native fences.
4095
	 */
4096 4097 4098 4099 4100 4101 4102 4103
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4104
	return flag(rq->engine->uabi_id);
4105 4106
}

4107
static __always_inline unsigned int
4108
busy_check_reader(const struct dma_fence *fence)
4109
{
4110
	return __busy_set_if_active(fence, __busy_read_flag);
4111 4112
}

4113
static __always_inline unsigned int
4114
busy_check_writer(const struct dma_fence *fence)
4115
{
4116 4117 4118 4119
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4120 4121
}

4122 4123
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4124
		    struct drm_file *file)
4125 4126
{
	struct drm_i915_gem_busy *args = data;
4127
	struct drm_i915_gem_object *obj;
4128 4129
	struct reservation_object_list *list;
	unsigned int seq;
4130
	int err;
4131

4132
	err = -ENOENT;
4133 4134
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4135
	if (!obj)
4136
		goto out;
4137

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4156

4157 4158
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4159

4160 4161 4162 4163
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4164

4165 4166 4167 4168 4169 4170
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4171
	}
4172

4173 4174 4175 4176
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4177 4178 4179
out:
	rcu_read_unlock();
	return err;
4180 4181 4182 4183 4184 4185
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4186
	return i915_gem_ring_throttle(dev, file_priv);
4187 4188
}

4189 4190 4191 4192
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4193
	struct drm_i915_private *dev_priv = to_i915(dev);
4194
	struct drm_i915_gem_madvise *args = data;
4195
	struct drm_i915_gem_object *obj;
4196
	int err;
4197 4198 4199 4200 4201 4202 4203 4204 4205

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4206
	obj = i915_gem_object_lookup(file_priv, args->handle);
4207 4208 4209 4210 4211 4212
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4213

C
Chris Wilson 已提交
4214
	if (obj->mm.pages &&
4215
	    i915_gem_object_is_tiled(obj) &&
4216
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4217 4218
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4219
			__i915_gem_object_unpin_pages(obj);
4220 4221 4222
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4223
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4224
			__i915_gem_object_pin_pages(obj);
4225 4226
			obj->mm.quirked = true;
		}
4227 4228
	}

C
Chris Wilson 已提交
4229 4230
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4231

C
Chris Wilson 已提交
4232
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4233
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4234 4235
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4236
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4237
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4238

4239
out:
4240
	i915_gem_object_put(obj);
4241
	return err;
4242 4243
}

4244 4245 4246 4247 4248 4249 4250
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4251
	intel_fb_obj_flush(obj, ORIGIN_CS);
4252 4253
}

4254 4255
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4256
{
4257 4258
	mutex_init(&obj->mm.lock);

4259
	INIT_LIST_HEAD(&obj->global_link);
4260
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4261
	INIT_LIST_HEAD(&obj->vma_list);
4262
	INIT_LIST_HEAD(&obj->lut_list);
4263
	INIT_LIST_HEAD(&obj->batch_pool_link);
4264

4265 4266
	obj->ops = ops;

4267 4268 4269
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4270
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4271
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4272 4273 4274 4275

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4276

4277
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4278 4279
}

4280
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4281 4282
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4283

4284 4285
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4286 4287

	.pwrite = i915_gem_object_pwrite_gtt,
4288 4289
};

4290
struct drm_i915_gem_object *
4291
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4292
{
4293
	struct drm_i915_gem_object *obj;
4294
	struct address_space *mapping;
4295
	unsigned int cache_level;
D
Daniel Vetter 已提交
4296
	gfp_t mask;
4297
	int ret;
4298

4299 4300 4301 4302 4303
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4304
	if (size >> PAGE_SHIFT > INT_MAX)
4305 4306 4307 4308 4309
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4310
	obj = i915_gem_object_alloc(dev_priv);
4311
	if (obj == NULL)
4312
		return ERR_PTR(-ENOMEM);
4313

4314
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4315 4316
	if (ret)
		goto fail;
4317

4318
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4319
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4320 4321 4322 4323 4324
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4325
	mapping = obj->base.filp->f_mapping;
4326
	mapping_set_gfp_mask(mapping, mask);
4327
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4328

4329
	i915_gem_object_init(obj, &i915_gem_object_ops);
4330

4331 4332
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4333

4334
	if (HAS_LLC(dev_priv))
4335
		/* On some devices, we can have the GPU use the LLC (the CPU
4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4347 4348 4349
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4350

4351
	i915_gem_object_set_cache_coherency(obj, cache_level);
4352

4353 4354
	trace_i915_gem_object_create(obj);

4355
	return obj;
4356 4357 4358 4359

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4360 4361
}

4362 4363 4364 4365 4366 4367 4368 4369
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4370
	if (obj->mm.madv != I915_MADV_WILLNEED)
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4386 4387
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4388
{
4389
	struct drm_i915_gem_object *obj, *on;
4390

4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4405 4406
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4407

4408
		list_del(&obj->global_link);
4409 4410 4411 4412
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4413 4414
	cond_resched();

4415 4416 4417
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4418
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4419 4420 4421

		if (obj->ops->release)
			obj->ops->release(obj);
4422

4423 4424
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4425
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4426 4427 4428 4429 4430
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4431
		reservation_object_fini(&obj->__builtin_resv);
4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4454

4455 4456 4457 4458 4459 4460 4461
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4462

4463
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4464
		__i915_gem_free_objects(i915, freed);
4465 4466 4467
		if (need_resched())
			break;
	}
4468
}
4469

4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4484

4485 4486 4487
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4488

4489 4490 4491
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4492
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4493
		obj->mm.madv = I915_MADV_DONTNEED;
4494

4495 4496 4497 4498 4499 4500
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4501 4502
}

4503 4504 4505 4506
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4507 4508
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4509 4510 4511 4512 4513
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4514 4515 4516 4517 4518 4519
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4520 4521
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4522 4523
}

4524 4525
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4526 4527 4528 4529 4530 4531
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4532 4533 4534 4535 4536 4537
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4538
	 * of the reset, so this could be applied to even earlier gen.
4539
	 */
4540
	if (INTEL_GEN(i915) >= 5) {
4541 4542 4543 4544 4545
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4546
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4547
{
4548
	struct drm_device *dev = &dev_priv->drm;
4549
	int ret;
4550

4551
	intel_runtime_pm_get(dev_priv);
4552 4553
	intel_suspend_gt_powersave(dev_priv);

4554
	mutex_lock(&dev->struct_mutex);
4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4566
		goto err_unlock;
4567

4568 4569 4570
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4571
	if (ret && ret != -EIO)
4572
		goto err_unlock;
4573

4574
	assert_kernel_context_is_current(dev_priv);
4575
	i915_gem_contexts_lost(dev_priv);
4576 4577
	mutex_unlock(&dev->struct_mutex);

4578 4579
	intel_guc_suspend(dev_priv);

4580
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4581
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4582 4583 4584 4585 4586 4587 4588

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

4589 4590 4591
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4592
	WARN_ON(dev_priv->gt.awake);
4593 4594
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4595

4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4615
	i915_gem_sanitize(dev_priv);
4616 4617 4618

	intel_runtime_pm_put(dev_priv);
	return 0;
4619

4620
err_unlock:
4621
	mutex_unlock(&dev->struct_mutex);
4622
	intel_runtime_pm_put(dev_priv);
4623
	return ret;
4624 4625
}

4626
void i915_gem_resume(struct drm_i915_private *dev_priv)
4627
{
4628
	struct drm_device *dev = &dev_priv->drm;
4629

4630 4631
	WARN_ON(dev_priv->gt.awake);

4632
	mutex_lock(&dev->struct_mutex);
4633
	i915_gem_restore_gtt_mappings(dev_priv);
4634 4635 4636 4637 4638

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4639
	dev_priv->gt.resume(dev_priv);
4640 4641 4642 4643

	mutex_unlock(&dev->struct_mutex);
}

4644
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4645
{
4646
	if (INTEL_GEN(dev_priv) < 5 ||
4647 4648 4649 4650 4651 4652
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4653
	if (IS_GEN5(dev_priv))
4654 4655
		return;

4656
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4657
	if (IS_GEN6(dev_priv))
4658
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4659
	else if (IS_GEN7(dev_priv))
4660
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4661
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4662
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4663 4664
	else
		BUG();
4665
}
D
Daniel Vetter 已提交
4666

4667
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4668 4669 4670 4671 4672 4673 4674
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4675
static void init_unused_rings(struct drm_i915_private *dev_priv)
4676
{
4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4689 4690 4691
	}
}

4692
static int __i915_gem_restart_engines(void *data)
4693
{
4694
	struct drm_i915_private *i915 = data;
4695
	struct intel_engine_cs *engine;
4696
	enum intel_engine_id id;
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4710
	int ret;
4711

4712 4713
	dev_priv->gt.last_init_time = ktime_get();

4714 4715 4716
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4717
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4718
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4719

4720
	if (IS_HASWELL(dev_priv))
4721
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4722
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4723

4724
	if (HAS_PCH_NOP(dev_priv)) {
4725
		if (IS_IVYBRIDGE(dev_priv)) {
4726 4727 4728
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4729
		} else if (INTEL_GEN(dev_priv) >= 7) {
4730 4731 4732 4733
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4734 4735
	}

4736
	i915_gem_init_swizzling(dev_priv);
4737

4738 4739 4740 4741 4742 4743
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4744
	init_unused_rings(dev_priv);
4745

4746
	BUG_ON(!dev_priv->kernel_context);
4747

4748
	ret = i915_ppgtt_init_hw(dev_priv);
4749 4750 4751 4752 4753 4754
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4755 4756 4757
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4758

4759
	intel_mocs_init_l3cc_table(dev_priv);
4760

4761 4762 4763 4764
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4765

4766 4767
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4768
	return ret;
4769 4770
}

4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4784
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4785 4786 4787 4788 4789
		return false;

	return true;
}

4790
int i915_gem_init(struct drm_i915_private *dev_priv)
4791 4792 4793
{
	int ret;

4794
	mutex_lock(&dev_priv->drm.struct_mutex);
4795

4796
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4797

4798
	if (!i915.enable_execlists) {
4799
		dev_priv->gt.resume = intel_legacy_submission_resume;
4800
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4801
	} else {
4802
		dev_priv->gt.resume = intel_lr_context_resume;
4803
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4804 4805
	}

4806 4807 4808 4809 4810 4811 4812 4813
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4814 4815 4816
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4817 4818 4819 4820

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4821

4822
	ret = i915_gem_contexts_init(dev_priv);
4823 4824
	if (ret)
		goto out_unlock;
4825

4826
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4827
	if (ret)
4828
		goto out_unlock;
4829

4830
	ret = i915_gem_init_hw(dev_priv);
4831
	if (ret == -EIO) {
4832
		/* Allow engine initialisation to fail by marking the GPU as
4833 4834 4835 4836
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4837
		i915_gem_set_wedged(dev_priv);
4838
		ret = 0;
4839
	}
4840 4841

out_unlock:
4842
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4843
	mutex_unlock(&dev_priv->drm.struct_mutex);
4844

4845
	return ret;
4846 4847
}

4848 4849 4850 4851 4852
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4853
void
4854
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4855
{
4856
	struct intel_engine_cs *engine;
4857
	enum intel_engine_id id;
4858

4859
	for_each_engine(engine, dev_priv, id)
4860
		dev_priv->gt.cleanup_engine(engine);
4861 4862
}

4863 4864 4865
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4866
	int i;
4867 4868 4869 4870

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4871 4872 4873
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4874 4875 4876 4877
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4878
	if (intel_vgpu_active(dev_priv))
4879 4880 4881 4882
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4883 4884 4885 4886 4887 4888 4889
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4890
	i915_gem_restore_fences(dev_priv);
4891

4892
	i915_gem_detect_bit_6_swizzle(dev_priv);
4893 4894
}

4895
int
4896
i915_gem_load_init(struct drm_i915_private *dev_priv)
4897
{
4898
	int err = -ENOMEM;
4899

4900 4901
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4902 4903
		goto err_out;

4904 4905
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4906 4907
		goto err_objects;

4908 4909 4910 4911
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

4912 4913 4914
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4915
					SLAB_TYPESAFE_BY_RCU);
4916
	if (!dev_priv->requests)
4917
		goto err_luts;
4918

4919 4920 4921 4922 4923 4924
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4925 4926 4927 4928
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4929 4930
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4931
	err = i915_gem_timeline_init__global(dev_priv);
4932 4933
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4934
		goto err_priorities;
4935

4936 4937
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4938 4939
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4940
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4941
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4942
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4943
			  i915_gem_retire_work_handler);
4944
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4945
			  i915_gem_idle_work_handler);
4946
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4947
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4948

4949 4950
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4951
	spin_lock_init(&dev_priv->fb_tracking.lock);
4952 4953 4954

	return 0;

4955 4956
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4957 4958
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4959 4960
err_requests:
	kmem_cache_destroy(dev_priv->requests);
4961 4962
err_luts:
	kmem_cache_destroy(dev_priv->luts);
4963 4964 4965 4966 4967 4968
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4969
}
4970

4971
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4972
{
4973
	i915_gem_drain_freed_objects(dev_priv);
4974
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4975
	WARN_ON(dev_priv->mm.object_count);
4976

4977 4978 4979 4980 4981
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4982
	kmem_cache_destroy(dev_priv->priorities);
4983
	kmem_cache_destroy(dev_priv->dependencies);
4984
	kmem_cache_destroy(dev_priv->requests);
4985
	kmem_cache_destroy(dev_priv->luts);
4986 4987
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4988 4989 4990

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4991 4992
}

4993 4994
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4995 4996 4997
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4998 4999 5000 5001 5002
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5003 5004 5005
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5006 5007 5008 5009 5010
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5011 5012 5013 5014 5015 5016 5017 5018 5019 5020

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5021 5022
	 *
	 * To try and reduce the hibernation image, we manually shrink
5023
	 * the objects as well, see i915_gem_freeze()
5024 5025
	 */

5026
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5027
	i915_gem_drain_freed_objects(dev_priv);
5028

5029
	mutex_lock(&dev_priv->drm.struct_mutex);
5030
	for (p = phases; *p; p++) {
5031 5032
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5033
	}
5034
	mutex_unlock(&dev_priv->drm.struct_mutex);
5035 5036 5037 5038

	return 0;
}

5039
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5040
{
5041
	struct drm_i915_file_private *file_priv = file->driver_priv;
5042
	struct drm_i915_gem_request *request;
5043 5044 5045 5046 5047

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5048
	spin_lock(&file_priv->mm.lock);
5049
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5050
		request->file_priv = NULL;
5051
	spin_unlock(&file_priv->mm.lock);
5052 5053
}

5054
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5055 5056
{
	struct drm_i915_file_private *file_priv;
5057
	int ret;
5058

5059
	DRM_DEBUG("\n");
5060 5061 5062 5063 5064 5065

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5066
	file_priv->dev_priv = i915;
5067
	file_priv->file = file;
5068 5069 5070 5071

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5072
	file_priv->bsd_engine = -1;
5073

5074
	ret = i915_gem_context_open(i915, file);
5075 5076
	if (ret)
		kfree(file_priv);
5077

5078
	return ret;
5079 5080
}

5081 5082
/**
 * i915_gem_track_fb - update frontbuffer tracking
5083 5084 5085
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5086 5087 5088 5089
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5090 5091 5092 5093
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5094 5095 5096 5097 5098 5099 5100 5101 5102
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5103
	if (old) {
5104 5105
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5106 5107 5108
	}

	if (new) {
5109 5110
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5111 5112 5113
	}
}

5114 5115
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5116
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5117 5118 5119
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5120 5121 5122
	struct file *file;
	size_t offset;
	int err;
5123

5124
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5125
	if (IS_ERR(obj))
5126 5127
		return obj;

5128
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5129

5130 5131 5132 5133 5134 5135
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5136

5137 5138 5139 5140 5141
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5142

5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5157 5158 5159 5160

	return obj;

fail:
5161
	i915_gem_object_put(obj);
5162
	return ERR_PTR(err);
5163
}
5164 5165 5166 5167 5168 5169

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5170
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5171 5172 5173 5174 5175
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5176
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5301
	if (!obj->mm.dirty)
5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5317

5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5356
	err = ____i915_gem_object_get_pages(obj);
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5376 5377
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5378
#include "selftests/mock_gem_device.c"
5379
#include "selftests/huge_gem_object.c"
5380
#include "selftests/i915_gem_object.c"
5381
#include "selftests/i915_gem_coherency.c"
5382
#endif