blk-mq.c 71.5 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 42 43
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

44 45 46 47
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
48
	ddir = rq_data_dir(rq);
49 50 51 52 53 54 55 56 57 58 59 60
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

61 62 63
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
64
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
65
{
66 67
	return !list_empty_careful(&hctx->dispatch) ||
		sbitmap_any_bit_set(&hctx->ctx_map) ||
68
			blk_mq_sched_has_work(hctx);
69 70
}

71 72 73 74 75 76
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
77 78
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
79 80 81 82 83
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
84
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
85 86
}

87 88 89 90 91 92 93 94 95 96 97 98 99 100
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
101 102 103 104
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
105
		 */
106
		if (rq->part == mi->part)
107
			mi->inflight[0]++;
108 109
		if (mi->part->partno)
			mi->inflight[1]++;
110 111 112 113 114 115 116 117
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

118
	inflight[0] = inflight[1] = 0;
119 120 121
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

122
void blk_freeze_queue_start(struct request_queue *q)
123
{
124
	int freeze_depth;
125

126 127
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
128
		percpu_ref_kill(&q->q_usage_counter);
129 130
		if (q->mq_ops)
			blk_mq_run_hw_queues(q, false);
131
	}
132
}
133
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
134

135
void blk_mq_freeze_queue_wait(struct request_queue *q)
136
{
137
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
138
}
139
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
140

141 142 143 144 145 146 147 148
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
149

150 151 152 153
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
154
void blk_freeze_queue(struct request_queue *q)
155
{
156 157 158 159 160 161 162
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
163
	blk_freeze_queue_start(q);
164 165
	blk_mq_freeze_queue_wait(q);
}
166 167 168 169 170 171 172 173 174

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
175
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
176

177
void blk_mq_unfreeze_queue(struct request_queue *q)
178
{
179
	int freeze_depth;
180

181 182 183
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
184
		percpu_ref_reinit(&q->q_usage_counter);
185
		wake_up_all(&q->mq_freeze_wq);
186
	}
187
}
188
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

204
/**
205
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
206 207 208
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
209 210 211
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
212 213 214 215 216 217 218
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

219
	blk_mq_quiesce_queue_nowait(q);
220

221 222
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
223
			synchronize_srcu(hctx->queue_rq_srcu);
224 225 226 227 228 229 230 231
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

232 233 234 235 236 237 238 239 240
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
241 242 243
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
244
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
245
	spin_unlock_irqrestore(q->queue_lock, flags);
246

247 248
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
249 250 251
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

252 253 254 255 256 257 258 259 260 261
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
}

262 263 264 265 266 267
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

268 269
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
270
{
271 272 273
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

274 275
	rq->rq_flags = 0;

276 277 278 279 280 281 282 283 284 285 286 287 288
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

289 290
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
291 292
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
293
	rq->cmd_flags = op;
294 295
	if (data->flags & BLK_MQ_REQ_PREEMPT)
		rq->rq_flags |= RQF_PREEMPT;
296
	if (blk_queue_io_stat(data->q))
297
		rq->rq_flags |= RQF_IO_STAT;
298 299 300 301 302 303
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
304
	rq->start_time = jiffies;
305 306
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
307
	set_start_time_ns(rq);
308 309 310 311 312 313 314 315 316 317 318
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
319 320
	rq->timeout = 0;

321 322 323 324
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

325 326
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
327 328
}

329 330 331 332 333 334
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
335
	unsigned int tag;
336
	bool put_ctx_on_error = false;
337 338 339

	blk_queue_enter_live(q);
	data->q = q;
340 341 342 343
	if (likely(!data->ctx)) {
		data->ctx = blk_mq_get_ctx(q);
		put_ctx_on_error = true;
	}
344 345
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
346 347
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
348 349 350 351 352 353 354 355

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
356 357
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
358 359
	}

360 361
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
362 363
		if (put_ctx_on_error) {
			blk_mq_put_ctx(data->ctx);
364 365
			data->ctx = NULL;
		}
366 367
		blk_queue_exit(q);
		return NULL;
368 369
	}

370
	rq = blk_mq_rq_ctx_init(data, tag, op);
371 372
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
373
		if (e && e->type->ops.mq.prepare_request) {
374 375 376
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

377 378
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
379
		}
380 381 382
	}
	data->hctx->queued++;
	return rq;
383 384
}

385
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
386
		blk_mq_req_flags_t flags)
387
{
388
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
389
	struct request *rq;
390
	int ret;
391

392
	ret = blk_queue_enter(q, flags);
393 394
	if (ret)
		return ERR_PTR(ret);
395

396
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
397
	blk_queue_exit(q);
398

399
	if (!rq)
400
		return ERR_PTR(-EWOULDBLOCK);
401

402 403
	blk_mq_put_ctx(alloc_data.ctx);

404 405 406
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
407 408
	return rq;
}
409
EXPORT_SYMBOL(blk_mq_alloc_request);
410

411
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
412
	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
M
Ming Lin 已提交
413
{
414
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
415
	struct request *rq;
416
	unsigned int cpu;
M
Ming Lin 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

431
	ret = blk_queue_enter(q, flags);
M
Ming Lin 已提交
432 433 434
	if (ret)
		return ERR_PTR(ret);

435 436 437 438
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
439 440 441 442
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
443
	}
444 445
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
446

447
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
448
	blk_queue_exit(q);
449

450 451 452 453
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
454 455 456
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

457
void blk_mq_free_request(struct request *rq)
458 459
{
	struct request_queue *q = rq->q;
460 461 462 463 464
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

465
	if (rq->rq_flags & RQF_ELVPRIV) {
466 467 468 469 470 471 472
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
473

474
	ctx->rq_completed[rq_is_sync(rq)]++;
475
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
476
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
477

478 479 480
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
481
	wbt_done(q->rq_wb, &rq->issue_stat);
482

S
Shaohua Li 已提交
483 484 485
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

486
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
487
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
488 489 490
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
491
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
492
	blk_mq_sched_restart(hctx);
493
	blk_queue_exit(q);
494
}
J
Jens Axboe 已提交
495
EXPORT_SYMBOL_GPL(blk_mq_free_request);
496

497
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
498
{
M
Ming Lei 已提交
499 500
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
501
	if (rq->end_io) {
J
Jens Axboe 已提交
502
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
503
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
504 505 506
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
507
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
508
	}
509
}
510
EXPORT_SYMBOL(__blk_mq_end_request);
511

512
void blk_mq_end_request(struct request *rq, blk_status_t error)
513 514 515
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
516
	__blk_mq_end_request(rq, error);
517
}
518
EXPORT_SYMBOL(blk_mq_end_request);
519

520
static void __blk_mq_complete_request_remote(void *data)
521
{
522
	struct request *rq = data;
523

524
	rq->q->softirq_done_fn(rq);
525 526
}

527
static void __blk_mq_complete_request(struct request *rq)
528 529
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
530
	bool shared = false;
531 532
	int cpu;

533 534 535 536 537 538 539
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
540
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
541 542 543
		rq->q->softirq_done_fn(rq);
		return;
	}
544 545

	cpu = get_cpu();
C
Christoph Hellwig 已提交
546 547 548 549
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
550
		rq->csd.func = __blk_mq_complete_request_remote;
551 552
		rq->csd.info = rq;
		rq->csd.flags = 0;
553
		smp_call_function_single_async(ctx->cpu, &rq->csd);
554
	} else {
555
		rq->q->softirq_done_fn(rq);
556
	}
557 558
	put_cpu();
}
559 560 561 562 563 564 565 566 567

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
568
void blk_mq_complete_request(struct request *rq)
569
{
570 571 572
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
573
		return;
574
	if (!blk_mark_rq_complete(rq))
575
		__blk_mq_complete_request(rq);
576 577
}
EXPORT_SYMBOL(blk_mq_complete_request);
578

579 580 581 582 583 584
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

585
void blk_mq_start_request(struct request *rq)
586 587 588
{
	struct request_queue *q = rq->q;

589 590
	blk_mq_sched_started_request(rq);

591 592
	trace_block_rq_issue(q, rq);

593
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
594
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
595
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
596
		wbt_issue(q->rq_wb, &rq->issue_stat);
597 598
	}

599
	blk_add_timer(rq);
600

601
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
602

603 604 605 606 607
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
608 609 610 611
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
612
	 */
613 614 615 616 617 618 619 620 621 622 623 624
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
625
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
626
	}
627 628 629 630 631 632 633 634 635

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
636
}
637
EXPORT_SYMBOL(blk_mq_start_request);
638

639 640
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
641
 * flag isn't set yet, so there may be race with timeout handler,
642 643 644 645 646 647
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
648
static void __blk_mq_requeue_request(struct request *rq)
649 650 651
{
	struct request_queue *q = rq->q;

652 653
	blk_mq_put_driver_tag(rq);

654
	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
655
	wbt_requeue(q->rq_wb, &rq->issue_stat);
656
	blk_mq_sched_requeue_request(rq);
657

658 659 660 661
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
662 663
}

664
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
665 666 667 668
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
669
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
670 671 672
}
EXPORT_SYMBOL(blk_mq_requeue_request);

673 674 675
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
676
		container_of(work, struct request_queue, requeue_work.work);
677 678 679
	LIST_HEAD(rq_list);
	struct request *rq, *next;

680
	spin_lock_irq(&q->requeue_lock);
681
	list_splice_init(&q->requeue_list, &rq_list);
682
	spin_unlock_irq(&q->requeue_lock);
683 684

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
685
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
686 687
			continue;

688
		rq->rq_flags &= ~RQF_SOFTBARRIER;
689
		list_del_init(&rq->queuelist);
690
		blk_mq_sched_insert_request(rq, true, false, false, true);
691 692 693 694 695
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
696
		blk_mq_sched_insert_request(rq, false, false, false, true);
697 698
	}

699
	blk_mq_run_hw_queues(q, false);
700 701
}

702 703
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
704 705 706 707 708 709 710 711
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
712
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
713 714 715

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
716
		rq->rq_flags |= RQF_SOFTBARRIER;
717 718 719 720 721
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
722 723 724

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
725 726 727 728 729
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
730
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
731 732 733
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

734 735 736
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
737 738
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
739 740 741
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

742 743
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
744 745
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
746
		return tags->rqs[tag];
747
	}
748 749

	return NULL;
750 751 752
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

753
struct blk_mq_timeout_data {
754 755
	unsigned long next;
	unsigned int next_set;
756 757
};

758
void blk_mq_rq_timed_out(struct request *req, bool reserved)
759
{
J
Jens Axboe 已提交
760
	const struct blk_mq_ops *ops = req->q->mq_ops;
761
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
762 763 764 765 766 767 768

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
769
	 * both flags will get cleared. So check here again, and ignore
770 771
	 * a timeout event with a request that isn't active.
	 */
772 773
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
774

775
	if (ops->timeout)
776
		ret = ops->timeout(req, reserved);
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
792
}
793

794 795 796 797
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
798
	unsigned long deadline;
799

800
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
801
		return;
802

803 804 805 806 807 808 809 810
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

811 812 813 814 815 816 817 818 819 820 821 822 823
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
824 825 826 827 828 829 830 831 832 833
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
834
			blk_mq_rq_timed_out(rq, reserved);
835 836 837
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
838 839
		data->next_set = 1;
	}
840 841
}

842
static void blk_mq_timeout_work(struct work_struct *work)
843
{
844 845
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
846 847 848 849 850
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
851

852 853 854 855 856 857 858 859 860
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
861
	 * blk_freeze_queue_start, and the moment the last request is
862 863 864 865
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
866 867
		return;

868
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
869

870 871 872
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
873
	} else {
874 875
		struct blk_mq_hw_ctx *hctx;

876 877 878 879 880
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
881
	}
882
	blk_queue_exit(q);
883 884
}

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

903 904 905 906
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
907
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
908
{
909 910 911 912
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
913

914
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
915
}
916
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
917

918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

957 958 959 960
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
961

962
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
963 964
}

965 966
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
967 968 969 970 971 972 973
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

974 975
	might_sleep_if(wait);

976 977
	if (rq->tag != -1)
		goto done;
978

979 980 981
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

982 983
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
984 985 986 987
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
988 989 990
		data.hctx->tags->rqs[rq->tag] = rq;
	}

991 992 993 994
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
995 996
}

997 998
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
				int flags, void *key)
999 1000 1001 1002 1003
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1004
	list_del_init(&wait->entry);
1005 1006 1007 1008
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

1009 1010
static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx **hctx,
				     struct request *rq)
1011
{
1012 1013
	struct blk_mq_hw_ctx *this_hctx = *hctx;
	wait_queue_entry_t *wait = &this_hctx->dispatch_wait;
1014 1015
	struct sbq_wait_state *ws;

1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	if (!list_empty_careful(&wait->entry))
		return false;

	spin_lock(&this_hctx->lock);
	if (!list_empty(&wait->entry)) {
		spin_unlock(&this_hctx->lock);
		return false;
	}

	ws = bt_wait_ptr(&this_hctx->tags->bitmap_tags, this_hctx);
	add_wait_queue(&ws->wait, wait);

1028
	/*
1029 1030 1031
	 * It's possible that a tag was freed in the window between the
	 * allocation failure and adding the hardware queue to the wait
	 * queue.
1032
	 */
1033 1034
	if (!blk_mq_get_driver_tag(rq, hctx, false)) {
		spin_unlock(&this_hctx->lock);
1035
		return false;
1036
	}
1037 1038

	/*
1039 1040
	 * We got a tag, remove ourselves from the wait queue to ensure
	 * someone else gets the wakeup.
1041
	 */
1042 1043 1044 1045
	spin_lock_irq(&ws->wait.lock);
	list_del_init(&wait->entry);
	spin_unlock_irq(&ws->wait.lock);
	spin_unlock(&this_hctx->lock);
1046 1047 1048
	return true;
}

1049
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1050
			     bool got_budget)
1051
{
1052
	struct blk_mq_hw_ctx *hctx;
1053
	struct request *rq, *nxt;
1054
	bool no_tag = false;
1055
	int errors, queued;
1056

1057 1058 1059
	if (list_empty(list))
		return false;

1060 1061
	WARN_ON(!list_is_singular(list) && got_budget);

1062 1063 1064
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1065
	errors = queued = 0;
1066
	do {
1067
		struct blk_mq_queue_data bd;
1068
		blk_status_t ret;
1069

1070
		rq = list_first_entry(list, struct request, queuelist);
1071
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
1072
			/*
1073
			 * The initial allocation attempt failed, so we need to
1074 1075 1076 1077
			 * rerun the hardware queue when a tag is freed. The
			 * waitqueue takes care of that. If the queue is run
			 * before we add this entry back on the dispatch list,
			 * we'll re-run it below.
1078
			 */
1079
			if (!blk_mq_dispatch_wait_add(&hctx, rq)) {
1080 1081
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1082
				no_tag = true;
1083 1084 1085 1086
				break;
			}
		}

1087 1088
		if (!got_budget && !blk_mq_get_dispatch_budget(hctx)) {
			blk_mq_put_driver_tag(rq);
1089
			break;
1090
		}
1091

1092 1093
		list_del_init(&rq->queuelist);

1094
		bd.rq = rq;
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1106 1107

		ret = q->mq_ops->queue_rq(hctx, &bd);
1108
		if (ret == BLK_STS_RESOURCE) {
1109 1110 1111 1112 1113 1114 1115 1116
			/*
			 * If an I/O scheduler has been configured and we got a
			 * driver tag for the next request already, free it again.
			 */
			if (!list_empty(list)) {
				nxt = list_first_entry(list, struct request, queuelist);
				blk_mq_put_driver_tag(nxt);
			}
1117
			list_add(&rq->queuelist, list);
1118
			__blk_mq_requeue_request(rq);
1119
			break;
1120 1121 1122
		}

		if (unlikely(ret != BLK_STS_OK)) {
1123
			errors++;
1124
			blk_mq_end_request(rq, BLK_STS_IOERR);
1125
			continue;
1126 1127
		}

1128
		queued++;
1129
	} while (!list_empty(list));
1130

1131
	hctx->dispatched[queued_to_index(queued)]++;
1132 1133 1134 1135 1136

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1137
	if (!list_empty(list)) {
1138
		spin_lock(&hctx->lock);
1139
		list_splice_init(list, &hctx->dispatch);
1140
		spin_unlock(&hctx->lock);
1141

1142
		/*
1143 1144 1145
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1146
		 *
1147 1148 1149 1150
		 * If 'no_tag' is set, that means that we failed getting
		 * a driver tag with an I/O scheduler attached. If our dispatch
		 * waitqueue is no longer active, ensure that we run the queue
		 * AFTER adding our entries back to the list.
1151
		 *
1152 1153 1154 1155 1156 1157 1158
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1159
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1160
		 *   and dm-rq.
1161
		 */
1162 1163
		if (!blk_mq_sched_needs_restart(hctx) ||
		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1164
			blk_mq_run_hw_queue(hctx, true);
1165
	}
1166

1167
	return (queued + errors) != 0;
1168 1169
}

1170 1171 1172 1173
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

1174 1175 1176 1177
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1178 1179 1180
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1181 1182 1183 1184 1185 1186
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1187 1188
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1189
		blk_mq_sched_dispatch_requests(hctx);
1190 1191
		rcu_read_unlock();
	} else {
1192 1193
		might_sleep();

1194
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1195
		blk_mq_sched_dispatch_requests(hctx);
1196
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1197 1198 1199
	}
}

1200 1201 1202 1203 1204 1205 1206 1207
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1208 1209
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1210 1211

	if (--hctx->next_cpu_batch <= 0) {
1212
		int next_cpu;
1213 1214 1215 1216 1217 1218 1219 1220 1221

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1222
	return hctx->next_cpu;
1223 1224
}

1225 1226
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1227
{
1228 1229 1230 1231
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1232 1233
		return;

1234
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1235 1236
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1237
			__blk_mq_run_hw_queue(hctx);
1238
			put_cpu();
1239 1240
			return;
		}
1241

1242
		put_cpu();
1243
	}
1244

1245 1246 1247
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1248 1249 1250 1251 1252 1253 1254 1255
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

1256
bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1257
{
1258 1259 1260 1261 1262 1263
	if (blk_mq_hctx_has_pending(hctx)) {
		__blk_mq_delay_run_hw_queue(hctx, async, 0);
		return true;
	}

	return false;
1264
}
O
Omar Sandoval 已提交
1265
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1266

1267
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1268 1269 1270 1271 1272
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1273
		if (blk_mq_hctx_stopped(hctx))
1274 1275
			continue;

1276
		blk_mq_run_hw_queue(hctx, async);
1277 1278
	}
}
1279
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1301 1302 1303
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1304
 * BLK_STS_RESOURCE is usually returned.
1305 1306 1307 1308 1309
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1310 1311
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1312
	cancel_delayed_work(&hctx->run_work);
1313

1314
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1315
}
1316
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1317

1318 1319 1320
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1321
 * BLK_STS_RESOURCE is usually returned.
1322 1323 1324 1325 1326
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1327 1328
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1329 1330 1331 1332 1333
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1334 1335 1336
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1337 1338 1339
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1340

1341
	blk_mq_run_hw_queue(hctx, false);
1342 1343 1344
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1355 1356 1357 1358 1359 1360 1361 1362 1363 1364
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1365
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1366 1367 1368 1369
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1370 1371
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1372 1373 1374
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1375
static void blk_mq_run_work_fn(struct work_struct *work)
1376 1377 1378
{
	struct blk_mq_hw_ctx *hctx;

1379
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1380

1381 1382 1383 1384 1385 1386 1387 1388
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1389

1390 1391 1392
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1393 1394 1395 1396

	__blk_mq_run_hw_queue(hctx);
}

1397 1398 1399

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1400
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1401
		return;
1402

1403 1404 1405 1406 1407
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1408
	blk_mq_stop_hw_queue(hctx);
1409 1410 1411 1412
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1413 1414 1415
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1416 1417 1418
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1419
{
J
Jens Axboe 已提交
1420 1421
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1422 1423
	lockdep_assert_held(&ctx->lock);

1424 1425
	trace_block_rq_insert(hctx->queue, rq);

1426 1427 1428 1429
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1430
}
1431

1432 1433
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1434 1435 1436
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1437 1438
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1439
	__blk_mq_insert_req_list(hctx, rq, at_head);
1440 1441 1442
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1443 1444 1445 1446
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
1447
void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1448 1449 1450 1451 1452 1453 1454 1455
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

1456 1457
	if (run_queue)
		blk_mq_run_hw_queue(hctx, false);
1458 1459
}

1460 1461
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1473
		BUG_ON(rq->mq_ctx != ctx);
1474
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1475
		__blk_mq_insert_req_list(hctx, rq, false);
1476
	}
1477
	blk_mq_hctx_mark_pending(hctx, ctx);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1514 1515 1516 1517
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1534 1535 1536
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1537 1538 1539 1540 1541
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1542
	blk_init_request_from_bio(rq, bio);
1543

S
Shaohua Li 已提交
1544 1545
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1546
	blk_account_io_start(rq, true);
1547 1548
}

1549 1550 1551 1552 1553 1554 1555
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1556
}
1557

1558 1559
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1560 1561 1562 1563
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1564 1565
}

M
Ming Lei 已提交
1566 1567 1568
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1569 1570 1571 1572
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1573
		.last = true,
1574
	};
1575
	blk_qc_t new_cookie;
1576
	blk_status_t ret;
M
Ming Lei 已提交
1577 1578
	bool run_queue = true;

1579 1580
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1581 1582 1583
		run_queue = false;
		goto insert;
	}
1584

1585
	if (q->elevator)
1586 1587
		goto insert;

M
Ming Lei 已提交
1588
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1589 1590
		goto insert;

1591
	if (!blk_mq_get_dispatch_budget(hctx)) {
1592 1593
		blk_mq_put_driver_tag(rq);
		goto insert;
1594
	}
1595

1596 1597
	new_cookie = request_to_qc_t(hctx, rq);

1598 1599 1600 1601 1602 1603
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1604 1605
	switch (ret) {
	case BLK_STS_OK:
1606
		*cookie = new_cookie;
1607
		return;
1608 1609 1610 1611
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1612
		*cookie = BLK_QC_T_NONE;
1613
		blk_mq_end_request(rq, ret);
1614
		return;
1615
	}
1616

1617
insert:
M
Ming Lei 已提交
1618
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1619 1620
}

1621 1622 1623 1624 1625
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1626
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1627 1628
		rcu_read_unlock();
	} else {
1629 1630 1631 1632
		unsigned int srcu_idx;

		might_sleep();

1633
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1634
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1635
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1636 1637 1638
	}
}

1639
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1640
{
1641
	const int is_sync = op_is_sync(bio->bi_opf);
1642
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1643
	struct blk_mq_alloc_data data = { .flags = 0 };
1644
	struct request *rq;
1645
	unsigned int request_count = 0;
1646
	struct blk_plug *plug;
1647
	struct request *same_queue_rq = NULL;
1648
	blk_qc_t cookie;
J
Jens Axboe 已提交
1649
	unsigned int wb_acct;
1650 1651 1652

	blk_queue_bounce(q, &bio);

1653
	blk_queue_split(q, &bio);
1654

1655
	if (!bio_integrity_prep(bio))
1656
		return BLK_QC_T_NONE;
1657

1658 1659 1660
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1661

1662 1663 1664
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1665 1666
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1667 1668
	trace_block_getrq(q, bio, bio->bi_opf);

1669
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1670 1671
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1672 1673
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1674
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1675 1676 1677
	}

	wbt_track(&rq->issue_stat, wb_acct);
1678

1679
	cookie = request_to_qc_t(data.hctx, rq);
1680

1681
	plug = current->plug;
1682
	if (unlikely(is_flush_fua)) {
1683
		blk_mq_put_ctx(data.ctx);
1684
		blk_mq_bio_to_request(rq, bio);
1685 1686 1687 1688

		/* bypass scheduler for flush rq */
		blk_insert_flush(rq);
		blk_mq_run_hw_queue(data.hctx, true);
1689
	} else if (plug && q->nr_hw_queues == 1) {
1690 1691
		struct request *last = NULL;

1692
		blk_mq_put_ctx(data.ctx);
1693
		blk_mq_bio_to_request(rq, bio);
1694 1695 1696 1697 1698 1699 1700

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1701 1702 1703
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1704
		if (!request_count)
1705
			trace_block_plug(q);
1706 1707
		else
			last = list_entry_rq(plug->mq_list.prev);
1708

1709 1710
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1711 1712
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1713
		}
1714

1715
		list_add_tail(&rq->queuelist, &plug->mq_list);
1716
	} else if (plug && !blk_queue_nomerges(q)) {
1717
		blk_mq_bio_to_request(rq, bio);
1718 1719

		/*
1720
		 * We do limited plugging. If the bio can be merged, do that.
1721 1722
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1723 1724
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1725
		 */
1726 1727 1728 1729 1730 1731
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1732 1733
		blk_mq_put_ctx(data.ctx);

1734 1735 1736
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1737 1738
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1739
		}
1740
	} else if (q->nr_hw_queues > 1 && is_sync) {
1741
		blk_mq_put_ctx(data.ctx);
1742 1743
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1744
	} else if (q->elevator) {
1745
		blk_mq_put_ctx(data.ctx);
1746
		blk_mq_bio_to_request(rq, bio);
1747
		blk_mq_sched_insert_request(rq, false, true, true, true);
1748
	} else {
1749
		blk_mq_put_ctx(data.ctx);
1750 1751
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1752
		blk_mq_run_hw_queue(data.hctx, true);
1753
	}
1754

1755
	return cookie;
1756 1757
}

1758 1759
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1760
{
1761
	struct page *page;
1762

1763
	if (tags->rqs && set->ops->exit_request) {
1764
		int i;
1765

1766
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1767 1768 1769
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1770
				continue;
1771
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1772
			tags->static_rqs[i] = NULL;
1773
		}
1774 1775
	}

1776 1777
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1778
		list_del_init(&page->lru);
1779 1780 1781 1782 1783
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1784 1785
		__free_pages(page, page->private);
	}
1786
}
1787

1788 1789
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1790
	kfree(tags->rqs);
1791
	tags->rqs = NULL;
J
Jens Axboe 已提交
1792 1793
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1794

1795
	blk_mq_free_tags(tags);
1796 1797
}

1798 1799 1800 1801
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1802
{
1803
	struct blk_mq_tags *tags;
1804
	int node;
1805

1806 1807 1808 1809 1810
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1811
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1812 1813
	if (!tags)
		return NULL;
1814

1815
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1816
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1817
				 node);
1818 1819 1820 1821
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1822

J
Jens Axboe 已提交
1823 1824
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1825
				 node);
J
Jens Axboe 已提交
1826 1827 1828 1829 1830 1831
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1845 1846 1847 1848 1849
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1850 1851 1852

	INIT_LIST_HEAD(&tags->page_list);

1853 1854 1855 1856
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1857
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1858
				cache_line_size());
1859
	left = rq_size * depth;
1860

1861
	for (i = 0; i < depth; ) {
1862 1863 1864 1865 1866
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1867
		while (this_order && left < order_to_size(this_order - 1))
1868 1869 1870
			this_order--;

		do {
1871
			page = alloc_pages_node(node,
1872
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1873
				this_order);
1874 1875 1876 1877 1878 1879 1880 1881 1882
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1883
			goto fail;
1884 1885

		page->private = this_order;
1886
		list_add_tail(&page->lru, &tags->page_list);
1887 1888

		p = page_address(page);
1889 1890 1891 1892
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1893
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1894
		entries_per_page = order_to_size(this_order) / rq_size;
1895
		to_do = min(entries_per_page, depth - i);
1896 1897
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1898 1899 1900
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1901
			if (set->ops->init_request) {
1902
				if (set->ops->init_request(set, rq, hctx_idx,
1903
						node)) {
J
Jens Axboe 已提交
1904
					tags->static_rqs[i] = NULL;
1905
					goto fail;
1906
				}
1907 1908
			}

1909 1910 1911 1912
			p += rq_size;
			i++;
		}
	}
1913
	return 0;
1914

1915
fail:
1916 1917
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1918 1919
}

J
Jens Axboe 已提交
1920 1921 1922 1923 1924
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1925
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1926
{
1927
	struct blk_mq_hw_ctx *hctx;
1928 1929 1930
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1931
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1932
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1933 1934 1935 1936 1937 1938 1939 1940 1941

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1942
		return 0;
1943

J
Jens Axboe 已提交
1944 1945 1946
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1947 1948

	blk_mq_run_hw_queue(hctx, true);
1949
	return 0;
1950 1951
}

1952
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1953
{
1954 1955
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1956 1957
}

1958
/* hctx->ctxs will be freed in queue's release handler */
1959 1960 1961 1962
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1963 1964
	blk_mq_debugfs_unregister_hctx(hctx);

1965 1966
	blk_mq_tag_idle(hctx);

1967
	if (set->ops->exit_request)
1968
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
1969

1970 1971
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

1972 1973 1974
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1975
	if (hctx->flags & BLK_MQ_F_BLOCKING)
1976
		cleanup_srcu_struct(hctx->queue_rq_srcu);
1977

1978
	blk_mq_remove_cpuhp(hctx);
1979
	blk_free_flush_queue(hctx->fq);
1980
	sbitmap_free(&hctx->ctx_map);
1981 1982
}

M
Ming Lei 已提交
1983 1984 1985 1986 1987 1988 1989 1990 1991
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1992
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1993 1994 1995
	}
}

1996 1997 1998
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1999
{
2000 2001 2002 2003 2004 2005
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2006
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2007 2008 2009
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2010
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2011

2012
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2013 2014

	hctx->tags = set->tags[hctx_idx];
2015 2016

	/*
2017 2018
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2019
	 */
2020 2021 2022 2023
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2024

2025 2026
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2027
		goto free_ctxs;
2028

2029
	hctx->nr_ctx = 0;
2030

2031 2032 2033
	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);

2034 2035 2036
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2037

2038 2039 2040
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2041 2042
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2043
		goto sched_exit_hctx;
2044

2045
	if (set->ops->init_request &&
2046 2047
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2048
		goto free_fq;
2049

2050
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2051
		init_srcu_struct(hctx->queue_rq_srcu);
2052

2053 2054
	blk_mq_debugfs_register_hctx(q, hctx);

2055
	return 0;
2056

2057 2058
 free_fq:
	kfree(hctx->fq);
2059 2060
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2061 2062 2063
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2064
 free_bitmap:
2065
	sbitmap_free(&hctx->ctx_map);
2066 2067 2068
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2069
	blk_mq_remove_cpuhp(hctx);
2070 2071
	return -1;
}
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2087 2088
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2089 2090
			continue;

C
Christoph Hellwig 已提交
2091
		hctx = blk_mq_map_queue(q, i);
2092

2093 2094 2095 2096 2097
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2098
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2099 2100 2101
	}
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2124 2125 2126 2127 2128
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2129 2130
}

2131
static void blk_mq_map_swqueue(struct request_queue *q)
2132
{
2133
	unsigned int i, hctx_idx;
2134 2135
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2136
	struct blk_mq_tag_set *set = q->tag_set;
2137

2138 2139 2140 2141 2142
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2143
	queue_for_each_hw_ctx(q, hctx, i) {
2144
		cpumask_clear(hctx->cpumask);
2145 2146 2147 2148
		hctx->nr_ctx = 0;
	}

	/*
2149 2150 2151
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2152
	 */
2153
	for_each_present_cpu(i) {
2154 2155
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2156 2157
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2158 2159 2160 2161 2162 2163
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2164
			q->mq_map[i] = 0;
2165 2166
		}

2167
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2168
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2169

2170
		cpumask_set_cpu(i, hctx->cpumask);
2171 2172 2173
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2174

2175 2176
	mutex_unlock(&q->sysfs_lock);

2177
	queue_for_each_hw_ctx(q, hctx, i) {
2178
		/*
2179 2180
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2181 2182
		 */
		if (!hctx->nr_ctx) {
2183 2184 2185 2186
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2187 2188 2189
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2190
			hctx->tags = NULL;
2191 2192 2193
			continue;
		}

M
Ming Lei 已提交
2194 2195 2196
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2197 2198 2199 2200 2201
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2202
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2203

2204 2205 2206
		/*
		 * Initialize batch roundrobin counts
		 */
2207 2208 2209
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2210 2211
}

2212 2213 2214 2215
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2216
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2217 2218 2219 2220
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2221
	queue_for_each_hw_ctx(q, hctx, i) {
2222 2223 2224
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2225
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2226 2227 2228
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2229
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2230
		}
2231 2232 2233
	}
}

2234 2235
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2236 2237
{
	struct request_queue *q;
2238

2239 2240
	lockdep_assert_held(&set->tag_list_lock);

2241 2242
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2243
		queue_set_hctx_shared(q, shared);
2244 2245 2246 2247 2248 2249 2250 2251 2252
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2253 2254
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2255 2256 2257 2258 2259 2260
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2261
	mutex_unlock(&set->tag_list_lock);
2262 2263

	synchronize_rcu();
2264 2265 2266 2267 2268 2269 2270 2271
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2272 2273 2274 2275 2276 2277 2278 2279 2280

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2281
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2282

2283 2284 2285
	mutex_unlock(&set->tag_list_lock);
}

2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2298 2299 2300
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2301
		kobject_put(&hctx->kobj);
2302
	}
2303

2304 2305
	q->mq_map = NULL;

2306 2307
	kfree(q->queue_hw_ctx);

2308 2309 2310 2311 2312 2313
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2314 2315 2316
	free_percpu(q->queue_ctx);
}

2317
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2347 2348
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2349
{
K
Keith Busch 已提交
2350 2351
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2352

K
Keith Busch 已提交
2353
	blk_mq_sysfs_unregister(q);
2354
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2355
		int node;
2356

K
Keith Busch 已提交
2357 2358 2359 2360
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2361
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2362
					GFP_KERNEL, node);
2363
		if (!hctxs[i])
K
Keith Busch 已提交
2364
			break;
2365

2366
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2367 2368 2369 2370 2371
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2372

2373
		atomic_set(&hctxs[i]->nr_active, 0);
2374
		hctxs[i]->numa_node = node;
2375
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2376 2377 2378 2379 2380 2381 2382 2383

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2384
	}
K
Keith Busch 已提交
2385 2386 2387 2388
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2389 2390
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2404 2405 2406
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2407
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2408 2409
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2410 2411 2412
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2413 2414
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2415
		goto err_exit;
K
Keith Busch 已提交
2416

2417 2418 2419
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2420 2421 2422 2423 2424
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2425
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2426 2427 2428 2429

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2430

2431
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2432
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2433 2434 2435

	q->nr_queues = nr_cpu_ids;

2436
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2437

2438 2439 2440
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2441 2442
	q->sg_reserved_size = INT_MAX;

2443
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2444 2445 2446
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2447
	blk_queue_make_request(q, blk_mq_make_request);
2448 2449
	if (q->mq_ops->poll)
		q->poll_fn = blk_mq_poll;
2450

2451 2452 2453 2454 2455
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2456 2457 2458 2459 2460
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2461 2462
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2463

2464
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2465
	blk_mq_add_queue_tag_set(set, q);
2466
	blk_mq_map_swqueue(q);
2467

2468 2469 2470 2471 2472 2473 2474 2475
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2476
	return q;
2477

2478
err_hctxs:
K
Keith Busch 已提交
2479
	kfree(q->queue_hw_ctx);
2480
err_percpu:
K
Keith Busch 已提交
2481
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2482 2483
err_exit:
	q->mq_ops = NULL;
2484 2485
	return ERR_PTR(-ENOMEM);
}
2486
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2487 2488 2489

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2490
	struct blk_mq_tag_set	*set = q->tag_set;
2491

2492
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2493
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2494 2495 2496
}

/* Basically redo blk_mq_init_queue with queue frozen */
2497
static void blk_mq_queue_reinit(struct request_queue *q)
2498
{
2499
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2500

2501
	blk_mq_debugfs_unregister_hctxs(q);
2502 2503
	blk_mq_sysfs_unregister(q);

2504 2505 2506 2507 2508 2509
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2510
	blk_mq_map_swqueue(q);
2511

2512
	blk_mq_sysfs_register(q);
2513
	blk_mq_debugfs_register_hctxs(q);
2514 2515
}

2516 2517 2518 2519
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2520 2521
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2522 2523 2524 2525 2526 2527
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2528
		blk_mq_free_rq_map(set->tags[i]);
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2568 2569 2570 2571 2572 2573 2574 2575
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2576 2577 2578 2579 2580 2581
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2582 2583
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2584 2585
	int ret;

B
Bart Van Assche 已提交
2586 2587
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2588 2589
	if (!set->nr_hw_queues)
		return -EINVAL;
2590
	if (!set->queue_depth)
2591 2592 2593 2594
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2595
	if (!set->ops->queue_rq)
2596 2597
		return -EINVAL;

2598 2599 2600
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2601 2602 2603 2604 2605
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2606

2607 2608 2609 2610 2611 2612 2613 2614 2615
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2616 2617 2618 2619 2620
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2621

K
Keith Busch 已提交
2622
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2623 2624
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2625
		return -ENOMEM;
2626

2627 2628 2629
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2630 2631 2632
	if (!set->mq_map)
		goto out_free_tags;

2633
	ret = blk_mq_update_queue_map(set);
2634 2635 2636 2637 2638
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2639
		goto out_free_mq_map;
2640

2641 2642 2643
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2644
	return 0;
2645 2646 2647 2648 2649

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2650 2651
	kfree(set->tags);
	set->tags = NULL;
2652
	return ret;
2653 2654 2655 2656 2657 2658 2659
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2660 2661
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2662

2663 2664 2665
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2666
	kfree(set->tags);
2667
	set->tags = NULL;
2668 2669 2670
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2671 2672 2673 2674 2675 2676
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2677
	if (!set)
2678 2679
		return -EINVAL;

2680 2681
	blk_mq_freeze_queue(q);

2682 2683
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2684 2685
		if (!hctx->tags)
			continue;
2686 2687 2688 2689
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2690
		if (!hctx->sched_tags) {
2691
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2692 2693 2694 2695 2696
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2697 2698 2699 2700 2701 2702 2703
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2704 2705
	blk_mq_unfreeze_queue(q);

2706 2707 2708
	return ret;
}

2709 2710
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2711 2712 2713
{
	struct request_queue *q;

2714 2715
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2716 2717 2718 2719 2720 2721 2722 2723 2724
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2725
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2726 2727
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2728
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2729 2730 2731 2732 2733
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2734 2735 2736 2737 2738 2739 2740

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2741 2742
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2769
	int bucket;
2770

2771 2772 2773 2774
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2775 2776
}

2777 2778 2779 2780 2781
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2782
	int bucket;
2783 2784 2785 2786 2787

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2788
	if (!blk_poll_stats_enable(q))
2789 2790 2791 2792 2793 2794 2795 2796
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2797 2798
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2799
	 */
2800 2801 2802 2803 2804 2805
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2806 2807 2808 2809

	return ret;
}

2810
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2811
				     struct blk_mq_hw_ctx *hctx,
2812 2813 2814 2815
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2816
	unsigned int nsecs;
2817 2818
	ktime_t kt;

2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2837 2838 2839 2840 2841 2842 2843 2844
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2845
	kt = nsecs;
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2868 2869 2870 2871 2872
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2873 2874 2875 2876 2877 2878 2879
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2880
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2881 2882
		return true;

J
Jens Axboe 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

2911
static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
J
Jens Axboe 已提交
2912 2913 2914 2915
{
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;

2916
	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
J
Jens Axboe 已提交
2917 2918 2919
		return false;

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2920 2921
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2922
	else {
2923
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2924 2925 2926 2927 2928 2929 2930 2931 2932
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2933 2934 2935 2936

	return __blk_mq_poll(hctx, rq);
}

2937 2938
static int __init blk_mq_init(void)
{
2939 2940 2941 2942 2943 2944
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

2945 2946
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2947 2948 2949
	return 0;
}
subsys_initcall(blk_mq_init);