i915_gem.c 142.4 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
182
			     roundup_pow_of_two(obj->base.size),
183 184 185 186 187
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
391
			gen6_rps_boost(rq, rps);
392 393
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
411
	unsigned int seq = __read_seqcount_begin(&resv->seq);
412
	struct dma_fence *excl;
413
	bool prune_fences = false;
414 415 416 417

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
418 419
		int ret;

420 421
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
422 423 424
		if (ret)
			return ret;

425 426 427 428
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
429
			if (timeout < 0)
430
				break;
431

432 433 434 435 436 437
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
438 439

		prune_fences = count && timeout >= 0;
440 441
	} else {
		excl = reservation_object_get_excl_rcu(resv);
442 443
	}

444
	if (excl && timeout >= 0) {
445
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 447
		prune_fences = timeout >= 0;
	}
448 449 450

	dma_fence_put(excl);

451 452 453 454
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
455
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 457 458 459 460
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
461 462
	}

463
	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
567
		     struct drm_file *file)
568 569
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
570
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 572 573 574

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
575
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 577
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
578

579
	drm_clflush_virt_range(vaddr, args->size);
580
	i915_gem_chipset_flush(to_i915(obj->base.dev));
581

582
	intel_fb_obj_flush(obj, ORIGIN_CPU);
583
	return 0;
584 585
}

586
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587
{
588
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 590 591 592
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
593
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594
	kmem_cache_free(dev_priv->objects, obj);
595 596
}

597 598
static int
i915_gem_create(struct drm_file *file,
599
		struct drm_i915_private *dev_priv,
600 601
		uint64_t size,
		uint32_t *handle_p)
602
{
603
	struct drm_i915_gem_object *obj;
604 605
	int ret;
	u32 handle;
606

607
	size = roundup(size, PAGE_SIZE);
608 609
	if (size == 0)
		return -EINVAL;
610 611

	/* Allocate the new object */
612
	obj = i915_gem_object_create(dev_priv, size);
613 614
	if (IS_ERR(obj))
		return PTR_ERR(obj);
615

616
	ret = drm_gem_handle_create(file, &obj->base, &handle);
617
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
618
	i915_gem_object_put(obj);
619 620
	if (ret)
		return ret;
621

622
	*handle_p = handle;
623 624 625
	return 0;
}

626 627 628 629 630 631
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
632
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633
	args->size = args->pitch * args->height;
634
	return i915_gem_create(file, to_i915(dev),
635
			       args->size, &args->handle);
636 637
}

638 639 640 641 642 643
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

644 645
/**
 * Creates a new mm object and returns a handle to it.
646 647 648
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
649 650 651 652 653
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
654
	struct drm_i915_private *dev_priv = to_i915(dev);
655
	struct drm_i915_gem_create *args = data;
656

657
	i915_gem_flush_free_objects(dev_priv);
658

659
	return i915_gem_create(file, dev_priv,
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
697
		if (!HAS_LLC(dev_priv)) {
698 699
			intel_runtime_pm_get(dev_priv);
			spin_lock_irq(&dev_priv->uncore.lock);
700
			POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
701 702
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
703 704 705 706 707 708 709 710 711
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
712 713 714 715 716

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
717 718 719 720 721
	}

	obj->base.write_domain = 0;
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

748
static inline int
749 750
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

774 775 776 777 778 779
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780
				    unsigned int *needs_clflush)
781 782 783
{
	int ret;

784
	lockdep_assert_held(&obj->base.dev->struct_mutex);
785

786
	*needs_clflush = 0;
787 788
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
789

790 791 792 793 794
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
795 796 797
	if (ret)
		return ret;

C
Chris Wilson 已提交
798
	ret = i915_gem_object_pin_pages(obj);
799 800 801
	if (ret)
		return ret;

802 803
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 805 806 807 808 809 810
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

811
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812

813 814 815 816 817
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
818 819
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820
		*needs_clflush = CLFLUSH_BEFORE;
821

822
out:
823
	/* return with the pages pinned */
824
	return 0;
825 826 827 828

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
829 830 831 832 833 834 835
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

836 837
	lockdep_assert_held(&obj->base.dev->struct_mutex);

838 839 840 841
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

842 843 844 845 846 847
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
848 849 850
	if (ret)
		return ret;

C
Chris Wilson 已提交
851
	ret = i915_gem_object_pin_pages(obj);
852 853 854
	if (ret)
		return ret;

855 856
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 858 859 860 861 862 863
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

864
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865

866 867 868 869 870
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
871
	if (!obj->cache_dirty) {
872
		*needs_clflush |= CLFLUSH_AFTER;
873

874 875 876 877 878 879 880
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
881

882
out:
883
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
884
	obj->mm.dirty = true;
885
	/* return with the pages pinned */
886
	return 0;
887 888 889 890

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
891 892
}

893 894 895 896
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
897
	if (unlikely(swizzled)) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

915 916 917
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
918
shmem_pread_slow(struct page *page, int offset, int length,
919 920 921 922 923 924 925 926
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
927
		shmem_clflush_swizzled_range(vaddr + offset, length,
928
					     page_do_bit17_swizzling);
929 930

	if (page_do_bit17_swizzling)
931
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932
	else
933
		ret = __copy_to_user(user_data, vaddr + offset, length);
934 935
	kunmap(page);

936
	return ret ? - EFAULT : 0;
937 938
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1015
{
1016
	void __iomem *vaddr;
1017
	unsigned long unwritten;
1018 1019

	/* We can use the cpu mem copy function because this is X86. */
1020 1021 1022 1023
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data,
					    (void __force *)vaddr + offset,
					    length);
1024 1025
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1026 1027 1028 1029
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data,
					 (void __force *)vaddr + offset,
					 length);
1030 1031
		io_mapping_unmap(vaddr);
	}
1032 1033 1034 1035
	return unwritten;
}

static int
1036 1037
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1038
{
1039 1040
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1041
	struct drm_mm_node node;
1042 1043 1044
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1045 1046
	int ret;

1047 1048 1049 1050 1051 1052 1053
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1054 1055 1056
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1057
		ret = i915_vma_put_fence(vma);
1058 1059 1060 1061 1062
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1063
	if (IS_ERR(vma)) {
1064
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1065
		if (ret)
1066 1067
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1068 1069 1070 1071 1072 1073
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1074
	mutex_unlock(&i915->drm.struct_mutex);
1075

1076 1077 1078
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1095
					       node.start, I915_CACHE_NONE, 0);
1096 1097 1098 1099
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1100 1101 1102

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1103 1104 1105 1106 1107 1108 1109 1110 1111
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1112
	mutex_lock(&i915->drm.struct_mutex);
1113 1114 1115 1116
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1117
				       node.start, node.size);
1118 1119
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1120
		i915_vma_unpin(vma);
1121
	}
1122 1123 1124
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1125

1126 1127 1128
	return ret;
}

1129 1130
/**
 * Reads data from the object referenced by handle.
1131 1132 1133
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1134 1135 1136 1137 1138
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1139
		     struct drm_file *file)
1140 1141
{
	struct drm_i915_gem_pread *args = data;
1142
	struct drm_i915_gem_object *obj;
1143
	int ret;
1144

1145 1146 1147 1148
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1149
		       u64_to_user_ptr(args->data_ptr),
1150 1151 1152
		       args->size))
		return -EFAULT;

1153
	obj = i915_gem_object_lookup(file, args->handle);
1154 1155
	if (!obj)
		return -ENOENT;
1156

1157
	/* Bounds check source.  */
1158
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1159
		ret = -EINVAL;
1160
		goto out;
C
Chris Wilson 已提交
1161 1162
	}

C
Chris Wilson 已提交
1163 1164
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1165 1166 1167 1168
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1169
	if (ret)
1170
		goto out;
1171

1172
	ret = i915_gem_object_pin_pages(obj);
1173
	if (ret)
1174
		goto out;
1175

1176
	ret = i915_gem_shmem_pread(obj, args);
1177
	if (ret == -EFAULT || ret == -ENODEV)
1178
		ret = i915_gem_gtt_pread(obj, args);
1179

1180 1181
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1182
	i915_gem_object_put(obj);
1183
	return ret;
1184 1185
}

1186 1187
/* This is the fast write path which cannot handle
 * page faults in the source data
1188
 */
1189

1190 1191 1192 1193
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1194
{
1195
	void __iomem *vaddr;
1196
	unsigned long unwritten;
1197

1198
	/* We can use the cpu mem copy function because this is X86. */
1199 1200
	vaddr = io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1201
						      user_data, length);
1202 1203
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
1204 1205 1206
		vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user((void __force *)vaddr + offset,
					   user_data, length);
1207 1208
		io_mapping_unmap(vaddr);
	}
1209 1210 1211 1212

	return unwritten;
}

1213 1214 1215
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1216
 * @obj: i915 GEM object
1217
 * @args: pwrite arguments structure
1218
 */
1219
static int
1220 1221
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1222
{
1223
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1224 1225
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1226 1227 1228
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1229
	int ret;
1230

1231 1232 1233
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1234

1235
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1236
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1237
				       PIN_MAPPABLE | PIN_NONBLOCK);
1238 1239 1240
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1241
		ret = i915_vma_put_fence(vma);
1242 1243 1244 1245 1246
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1247
	if (IS_ERR(vma)) {
1248
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1249
		if (ret)
1250 1251
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1252
	}
D
Daniel Vetter 已提交
1253 1254 1255 1256 1257

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1258 1259
	mutex_unlock(&i915->drm.struct_mutex);

1260
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1261

1262 1263 1264 1265
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1266 1267
		/* Operation in this page
		 *
1268 1269 1270
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1271
		 */
1272
		u32 page_base = node.start;
1273 1274
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1285
		/* If we get a fault while copying data, then (presumably) our
1286 1287
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1288 1289
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1290
		 */
1291 1292 1293 1294
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1295
		}
1296

1297 1298 1299
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1300
	}
1301
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1302 1303

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1304
out_unpin:
1305 1306 1307
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1308
				       node.start, node.size);
1309 1310
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1311
		i915_vma_unpin(vma);
1312
	}
1313
out_unlock:
1314
	intel_runtime_pm_put(i915);
1315
	mutex_unlock(&i915->drm.struct_mutex);
1316
	return ret;
1317 1318
}

1319
static int
1320
shmem_pwrite_slow(struct page *page, int offset, int length,
1321 1322 1323 1324
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1325
{
1326 1327
	char *vaddr;
	int ret;
1328

1329
	vaddr = kmap(page);
1330
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1331
		shmem_clflush_swizzled_range(vaddr + offset, length,
1332
					     page_do_bit17_swizzling);
1333
	if (page_do_bit17_swizzling)
1334 1335
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1336
	else
1337
		ret = __copy_from_user(vaddr + offset, user_data, length);
1338
	if (needs_clflush_after)
1339
		shmem_clflush_swizzled_range(vaddr + offset, length,
1340
					     page_do_bit17_swizzling);
1341
	kunmap(page);
1342

1343
	return ret ? -EFAULT : 0;
1344 1345
}

1346 1347 1348 1349 1350
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1351
static int
1352 1353 1354 1355
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1356
{
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1389
	unsigned int needs_clflush;
1390 1391
	unsigned int offset, idx;
	int ret;
1392

1393
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1394 1395 1396
	if (ret)
		return ret;

1397 1398 1399 1400
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1401

1402 1403 1404
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1405

1406 1407 1408 1409 1410 1411 1412
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1413

1414 1415 1416 1417 1418 1419
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1420

1421 1422 1423
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1424

1425 1426 1427 1428
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1429
		if (ret)
1430
			break;
1431

1432 1433 1434
		remain -= length;
		user_data += length;
		offset = 0;
1435
	}
1436

1437
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1438
	i915_gem_obj_finish_shmem_access(obj);
1439
	return ret;
1440 1441 1442 1443
}

/**
 * Writes data to the object referenced by handle.
1444 1445 1446
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1447 1448 1449 1450 1451
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1452
		      struct drm_file *file)
1453 1454
{
	struct drm_i915_gem_pwrite *args = data;
1455
	struct drm_i915_gem_object *obj;
1456 1457 1458 1459 1460 1461
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1462
		       u64_to_user_ptr(args->data_ptr),
1463 1464 1465
		       args->size))
		return -EFAULT;

1466
	obj = i915_gem_object_lookup(file, args->handle);
1467 1468
	if (!obj)
		return -ENOENT;
1469

1470
	/* Bounds check destination. */
1471
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1472
		ret = -EINVAL;
1473
		goto err;
C
Chris Wilson 已提交
1474 1475
	}

C
Chris Wilson 已提交
1476 1477
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1478 1479 1480 1481 1482 1483
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1484 1485 1486 1487 1488
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1489 1490 1491
	if (ret)
		goto err;

1492
	ret = i915_gem_object_pin_pages(obj);
1493
	if (ret)
1494
		goto err;
1495

D
Daniel Vetter 已提交
1496
	ret = -EFAULT;
1497 1498 1499 1500 1501 1502
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1503
	if (!i915_gem_object_has_struct_page(obj) ||
1504
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1505 1506
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1507 1508
		 * textures). Fallback to the shmem path in that case.
		 */
1509
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1510

1511
	if (ret == -EFAULT || ret == -ENOSPC) {
1512 1513
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1514
		else
1515
			ret = i915_gem_shmem_pwrite(obj, args);
1516
	}
1517

1518
	i915_gem_object_unpin_pages(obj);
1519
err:
C
Chris Wilson 已提交
1520
	i915_gem_object_put(obj);
1521
	return ret;
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1532
			break;
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1545
	list_move_tail(&obj->global_link, list);
1546 1547
}

1548
/**
1549 1550
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1551 1552 1553
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1554 1555 1556
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1557
			  struct drm_file *file)
1558 1559
{
	struct drm_i915_gem_set_domain *args = data;
1560
	struct drm_i915_gem_object *obj;
1561 1562
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1563
	int err;
1564

1565
	/* Only handle setting domains to types used by the CPU. */
1566
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1567 1568 1569 1570 1571 1572 1573 1574
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1575
	obj = i915_gem_object_lookup(file, args->handle);
1576 1577
	if (!obj)
		return -ENOENT;
1578

1579 1580 1581 1582
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1583
	err = i915_gem_object_wait(obj,
1584 1585 1586 1587
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1588
	if (err)
C
Chris Wilson 已提交
1589
		goto out;
1590

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1601
		goto out;
1602 1603 1604

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1605
		goto out_unpin;
1606

1607 1608 1609 1610
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1611
	else
1612
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1613

1614 1615
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1616

1617
	mutex_unlock(&dev->struct_mutex);
1618

1619
	if (write_domain != 0)
1620 1621
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1622

C
Chris Wilson 已提交
1623
out_unpin:
1624
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1625 1626
out:
	i915_gem_object_put(obj);
1627
	return err;
1628 1629 1630 1631
}

/**
 * Called when user space has done writes to this buffer
1632 1633 1634
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1635 1636 1637
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1638
			 struct drm_file *file)
1639 1640
{
	struct drm_i915_gem_sw_finish *args = data;
1641
	struct drm_i915_gem_object *obj;
1642

1643
	obj = i915_gem_object_lookup(file, args->handle);
1644 1645
	if (!obj)
		return -ENOENT;
1646 1647

	/* Pinned buffers may be scanout, so flush the cache */
1648
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1649
	i915_gem_object_put(obj);
1650 1651

	return 0;
1652 1653 1654
}

/**
1655 1656 1657 1658 1659
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1660 1661 1662
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1673 1674 1675
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1676
		    struct drm_file *file)
1677 1678
{
	struct drm_i915_gem_mmap *args = data;
1679
	struct drm_i915_gem_object *obj;
1680 1681
	unsigned long addr;

1682 1683 1684
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1685
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1686 1687
		return -ENODEV;

1688 1689
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1690
		return -ENOENT;
1691

1692 1693 1694
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1695
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1696
		i915_gem_object_put(obj);
1697 1698 1699
		return -EINVAL;
	}

1700
	addr = vm_mmap(obj->base.filp, 0, args->size,
1701 1702
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1703 1704 1705 1706
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1707
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1708
			i915_gem_object_put(obj);
1709 1710
			return -EINTR;
		}
1711 1712 1713 1714 1715 1716 1717
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1718 1719

		/* This may race, but that's ok, it only gets set */
1720
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1721
	}
C
Chris Wilson 已提交
1722
	i915_gem_object_put(obj);
1723 1724 1725 1726 1727 1728 1729 1730
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1731 1732
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1733
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1734 1735
}

1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1756 1757 1758
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1786
	return 2;
1787 1788
}

1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1800 1801
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1802
		min_t(unsigned int, chunk,
1803
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1804 1805 1806 1807 1808 1809 1810 1811

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1812 1813
/**
 * i915_gem_fault - fault a page into the GTT
1814
 * @vmf: fault info
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1826 1827 1828
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1829
 */
1830
int i915_gem_fault(struct vm_fault *vmf)
1831
{
1832
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1833
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1834
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1835
	struct drm_device *dev = obj->base.dev;
1836 1837
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1838
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1839
	struct i915_vma *vma;
1840
	pgoff_t page_offset;
1841
	unsigned int flags;
1842
	int ret;
1843

1844
	/* We don't use vmf->pgoff since that has the fake offset */
1845
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1846

C
Chris Wilson 已提交
1847 1848
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1849
	/* Try to flush the object off the GPU first without holding the lock.
1850
	 * Upon acquiring the lock, we will perform our sanity checks and then
1851 1852 1853
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1854 1855 1856 1857
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1858
	if (ret)
1859 1860
		goto err;

1861 1862 1863 1864
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1865 1866 1867 1868 1869
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1870

1871
	/* Access to snoopable pages through the GTT is incoherent. */
1872
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1873
		ret = -EFAULT;
1874
		goto err_unlock;
1875 1876
	}

1877 1878 1879 1880 1881 1882 1883 1884
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1885
	/* Now pin it into the GTT as needed */
1886
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1887 1888
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1889
		struct i915_ggtt_view view =
1890
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1891

1892 1893 1894 1895 1896
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1897 1898
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1899 1900
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1901
		goto err_unlock;
C
Chris Wilson 已提交
1902
	}
1903

1904 1905
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1906
		goto err_unpin;
1907

1908
	ret = i915_vma_get_fence(vma);
1909
	if (ret)
1910
		goto err_unpin;
1911

1912
	/* Mark as being mmapped into userspace for later revocation */
1913
	assert_rpm_wakelock_held(dev_priv);
1914 1915 1916
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1917
	/* Finally, remap it using the new GTT offset */
1918
	ret = remap_io_mapping(area,
1919
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1920 1921 1922
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1923

1924
err_unpin:
C
Chris Wilson 已提交
1925
	__i915_vma_unpin(vma);
1926
err_unlock:
1927
	mutex_unlock(&dev->struct_mutex);
1928 1929
err_rpm:
	intel_runtime_pm_put(dev_priv);
1930
	i915_gem_object_unpin_pages(obj);
1931
err:
1932
	switch (ret) {
1933
	case -EIO:
1934 1935 1936 1937 1938 1939 1940
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1941 1942 1943
			ret = VM_FAULT_SIGBUS;
			break;
		}
1944
	case -EAGAIN:
D
Daniel Vetter 已提交
1945 1946 1947 1948
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1949
		 */
1950 1951
	case 0:
	case -ERESTARTSYS:
1952
	case -EINTR:
1953 1954 1955 1956 1957
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1958 1959
		ret = VM_FAULT_NOPAGE;
		break;
1960
	case -ENOMEM:
1961 1962
		ret = VM_FAULT_OOM;
		break;
1963
	case -ENOSPC:
1964
	case -EFAULT:
1965 1966
		ret = VM_FAULT_SIGBUS;
		break;
1967
	default:
1968
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1969 1970
		ret = VM_FAULT_SIGBUS;
		break;
1971
	}
1972
	return ret;
1973 1974
}

1975 1976 1977 1978
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1979
 * Preserve the reservation of the mmapping with the DRM core code, but
1980 1981 1982 1983 1984 1985 1986 1987 1988
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1989
void
1990
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1991
{
1992 1993
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1994 1995 1996
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1997 1998 1999 2000
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2001
	 */
2002
	lockdep_assert_held(&i915->drm.struct_mutex);
2003
	intel_runtime_pm_get(i915);
2004

2005
	if (list_empty(&obj->userfault_link))
2006
		goto out;
2007

2008
	list_del_init(&obj->userfault_link);
2009 2010
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2011 2012 2013 2014 2015 2016 2017 2018 2019

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2020 2021 2022

out:
	intel_runtime_pm_put(i915);
2023 2024
}

2025
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2026
{
2027
	struct drm_i915_gem_object *obj, *on;
2028
	int i;
2029

2030 2031 2032 2033 2034 2035
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2036

2037 2038 2039
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2040 2041 2042
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2043 2044 2045 2046 2047 2048 2049 2050

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2061 2062 2063 2064 2065 2066 2067

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2068 2069
}

2070 2071
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2072
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2073
	int err;
2074

2075
	err = drm_gem_create_mmap_offset(&obj->base);
2076
	if (likely(!err))
2077
		return 0;
2078

2079 2080 2081 2082 2083
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2084

2085
		i915_gem_drain_freed_objects(dev_priv);
2086
		err = drm_gem_create_mmap_offset(&obj->base);
2087 2088 2089 2090
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2091

2092
	return err;
2093 2094 2095 2096 2097 2098 2099
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2100
int
2101 2102
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2103
		  uint32_t handle,
2104
		  uint64_t *offset)
2105
{
2106
	struct drm_i915_gem_object *obj;
2107 2108
	int ret;

2109
	obj = i915_gem_object_lookup(file, handle);
2110 2111
	if (!obj)
		return -ENOENT;
2112

2113
	ret = i915_gem_object_create_mmap_offset(obj);
2114 2115
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2116

C
Chris Wilson 已提交
2117
	i915_gem_object_put(obj);
2118
	return ret;
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2142
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2143 2144
}

D
Daniel Vetter 已提交
2145 2146 2147
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2148
{
2149
	i915_gem_object_free_mmap_offset(obj);
2150

2151 2152
	if (obj->base.filp == NULL)
		return;
2153

D
Daniel Vetter 已提交
2154 2155 2156 2157 2158
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2159
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2160
	obj->mm.madv = __I915_MADV_PURGED;
2161
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2162
}
2163

2164
/* Try to discard unwanted pages */
2165
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2166
{
2167 2168
	struct address_space *mapping;

2169 2170 2171
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2172
	switch (obj->mm.madv) {
2173 2174 2175 2176 2177 2178 2179 2180 2181
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2182
	mapping = obj->base.filp->f_mapping,
2183
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2184 2185
}

2186
static void
2187 2188
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2189
{
2190 2191
	struct sgt_iter sgt_iter;
	struct page *page;
2192

2193
	__i915_gem_object_release_shmem(obj, pages, true);
2194

2195
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2196

2197
	if (i915_gem_object_needs_bit17_swizzle(obj))
2198
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2199

2200
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2201
		if (obj->mm.dirty)
2202
			set_page_dirty(page);
2203

C
Chris Wilson 已提交
2204
		if (obj->mm.madv == I915_MADV_WILLNEED)
2205
			mark_page_accessed(page);
2206

2207
		put_page(page);
2208
	}
C
Chris Wilson 已提交
2209
	obj->mm.dirty = false;
2210

2211 2212
	sg_free_table(pages);
	kfree(pages);
2213
}
C
Chris Wilson 已提交
2214

2215 2216 2217
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2218
	void __rcu **slot;
2219

C
Chris Wilson 已提交
2220 2221
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2222 2223
}

2224 2225
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2226
{
2227
	struct sg_table *pages;
2228

C
Chris Wilson 已提交
2229
	if (i915_gem_object_has_pinned_pages(obj))
2230
		return;
2231

2232
	GEM_BUG_ON(obj->bind_count);
2233 2234 2235 2236
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2237
	mutex_lock_nested(&obj->mm.lock, subclass);
2238 2239
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2240

2241 2242 2243
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2244 2245
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2246

C
Chris Wilson 已提交
2247
	if (obj->mm.mapping) {
2248 2249
		void *ptr;

2250
		ptr = page_mask_bits(obj->mm.mapping);
2251 2252
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2253
		else
2254 2255
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2256
		obj->mm.mapping = NULL;
2257 2258
	}

2259 2260
	__i915_gem_object_reset_page_iter(obj);

2261 2262 2263
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2264 2265
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2266 2267
}

2268
static bool i915_sg_trim(struct sg_table *orig_st)
2269 2270 2271 2272 2273 2274
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2275
		return false;
2276

2277
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2278
		return false;
2279 2280 2281 2282 2283 2284 2285

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2286
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2287 2288 2289 2290

	sg_free_table(orig_st);

	*orig_st = new_st;
2291
	return true;
2292 2293
}

2294
static struct sg_table *
C
Chris Wilson 已提交
2295
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2296
{
2297
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2298 2299
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2300
	struct address_space *mapping;
2301 2302
	struct sg_table *st;
	struct scatterlist *sg;
2303
	struct sgt_iter sgt_iter;
2304
	struct page *page;
2305
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2306
	unsigned int max_segment = i915_sg_segment_size();
2307
	gfp_t noreclaim;
I
Imre Deak 已提交
2308
	int ret;
2309

C
Chris Wilson 已提交
2310 2311 2312 2313
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2314 2315
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2316

2317 2318
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2319
		return ERR_PTR(-ENOMEM);
2320

2321
rebuild_st:
2322 2323
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2324
		return ERR_PTR(-ENOMEM);
2325
	}
2326

2327 2328 2329 2330 2331
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2332
	mapping = obj->base.filp->f_mapping;
2333
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2334 2335
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2336 2337 2338
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2339 2340 2341 2342 2343 2344 2345
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2346
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2357

C
Chris Wilson 已提交
2358 2359 2360
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2361 2362 2363 2364
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2365
			 */
2366 2367 2368
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2381
				 * this we want __GFP_RETRY_MAYFAIL.
2382
				 */
M
Michal Hocko 已提交
2383
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2384
			}
2385 2386
		} while (1);

2387 2388 2389
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2390 2391 2392 2393 2394 2395 2396 2397
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2398 2399 2400

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2401
	}
2402
	if (sg) /* loop terminated early; short sg table */
2403
		sg_mark_end(sg);
2404

2405 2406 2407
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2408
	ret = i915_gem_gtt_prepare_pages(obj, st);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2428

2429
	if (i915_gem_object_needs_bit17_swizzle(obj))
2430
		i915_gem_object_do_bit_17_swizzle(obj, st);
2431

2432
	return st;
2433

2434
err_sg:
2435
	sg_mark_end(sg);
2436
err_pages:
2437 2438
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2439 2440
	sg_free_table(st);
	kfree(st);
2441 2442 2443 2444 2445 2446 2447 2448 2449

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2450 2451 2452
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2453 2454 2455 2456 2457 2458
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2459
	lockdep_assert_held(&obj->mm.lock);
2460 2461 2462 2463 2464

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2465 2466 2467 2468 2469 2470 2471

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2489 2490
}

2491
/* Ensure that the associated pages are gathered from the backing storage
2492
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2493
 * multiple times before they are released by a single call to
2494
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2495 2496 2497
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2498
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2499
{
2500
	int err;
2501

2502 2503 2504
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2505

2506
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2507 2508
		GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2509 2510 2511
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2512

2513 2514 2515
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2516

2517 2518
unlock:
	mutex_unlock(&obj->mm.lock);
2519
	return err;
2520 2521
}

2522
/* The 'mapping' part of i915_gem_object_pin_map() below */
2523 2524
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2525 2526
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2527
	struct sg_table *sgt = obj->mm.pages;
2528 2529
	struct sgt_iter sgt_iter;
	struct page *page;
2530 2531
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2532
	unsigned long i = 0;
2533
	pgprot_t pgprot;
2534 2535 2536
	void *addr;

	/* A single page can always be kmapped */
2537
	if (n_pages == 1 && type == I915_MAP_WB)
2538 2539
		return kmap(sg_page(sgt->sgl));

2540 2541
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2542
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2543 2544 2545
		if (!pages)
			return NULL;
	}
2546

2547 2548
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2549 2550 2551 2552

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2553
	switch (type) {
2554 2555 2556
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2557 2558 2559 2560 2561 2562 2563 2564
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2565

2566
	if (pages != stack_pages)
M
Michal Hocko 已提交
2567
		kvfree(pages);
2568 2569 2570 2571 2572

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2573 2574
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2575
{
2576 2577 2578
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2579 2580
	int ret;

2581
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2582

2583
	ret = mutex_lock_interruptible(&obj->mm.lock);
2584 2585 2586
	if (ret)
		return ERR_PTR(ret);

2587 2588 2589
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2590
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2591
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2592 2593
			GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2594 2595 2596
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2597

2598 2599 2600
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2601 2602 2603
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2604

2605
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2606 2607 2608
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2609
			goto err_unpin;
2610
		}
2611 2612 2613 2614 2615 2616

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2617
		ptr = obj->mm.mapping = NULL;
2618 2619
	}

2620 2621 2622 2623
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2624
			goto err_unpin;
2625 2626
		}

2627
		obj->mm.mapping = page_pack_bits(ptr, type);
2628 2629
	}

2630 2631
out_unlock:
	mutex_unlock(&obj->mm.lock);
2632 2633
	return ptr;

2634 2635 2636 2637 2638
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2639 2640
}

2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2710 2711
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2712
{
2713
	return (i915_gem_context_is_bannable(ctx) &&
2714
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2715 2716
}

2717
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2718
{
2719 2720
	unsigned int score;
	bool banned;
2721

2722
	atomic_inc(&ctx->guilty_count);
2723

2724 2725 2726 2727 2728
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2729 2730
		return;

2731 2732 2733 2734 2735 2736
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2737 2738 2739 2740
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2741
	atomic_inc(&ctx->active_count);
2742 2743
}

2744
struct drm_i915_gem_request *
2745
i915_gem_find_active_request(struct intel_engine_cs *engine)
2746
{
2747 2748
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2749

2750 2751 2752 2753 2754 2755 2756 2757
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2758
	spin_lock_irqsave(&engine->timeline->lock, flags);
2759
	list_for_each_entry(request, &engine->timeline->requests, link) {
2760 2761
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2762
			continue;
2763

2764
		GEM_BUG_ON(request->engine != engine);
2765 2766
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2767 2768 2769

		active = request;
		break;
2770
	}
2771
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2772

2773
	return active;
2774 2775
}

2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

	/* Prevent the signaler thread from updating the request
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

	/* Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
	tasklet_kill(&engine->irq_tasklet);
	tasklet_disable(&engine->irq_tasklet);

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2824 2825 2826
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2827 2828 2829 2830

	return request;
}

2831
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2832 2833
{
	struct intel_engine_cs *engine;
2834
	struct drm_i915_gem_request *request;
2835
	enum intel_engine_id id;
2836
	int err = 0;
2837

2838
	for_each_engine(engine, dev_priv, id) {
2839 2840 2841 2842
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2843
		}
2844 2845

		engine->hangcheck.active_request = request;
2846 2847
	}

2848
	i915_gem_revoke_fences(dev_priv);
2849 2850

	return err;
2851 2852
}

2853
static void skip_request(struct drm_i915_gem_request *request)
2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2868 2869

	dma_fence_set_error(&request->fence, -EIO);
2870 2871
}

2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2895 2896 2897 2898
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2899
{
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2921
	if (engine_stalled(engine)) {
2922 2923
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2924 2925 2926 2927

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2928
	} else {
2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
2946 2947
	}

2948
	return request;
2949 2950
}

2951 2952
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
2953
{
2954 2955
	engine->irq_posted = 0;

2956 2957 2958 2959
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
2960 2961 2962
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
2963 2964 2965

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2966
}
2967

2968
void i915_gem_reset(struct drm_i915_private *dev_priv)
2969
{
2970
	struct intel_engine_cs *engine;
2971
	enum intel_engine_id id;
2972

2973 2974
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2975 2976
	i915_gem_retire_requests(dev_priv);

2977 2978 2979
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2980
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2981 2982 2983 2984
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2985

2986
	i915_gem_restore_fences(dev_priv);
2987 2988 2989 2990 2991 2992 2993

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2994 2995
}

2996 2997 2998 2999 3000 3001
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->irq_tasklet);
	kthread_unpark(engine->breadcrumbs.signaler);
}

3002 3003
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3004 3005 3006
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3007
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3008

3009
	for_each_engine(engine, dev_priv, id) {
3010
		engine->hangcheck.active_request = NULL;
3011
		i915_gem_reset_finish_engine(engine);
3012
	}
3013 3014
}

3015 3016
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3017
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3018
	dma_fence_set_error(&request->fence, -EIO);
3019 3020
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3021 3022
}

3023
static void engine_set_wedged(struct intel_engine_cs *engine)
3024
{
3025 3026 3027 3028 3029 3030
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3031
	engine->submit_request = nop_submit_request;
3032

3033
	/* Mark all executing requests as skipped */
3034
	engine->cancel_requests(engine);
3035 3036 3037 3038 3039 3040 3041

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3042 3043
}

3044
static int __i915_gem_set_wedged_BKL(void *data)
3045
{
3046
	struct drm_i915_private *i915 = data;
3047
	struct intel_engine_cs *engine;
3048
	enum intel_engine_id id;
3049

3050
	for_each_engine(engine, i915, id)
3051
		engine_set_wedged(engine);
3052

3053 3054 3055
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3056 3057 3058 3059 3060 3061
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3062 3063
}

3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3116
	i915_gem_contexts_lost(i915);
3117 3118 3119 3120 3121 3122 3123

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3124
static void
3125 3126
i915_gem_retire_work_handler(struct work_struct *work)
{
3127
	struct drm_i915_private *dev_priv =
3128
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3129
	struct drm_device *dev = &dev_priv->drm;
3130

3131
	/* Come back later if the device is busy... */
3132
	if (mutex_trylock(&dev->struct_mutex)) {
3133
		i915_gem_retire_requests(dev_priv);
3134
		mutex_unlock(&dev->struct_mutex);
3135
	}
3136 3137 3138 3139 3140

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3141 3142
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3143 3144
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3145
				   round_jiffies_up_relative(HZ));
3146
	}
3147
}
3148

3149 3150 3151 3152
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3153
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3154
	struct drm_device *dev = &dev_priv->drm;
3155 3156 3157 3158 3159
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3160 3161 3162 3163
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3164
	wait_for(intel_engines_are_idle(dev_priv), 10);
3165
	if (READ_ONCE(dev_priv->gt.active_requests))
3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3179 3180 3181 3182 3183 3184 3185
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3186
	if (dev_priv->gt.active_requests)
3187
		goto out_unlock;
3188

3189
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3190 3191
		DRM_ERROR("Timeout waiting for engines to idle\n");

3192
	intel_engines_mark_idle(dev_priv);
3193
	i915_gem_timelines_mark_idle(dev_priv);
3194

3195 3196 3197
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3198

3199 3200 3201 3202 3203
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3204

3205 3206 3207 3208
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3209
	}
3210 3211
}

3212 3213
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3214
	struct drm_i915_private *i915 = to_i915(gem->dev);
3215 3216
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3217
	struct i915_lut_handle *lut, *ln;
3218

3219 3220 3221 3222 3223 3224
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

3225
		GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3226 3227 3228 3229
		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3230 3231 3232 3233 3234 3235 3236
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3237
			i915_vma_close(vma);
3238

3239 3240
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3241

3242 3243
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3244
	}
3245 3246

	mutex_unlock(&i915->drm.struct_mutex);
3247 3248
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3260 3261
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3262 3263 3264
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3265 3266 3267 3268 3269 3270 3271
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3272
 *  -EAGAIN: incomplete, restart syscall
3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3289 3290
	ktime_t start;
	long ret;
3291

3292 3293 3294
	if (args->flags != 0)
		return -EINVAL;

3295
	obj = i915_gem_object_lookup(file, args->bo_handle);
3296
	if (!obj)
3297 3298
		return -ENOENT;

3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3320 3321 3322 3323

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3324 3325
	}

C
Chris Wilson 已提交
3326
	i915_gem_object_put(obj);
3327
	return ret;
3328 3329
}

3330
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3331
{
3332
	int ret, i;
3333

3334 3335 3336 3337 3338
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3339

3340 3341 3342
	return 0;
}

3343 3344
static int wait_for_engines(struct drm_i915_private *i915)
{
3345 3346 3347 3348
	if (wait_for(intel_engines_are_idle(i915), 50)) {
		DRM_ERROR("Failed to idle engines, declaring wedged!\n");
		i915_gem_set_wedged(i915);
		return -EIO;
3349 3350 3351 3352 3353
	}

	return 0;
}

3354 3355 3356 3357
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3358 3359 3360 3361
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3362 3363 3364 3365 3366 3367 3368 3369 3370 3371
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3372 3373 3374

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3375 3376

		ret = wait_for_engines(i915);
3377 3378
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3379
	}
3380

3381
	return ret;
3382 3383
}

3384 3385
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3386 3387 3388 3389 3390 3391 3392
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3469 3470
/**
 * Moves a single object to the GTT read, and possibly write domain.
3471 3472
 * @obj: object to act on
 * @write: ask for write access or read only
3473 3474 3475 3476
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3477
int
3478
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3479
{
3480
	int ret;
3481

3482
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3483

3484 3485 3486 3487 3488 3489
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3490 3491 3492
	if (ret)
		return ret;

3493 3494 3495
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3496 3497 3498 3499 3500 3501 3502 3503
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3504
	ret = i915_gem_object_pin_pages(obj);
3505 3506 3507
	if (ret)
		return ret;

3508
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3509

3510 3511 3512 3513 3514 3515 3516
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3517 3518 3519
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3520
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3521
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3522
	if (write) {
3523 3524
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3525
		obj->mm.dirty = true;
3526 3527
	}

C
Chris Wilson 已提交
3528
	i915_gem_object_unpin_pages(obj);
3529 3530 3531
	return 0;
}

3532 3533
/**
 * Changes the cache-level of an object across all VMA.
3534 3535
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3547 3548 3549
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3550
	struct i915_vma *vma;
3551
	int ret;
3552

3553 3554
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3555
	if (obj->cache_level == cache_level)
3556
		return 0;
3557

3558 3559 3560 3561 3562
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3563 3564
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3565 3566 3567
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3568
		if (i915_vma_is_pinned(vma)) {
3569 3570 3571 3572
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3585 3586
	}

3587 3588 3589 3590 3591 3592 3593
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3594
	if (obj->bind_count) {
3595 3596 3597 3598
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3599 3600 3601 3602 3603 3604
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3605 3606 3607
		if (ret)
			return ret;

3608 3609
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3626 3627 3628 3629 3630
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3631 3632 3633 3634 3635 3636 3637 3638
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3639 3640
		}

3641
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3642 3643 3644 3645 3646 3647 3648
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3649 3650
	}

3651
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3652
		vma->node.color = cache_level;
3653
	i915_gem_object_set_cache_coherency(obj, cache_level);
3654
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3655

3656 3657 3658
	return 0;
}

B
Ben Widawsky 已提交
3659 3660
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3661
{
B
Ben Widawsky 已提交
3662
	struct drm_i915_gem_caching *args = data;
3663
	struct drm_i915_gem_object *obj;
3664
	int err = 0;
3665

3666 3667 3668 3669 3670 3671
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3672

3673 3674 3675 3676 3677 3678
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3679 3680 3681 3682
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3683 3684 3685 3686
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3687 3688 3689
out:
	rcu_read_unlock();
	return err;
3690 3691
}

B
Ben Widawsky 已提交
3692 3693
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3694
{
3695
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3696
	struct drm_i915_gem_caching *args = data;
3697 3698
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3699
	int ret = 0;
3700

B
Ben Widawsky 已提交
3701 3702
	switch (args->caching) {
	case I915_CACHING_NONE:
3703 3704
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3705
	case I915_CACHING_CACHED:
3706 3707 3708 3709 3710 3711
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3712
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3713 3714
			return -ENODEV;

3715 3716
		level = I915_CACHE_LLC;
		break;
3717
	case I915_CACHING_DISPLAY:
3718
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3719
		break;
3720 3721 3722 3723
	default:
		return -EINVAL;
	}

3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3735
	if (ret)
3736
		goto out;
B
Ben Widawsky 已提交
3737

3738 3739 3740
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3741 3742 3743

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3744 3745 3746

out:
	i915_gem_object_put(obj);
3747 3748 3749
	return ret;
}

3750
/*
3751 3752 3753
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3754
 */
C
Chris Wilson 已提交
3755
struct i915_vma *
3756 3757
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3758
				     const struct i915_ggtt_view *view)
3759
{
C
Chris Wilson 已提交
3760
	struct i915_vma *vma;
3761 3762
	int ret;

3763 3764
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3765 3766 3767
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3768
	obj->pin_display++;
3769

3770 3771 3772 3773 3774 3775 3776 3777 3778
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3779
	ret = i915_gem_object_set_cache_level(obj,
3780 3781
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3782 3783
	if (ret) {
		vma = ERR_PTR(ret);
3784
		goto err_unpin_display;
C
Chris Wilson 已提交
3785
	}
3786

3787 3788
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3789 3790 3791 3792
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3793
	 */
3794
	vma = ERR_PTR(-ENOSPC);
3795
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3796 3797
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3814
	if (IS_ERR(vma))
3815
		goto err_unpin_display;
3816

3817 3818
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3819
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3820
	__i915_gem_object_flush_for_display(obj);
3821
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3822

3823 3824 3825
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3826
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3827

C
Chris Wilson 已提交
3828
	return vma;
3829 3830

err_unpin_display:
3831
	obj->pin_display--;
C
Chris Wilson 已提交
3832
	return vma;
3833 3834 3835
}

void
C
Chris Wilson 已提交
3836
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3837
{
3838
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3839

C
Chris Wilson 已提交
3840
	if (WARN_ON(vma->obj->pin_display == 0))
3841 3842
		return;

3843
	if (--vma->obj->pin_display == 0)
3844
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3845

3846
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3847
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3848

C
Chris Wilson 已提交
3849
	i915_vma_unpin(vma);
3850 3851
}

3852 3853
/**
 * Moves a single object to the CPU read, and possibly write domain.
3854 3855
 * @obj: object to act on
 * @write: requesting write or read-only access
3856 3857 3858 3859
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3860
int
3861
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3862 3863 3864
{
	int ret;

3865
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3866

3867 3868 3869 3870 3871 3872
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3873 3874 3875
	if (ret)
		return ret;

3876
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3877

3878
	/* Flush the CPU cache if it's still invalid. */
3879
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3880
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3881
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3882 3883 3884 3885 3886
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3887
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3888 3889 3890 3891

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3892 3893
	if (write)
		__start_cpu_write(obj);
3894 3895 3896 3897

	return 0;
}

3898 3899 3900
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3901 3902 3903 3904
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3905 3906 3907
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3908
static int
3909
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3910
{
3911
	struct drm_i915_private *dev_priv = to_i915(dev);
3912
	struct drm_i915_file_private *file_priv = file->driver_priv;
3913
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3914
	struct drm_i915_gem_request *request, *target = NULL;
3915
	long ret;
3916

3917 3918 3919
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3920

3921
	spin_lock(&file_priv->mm.lock);
3922
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3923 3924
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3925

3926 3927 3928 3929
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3930

3931
		target = request;
3932
	}
3933
	if (target)
3934
		i915_gem_request_get(target);
3935
	spin_unlock(&file_priv->mm.lock);
3936

3937
	if (target == NULL)
3938
		return 0;
3939

3940 3941 3942
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3943
	i915_gem_request_put(target);
3944

3945
	return ret < 0 ? ret : 0;
3946 3947
}

C
Chris Wilson 已提交
3948
struct i915_vma *
3949 3950
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3951
			 u64 size,
3952 3953
			 u64 alignment,
			 u64 flags)
3954
{
3955 3956
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3957 3958
	struct i915_vma *vma;
	int ret;
3959

3960 3961
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3962
	vma = i915_vma_instance(obj, vm, view);
3963
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3964
		return vma;
3965 3966 3967 3968

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3969
			return ERR_PTR(-ENOSPC);
3970

3971 3972 3973 3974 3975 3976 3977 3978
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3979
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3998
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3999 4000 4001
				return ERR_PTR(-ENOSPC);
		}

4002 4003
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4004 4005 4006
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4007
		     !!(flags & PIN_MAPPABLE),
4008
		     i915_vma_is_map_and_fenceable(vma));
4009 4010
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4011
			return ERR_PTR(ret);
4012 4013
	}

C
Chris Wilson 已提交
4014 4015 4016
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4017

C
Chris Wilson 已提交
4018
	return vma;
4019 4020
}

4021
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4036 4037 4038 4039 4040 4041 4042 4043 4044
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4045 4046
}

4047
static __always_inline unsigned int
4048
__busy_set_if_active(const struct dma_fence *fence,
4049 4050
		     unsigned int (*flag)(unsigned int id))
{
4051
	struct drm_i915_gem_request *rq;
4052

4053 4054 4055 4056
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4057
	 *
4058
	 * Note we only report on the status of native fences.
4059
	 */
4060 4061 4062 4063 4064 4065 4066 4067
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4068
	return flag(rq->engine->uabi_id);
4069 4070
}

4071
static __always_inline unsigned int
4072
busy_check_reader(const struct dma_fence *fence)
4073
{
4074
	return __busy_set_if_active(fence, __busy_read_flag);
4075 4076
}

4077
static __always_inline unsigned int
4078
busy_check_writer(const struct dma_fence *fence)
4079
{
4080 4081 4082 4083
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4084 4085
}

4086 4087
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4088
		    struct drm_file *file)
4089 4090
{
	struct drm_i915_gem_busy *args = data;
4091
	struct drm_i915_gem_object *obj;
4092 4093
	struct reservation_object_list *list;
	unsigned int seq;
4094
	int err;
4095

4096
	err = -ENOENT;
4097 4098
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4099
	if (!obj)
4100
		goto out;
4101

4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4120

4121 4122
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4123

4124 4125 4126 4127
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4128

4129 4130 4131 4132 4133 4134
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4135
	}
4136

4137 4138 4139 4140
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4141 4142 4143
out:
	rcu_read_unlock();
	return err;
4144 4145 4146 4147 4148 4149
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4150
	return i915_gem_ring_throttle(dev, file_priv);
4151 4152
}

4153 4154 4155 4156
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4157
	struct drm_i915_private *dev_priv = to_i915(dev);
4158
	struct drm_i915_gem_madvise *args = data;
4159
	struct drm_i915_gem_object *obj;
4160
	int err;
4161 4162 4163 4164 4165 4166 4167 4168 4169

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4170
	obj = i915_gem_object_lookup(file_priv, args->handle);
4171 4172 4173 4174 4175 4176
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4177

C
Chris Wilson 已提交
4178
	if (obj->mm.pages &&
4179
	    i915_gem_object_is_tiled(obj) &&
4180
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4181 4182
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4183
			__i915_gem_object_unpin_pages(obj);
4184 4185 4186
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4187
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4188
			__i915_gem_object_pin_pages(obj);
4189 4190
			obj->mm.quirked = true;
		}
4191 4192
	}

C
Chris Wilson 已提交
4193 4194
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4195

C
Chris Wilson 已提交
4196
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4197
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4198 4199
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4200
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4201
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4202

4203
out:
4204
	i915_gem_object_put(obj);
4205
	return err;
4206 4207
}

4208 4209 4210 4211 4212 4213 4214
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4215
	intel_fb_obj_flush(obj, ORIGIN_CS);
4216 4217
}

4218 4219
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4220
{
4221 4222
	mutex_init(&obj->mm.lock);

4223
	INIT_LIST_HEAD(&obj->global_link);
4224
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4225
	INIT_LIST_HEAD(&obj->vma_list);
4226
	INIT_LIST_HEAD(&obj->lut_list);
4227
	INIT_LIST_HEAD(&obj->batch_pool_link);
4228

4229 4230
	obj->ops = ops;

4231 4232 4233
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4234
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4235
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4236 4237 4238 4239

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4240

4241
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4242 4243
}

4244
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4245 4246
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4247

4248 4249
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4250 4251

	.pwrite = i915_gem_object_pwrite_gtt,
4252 4253
};

4254
struct drm_i915_gem_object *
4255
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4256
{
4257
	struct drm_i915_gem_object *obj;
4258
	struct address_space *mapping;
4259
	unsigned int cache_level;
D
Daniel Vetter 已提交
4260
	gfp_t mask;
4261
	int ret;
4262

4263 4264 4265 4266 4267
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4268
	if (size >> PAGE_SHIFT > INT_MAX)
4269 4270 4271 4272 4273
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4274
	obj = i915_gem_object_alloc(dev_priv);
4275
	if (obj == NULL)
4276
		return ERR_PTR(-ENOMEM);
4277

4278
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4279 4280
	if (ret)
		goto fail;
4281

4282
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4283
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4284 4285 4286 4287 4288
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4289
	mapping = obj->base.filp->f_mapping;
4290
	mapping_set_gfp_mask(mapping, mask);
4291
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4292

4293
	i915_gem_object_init(obj, &i915_gem_object_ops);
4294

4295 4296
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4297

4298
	if (HAS_LLC(dev_priv))
4299
		/* On some devices, we can have the GPU use the LLC (the CPU
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4311 4312 4313
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4314

4315
	i915_gem_object_set_cache_coherency(obj, cache_level);
4316

4317 4318
	trace_i915_gem_object_create(obj);

4319
	return obj;
4320 4321 4322 4323

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4324 4325
}

4326 4327 4328 4329 4330 4331 4332 4333
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4334
	if (obj->mm.madv != I915_MADV_WILLNEED)
4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4350 4351
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4352
{
4353
	struct drm_i915_gem_object *obj, *on;
4354

4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4369 4370
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4371

4372
		list_del(&obj->global_link);
4373 4374 4375 4376
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4377 4378
	cond_resched();

4379 4380 4381
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4382
		GEM_BUG_ON(!list_empty(&obj->lut_list));
4383 4384 4385

		if (obj->ops->release)
			obj->ops->release(obj);
4386

4387 4388
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4389
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4390 4391 4392 4393 4394
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4395
		reservation_object_fini(&obj->__builtin_resv);
4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4418

4419 4420 4421 4422 4423 4424 4425
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4426

4427
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4428
		__i915_gem_free_objects(i915, freed);
4429 4430 4431
		if (need_resched())
			break;
	}
4432
}
4433

4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4448

4449 4450 4451
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4452

4453 4454 4455
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4456
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4457
		obj->mm.madv = I915_MADV_DONTNEED;
4458

4459 4460 4461 4462 4463 4464
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4465 4466
}

4467 4468 4469 4470
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4471 4472
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4473 4474 4475 4476 4477
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4478 4479 4480 4481 4482 4483
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4484 4485
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4486 4487
}

4488 4489
void i915_gem_sanitize(struct drm_i915_private *i915)
{
4490 4491 4492 4493 4494 4495
	if (i915_terminally_wedged(&i915->gpu_error)) {
		mutex_lock(&i915->drm.struct_mutex);
		i915_gem_unset_wedged(i915);
		mutex_unlock(&i915->drm.struct_mutex);
	}

4496 4497 4498 4499 4500 4501
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4502
	 * of the reset, so this could be applied to even earlier gen.
4503
	 */
4504
	if (INTEL_GEN(i915) >= 5) {
4505 4506 4507 4508 4509
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4510
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4511
{
4512
	struct drm_device *dev = &dev_priv->drm;
4513
	int ret;
4514

4515
	intel_runtime_pm_get(dev_priv);
4516 4517
	intel_suspend_gt_powersave(dev_priv);

4518
	mutex_lock(&dev->struct_mutex);
4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4530
		goto err_unlock;
4531

4532 4533 4534
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4535
	if (ret && ret != -EIO)
4536
		goto err_unlock;
4537

4538
	assert_kernel_context_is_current(dev_priv);
4539
	i915_gem_contexts_lost(dev_priv);
4540 4541
	mutex_unlock(&dev->struct_mutex);

4542 4543
	intel_guc_suspend(dev_priv);

4544
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4545
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4546 4547 4548 4549 4550 4551 4552

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

4553 4554 4555
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4556
	WARN_ON(dev_priv->gt.awake);
4557 4558
	if (WARN_ON(!intel_engines_are_idle(dev_priv)))
		i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4559

4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4579
	i915_gem_sanitize(dev_priv);
4580 4581 4582

	intel_runtime_pm_put(dev_priv);
	return 0;
4583

4584
err_unlock:
4585
	mutex_unlock(&dev->struct_mutex);
4586
	intel_runtime_pm_put(dev_priv);
4587
	return ret;
4588 4589
}

4590
void i915_gem_resume(struct drm_i915_private *dev_priv)
4591
{
4592
	struct drm_device *dev = &dev_priv->drm;
4593

4594 4595
	WARN_ON(dev_priv->gt.awake);

4596
	mutex_lock(&dev->struct_mutex);
4597
	i915_gem_restore_gtt_mappings(dev_priv);
4598 4599 4600 4601 4602

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4603
	dev_priv->gt.resume(dev_priv);
4604 4605 4606 4607

	mutex_unlock(&dev->struct_mutex);
}

4608
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4609
{
4610
	if (INTEL_GEN(dev_priv) < 5 ||
4611 4612 4613 4614 4615 4616
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4617
	if (IS_GEN5(dev_priv))
4618 4619
		return;

4620
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4621
	if (IS_GEN6(dev_priv))
4622
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4623
	else if (IS_GEN7(dev_priv))
4624
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4625
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4626
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4627 4628
	else
		BUG();
4629
}
D
Daniel Vetter 已提交
4630

4631
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4632 4633 4634 4635 4636 4637 4638
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4639
static void init_unused_rings(struct drm_i915_private *dev_priv)
4640
{
4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4653 4654 4655
	}
}

4656
static int __i915_gem_restart_engines(void *data)
4657
{
4658
	struct drm_i915_private *i915 = data;
4659
	struct intel_engine_cs *engine;
4660
	enum intel_engine_id id;
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4674
	int ret;
4675

4676 4677
	dev_priv->gt.last_init_time = ktime_get();

4678 4679 4680
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4681
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4682
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4683

4684
	if (IS_HASWELL(dev_priv))
4685
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4686
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4687

4688
	if (HAS_PCH_NOP(dev_priv)) {
4689
		if (IS_IVYBRIDGE(dev_priv)) {
4690 4691 4692
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4693
		} else if (INTEL_GEN(dev_priv) >= 7) {
4694 4695 4696 4697
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4698 4699
	}

4700
	i915_gem_init_swizzling(dev_priv);
4701

4702 4703 4704 4705 4706 4707
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4708
	init_unused_rings(dev_priv);
4709

4710
	BUG_ON(!dev_priv->kernel_context);
4711

4712
	ret = i915_ppgtt_init_hw(dev_priv);
4713 4714 4715 4716 4717 4718
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4719 4720 4721
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4722

4723
	intel_mocs_init_l3cc_table(dev_priv);
4724

4725 4726 4727 4728
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4729

4730 4731
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4732
	return ret;
4733 4734
}

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4748
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4749 4750 4751 4752 4753
		return false;

	return true;
}

4754
int i915_gem_init(struct drm_i915_private *dev_priv)
4755 4756 4757
{
	int ret;

4758
	mutex_lock(&dev_priv->drm.struct_mutex);
4759

4760
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4761

4762
	if (!i915.enable_execlists) {
4763
		dev_priv->gt.resume = intel_legacy_submission_resume;
4764
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4765
	} else {
4766
		dev_priv->gt.resume = intel_lr_context_resume;
4767
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4768 4769
	}

4770 4771 4772 4773 4774 4775 4776 4777
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4778 4779 4780
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4781 4782 4783 4784

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4785

4786
	ret = i915_gem_contexts_init(dev_priv);
4787 4788
	if (ret)
		goto out_unlock;
4789

4790
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4791
	if (ret)
4792
		goto out_unlock;
4793

4794
	ret = i915_gem_init_hw(dev_priv);
4795
	if (ret == -EIO) {
4796
		/* Allow engine initialisation to fail by marking the GPU as
4797 4798 4799 4800
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4801
		i915_gem_set_wedged(dev_priv);
4802
		ret = 0;
4803
	}
4804 4805

out_unlock:
4806
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4807
	mutex_unlock(&dev_priv->drm.struct_mutex);
4808

4809
	return ret;
4810 4811
}

4812 4813 4814 4815 4816
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4817
void
4818
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4819
{
4820
	struct intel_engine_cs *engine;
4821
	enum intel_engine_id id;
4822

4823
	for_each_engine(engine, dev_priv, id)
4824
		dev_priv->gt.cleanup_engine(engine);
4825 4826
}

4827 4828 4829
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4830
	int i;
4831 4832 4833 4834

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4835 4836 4837
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4838 4839 4840 4841
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4842
	if (intel_vgpu_active(dev_priv))
4843 4844 4845 4846
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4847 4848 4849 4850 4851 4852 4853
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4854
	i915_gem_restore_fences(dev_priv);
4855

4856
	i915_gem_detect_bit_6_swizzle(dev_priv);
4857 4858
}

4859
int
4860
i915_gem_load_init(struct drm_i915_private *dev_priv)
4861
{
4862
	int err = -ENOMEM;
4863

4864 4865
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4866 4867
		goto err_out;

4868 4869
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4870 4871
		goto err_objects;

4872 4873 4874 4875
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

4876 4877 4878
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4879
					SLAB_TYPESAFE_BY_RCU);
4880
	if (!dev_priv->requests)
4881
		goto err_luts;
4882

4883 4884 4885 4886 4887 4888
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4889 4890 4891 4892
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4893 4894
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4895
	err = i915_gem_timeline_init__global(dev_priv);
4896 4897
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4898
		goto err_priorities;
4899

4900 4901
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4902 4903
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4904
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4905
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4906
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4907
			  i915_gem_retire_work_handler);
4908
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4909
			  i915_gem_idle_work_handler);
4910
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4911
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4912

4913 4914
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4915
	spin_lock_init(&dev_priv->fb_tracking.lock);
4916 4917 4918

	return 0;

4919 4920
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4921 4922
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4923 4924
err_requests:
	kmem_cache_destroy(dev_priv->requests);
4925 4926
err_luts:
	kmem_cache_destroy(dev_priv->luts);
4927 4928 4929 4930 4931 4932
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4933
}
4934

4935
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4936
{
4937
	i915_gem_drain_freed_objects(dev_priv);
4938
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4939
	WARN_ON(dev_priv->mm.object_count);
4940

4941 4942 4943 4944 4945
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4946
	kmem_cache_destroy(dev_priv->priorities);
4947
	kmem_cache_destroy(dev_priv->dependencies);
4948
	kmem_cache_destroy(dev_priv->requests);
4949
	kmem_cache_destroy(dev_priv->luts);
4950 4951
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4952 4953 4954

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4955 4956
}

4957 4958
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4959 4960 4961
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4962 4963 4964 4965 4966
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4967 4968 4969
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4970 4971 4972 4973 4974
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4975 4976 4977 4978 4979 4980 4981 4982 4983 4984

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4985 4986
	 *
	 * To try and reduce the hibernation image, we manually shrink
4987
	 * the objects as well, see i915_gem_freeze()
4988 4989
	 */

4990
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4991
	i915_gem_drain_freed_objects(dev_priv);
4992

4993
	mutex_lock(&dev_priv->drm.struct_mutex);
4994
	for (p = phases; *p; p++) {
4995 4996
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
4997
	}
4998
	mutex_unlock(&dev_priv->drm.struct_mutex);
4999 5000 5001 5002

	return 0;
}

5003
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5004
{
5005
	struct drm_i915_file_private *file_priv = file->driver_priv;
5006
	struct drm_i915_gem_request *request;
5007 5008 5009 5010 5011

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5012
	spin_lock(&file_priv->mm.lock);
5013
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5014
		request->file_priv = NULL;
5015
	spin_unlock(&file_priv->mm.lock);
5016 5017
}

5018
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5019 5020
{
	struct drm_i915_file_private *file_priv;
5021
	int ret;
5022

5023
	DRM_DEBUG("\n");
5024 5025 5026 5027 5028 5029

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5030
	file_priv->dev_priv = i915;
5031
	file_priv->file = file;
5032 5033 5034 5035

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5036
	file_priv->bsd_engine = -1;
5037

5038
	ret = i915_gem_context_open(i915, file);
5039 5040
	if (ret)
		kfree(file_priv);
5041

5042
	return ret;
5043 5044
}

5045 5046
/**
 * i915_gem_track_fb - update frontbuffer tracking
5047 5048 5049
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5050 5051 5052 5053
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5054 5055 5056 5057
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5058 5059 5060 5061 5062 5063 5064 5065 5066
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5067
	if (old) {
5068 5069
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5070 5071 5072
	}

	if (new) {
5073 5074
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5075 5076 5077
	}
}

5078 5079
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5080
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5081 5082 5083
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5084 5085 5086
	struct file *file;
	size_t offset;
	int err;
5087

5088
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5089
	if (IS_ERR(obj))
5090 5091
		return obj;

5092
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5093

5094 5095 5096 5097 5098 5099
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5100

5101 5102 5103 5104 5105
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5106

5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5121 5122 5123 5124

	return obj;

fail:
5125
	i915_gem_object_put(obj);
5126
	return ERR_PTR(err);
5127
}
5128 5129 5130 5131 5132 5133

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5134
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5135 5136 5137 5138 5139
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5140
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5265
	if (!obj->mm.dirty)
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5281

5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5320
	err = ____i915_gem_object_get_pages(obj);
5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5340 5341
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5342
#include "selftests/mock_gem_device.c"
5343
#include "selftests/huge_gem_object.c"
5344
#include "selftests/i915_gem_object.c"
5345
#include "selftests/i915_gem_coherency.c"
5346
#endif