blk-mq.c 73.1 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
23
#include <linux/sched/topology.h>
24
#include <linux/sched/signal.h>
25
#include <linux/delay.h>
26
#include <linux/crash_dump.h>
27
#include <linux/prefetch.h>
28 29 30 31 32 33

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
34
#include "blk-mq-debugfs.h"
35
#include "blk-mq-tag.h"
36
#include "blk-stat.h"
J
Jens Axboe 已提交
37
#include "blk-wbt.h"
38
#include "blk-mq-sched.h"
39

40 41 42
static void blk_mq_poll_stats_start(struct request_queue *q);
static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);

43 44 45 46
static int blk_mq_poll_stats_bkt(const struct request *rq)
{
	int ddir, bytes, bucket;

J
Jens Axboe 已提交
47
	ddir = rq_data_dir(rq);
48 49 50 51 52 53 54 55 56 57 58 59
	bytes = blk_rq_bytes(rq);

	bucket = ddir + 2*(ilog2(bytes) - 9);

	if (bucket < 0)
		return -1;
	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;

	return bucket;
}

60 61 62
/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
63
bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
64
{
65 66 67
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
68 69
}

70 71 72 73 74 75
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
76 77
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
78 79 80 81 82
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
83
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
84 85
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99
struct mq_inflight {
	struct hd_struct *part;
	unsigned int *inflight;
};

static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
				  struct request *rq, void *priv,
				  bool reserved)
{
	struct mq_inflight *mi = priv;

	if (test_bit(REQ_ATOM_STARTED, &rq->atomic_flags) &&
	    !test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
100 101 102 103
		 * index[0] counts the specific partition that was asked
		 * for. index[1] counts the ones that are active on the
		 * whole device, so increment that if mi->part is indeed
		 * a partition, and not a whole device.
104
		 */
105
		if (rq->part == mi->part)
106
			mi->inflight[0]++;
107 108
		if (mi->part->partno)
			mi->inflight[1]++;
109 110 111 112 113 114 115 116
	}
}

void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
		      unsigned int inflight[2])
{
	struct mq_inflight mi = { .part = part, .inflight = inflight, };

117
	inflight[0] = inflight[1] = 0;
118 119 120
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
}

121
void blk_freeze_queue_start(struct request_queue *q)
122
{
123
	int freeze_depth;
124

125 126
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
127
		percpu_ref_kill(&q->q_usage_counter);
128
		blk_mq_run_hw_queues(q, false);
129
	}
130
}
131
EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
132

133
void blk_mq_freeze_queue_wait(struct request_queue *q)
134
{
135
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
136
}
137
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
138

139 140 141 142 143 144 145 146
int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
				     unsigned long timeout)
{
	return wait_event_timeout(q->mq_freeze_wq,
					percpu_ref_is_zero(&q->q_usage_counter),
					timeout);
}
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
147

148 149 150 151
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
152
void blk_freeze_queue(struct request_queue *q)
153
{
154 155 156 157 158 159 160
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
161
	blk_freeze_queue_start(q);
162 163
	blk_mq_freeze_queue_wait(q);
}
164 165 166 167 168 169 170 171 172

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
173
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
174

175
void blk_mq_unfreeze_queue(struct request_queue *q)
176
{
177
	int freeze_depth;
178

179 180 181
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
182
		percpu_ref_reinit(&q->q_usage_counter);
183
		wake_up_all(&q->mq_freeze_wq);
184
	}
185
}
186
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
187

188 189 190 191 192 193 194 195 196 197 198 199 200 201
/*
 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 * mpt3sas driver such that this function can be removed.
 */
void blk_mq_quiesce_queue_nowait(struct request_queue *q)
{
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
	queue_flag_set(QUEUE_FLAG_QUIESCED, q);
	spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);

202
/**
203
 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
204 205 206
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
207 208 209
 * callback function is invoked. Once this function is returned, we make
 * sure no dispatch can happen until the queue is unquiesced via
 * blk_mq_unquiesce_queue().
210 211 212 213 214 215 216
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

217
	blk_mq_quiesce_queue_nowait(q);
218

219 220
	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
221
			synchronize_srcu(hctx->queue_rq_srcu);
222 223 224 225 226 227 228 229
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

230 231 232 233 234 235 236 237 238
/*
 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 * @q: request queue.
 *
 * This function recovers queue into the state before quiescing
 * which is done by blk_mq_quiesce_queue.
 */
void blk_mq_unquiesce_queue(struct request_queue *q)
{
239 240 241
	unsigned long flags;

	spin_lock_irqsave(q->queue_lock, flags);
242
	queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
243
	spin_unlock_irqrestore(q->queue_lock, flags);
244

245 246
	/* dispatch requests which are inserted during quiescing */
	blk_mq_run_hw_queues(q, true);
247 248 249
}
EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);

250 251 252 253 254 255 256 257
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
258 259 260 261 262 263 264

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
265 266
}

267 268 269 270 271 272
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

273 274
static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
		unsigned int tag, unsigned int op)
275
{
276 277 278
	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
	struct request *rq = tags->static_rqs[tag];

279 280
	rq->rq_flags = 0;

281 282 283 284 285 286 287 288 289 290 291 292 293
	if (data->flags & BLK_MQ_REQ_INTERNAL) {
		rq->tag = -1;
		rq->internal_tag = tag;
	} else {
		if (blk_mq_tag_busy(data->hctx)) {
			rq->rq_flags = RQF_MQ_INFLIGHT;
			atomic_inc(&data->hctx->nr_active);
		}
		rq->tag = tag;
		rq->internal_tag = -1;
		data->hctx->tags->rqs[rq->tag] = rq;
	}

294 295
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
296 297
	rq->q = data->q;
	rq->mq_ctx = data->ctx;
298
	rq->cmd_flags = op;
299
	if (blk_queue_io_stat(data->q))
300
		rq->rq_flags |= RQF_IO_STAT;
301 302 303 304 305 306
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
307
	rq->start_time = jiffies;
308 309
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
310
	set_start_time_ns(rq);
311 312 313 314 315 316 317 318 319 320 321
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->extra_len = 0;

	INIT_LIST_HEAD(&rq->timeout_list);
322 323
	rq->timeout = 0;

324 325 326 327
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

328 329
	data->ctx->rq_dispatched[op_is_sync(op)]++;
	return rq;
330 331
}

332 333 334 335 336 337
static struct request *blk_mq_get_request(struct request_queue *q,
		struct bio *bio, unsigned int op,
		struct blk_mq_alloc_data *data)
{
	struct elevator_queue *e = q->elevator;
	struct request *rq;
338
	unsigned int tag;
339
	struct blk_mq_ctx *local_ctx = NULL;
340 341 342 343

	blk_queue_enter_live(q);
	data->q = q;
	if (likely(!data->ctx))
344
		data->ctx = local_ctx = blk_mq_get_ctx(q);
345 346
	if (likely(!data->hctx))
		data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
347 348
	if (op & REQ_NOWAIT)
		data->flags |= BLK_MQ_REQ_NOWAIT;
349 350 351 352 353 354 355 356

	if (e) {
		data->flags |= BLK_MQ_REQ_INTERNAL;

		/*
		 * Flush requests are special and go directly to the
		 * dispatch list.
		 */
357 358
		if (!op_is_flush(op) && e->type->ops.mq.limit_depth)
			e->type->ops.mq.limit_depth(op, data);
359 360
	}

361 362
	tag = blk_mq_get_tag(data);
	if (tag == BLK_MQ_TAG_FAIL) {
363 364 365 366
		if (local_ctx) {
			blk_mq_put_ctx(local_ctx);
			data->ctx = NULL;
		}
367 368
		blk_queue_exit(q);
		return NULL;
369 370
	}

371
	rq = blk_mq_rq_ctx_init(data, tag, op);
372 373
	if (!op_is_flush(op)) {
		rq->elv.icq = NULL;
374
		if (e && e->type->ops.mq.prepare_request) {
375 376 377
			if (e->type->icq_cache && rq_ioc(bio))
				blk_mq_sched_assign_ioc(rq, bio);

378 379
			e->type->ops.mq.prepare_request(rq, bio);
			rq->rq_flags |= RQF_ELVPRIV;
380
		}
381 382 383
	}
	data->hctx->queued++;
	return rq;
384 385
}

386
struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
387
		unsigned int flags)
388
{
389
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
390
	struct request *rq;
391
	int ret;
392

393
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
394 395
	if (ret)
		return ERR_PTR(ret);
396

397
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
398
	blk_queue_exit(q);
399

400
	if (!rq)
401
		return ERR_PTR(-EWOULDBLOCK);
402

403 404
	blk_mq_put_ctx(alloc_data.ctx);

405 406 407
	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
408 409
	return rq;
}
410
EXPORT_SYMBOL(blk_mq_alloc_request);
411

412 413
struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
		unsigned int op, unsigned int flags, unsigned int hctx_idx)
M
Ming Lin 已提交
414
{
415
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
M
Ming Lin 已提交
416
	struct request *rq;
417
	unsigned int cpu;
M
Ming Lin 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

436 437 438 439
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
440 441 442 443
	alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
	if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
		blk_queue_exit(q);
		return ERR_PTR(-EXDEV);
444
	}
445 446
	cpu = cpumask_first(alloc_data.hctx->cpumask);
	alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
M
Ming Lin 已提交
447

448
	rq = blk_mq_get_request(q, NULL, op, &alloc_data);
449
	blk_queue_exit(q);
450

451 452 453 454
	if (!rq)
		return ERR_PTR(-EWOULDBLOCK);

	return rq;
M
Ming Lin 已提交
455 456 457
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

458
void blk_mq_free_request(struct request *rq)
459 460
{
	struct request_queue *q = rq->q;
461 462 463 464 465
	struct elevator_queue *e = q->elevator;
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
	const int sched_tag = rq->internal_tag;

466
	if (rq->rq_flags & RQF_ELVPRIV) {
467 468 469 470 471 472 473
		if (e && e->type->ops.mq.finish_request)
			e->type->ops.mq.finish_request(rq);
		if (rq->elv.icq) {
			put_io_context(rq->elv.icq->ioc);
			rq->elv.icq = NULL;
		}
	}
474

475
	ctx->rq_completed[rq_is_sync(rq)]++;
476
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
477
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
478

479 480 481
	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
		laptop_io_completion(q->backing_dev_info);

J
Jens Axboe 已提交
482
	wbt_done(q->rq_wb, &rq->issue_stat);
483

S
Shaohua Li 已提交
484 485 486
	if (blk_rq_rl(rq))
		blk_put_rl(blk_rq_rl(rq));

487
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
488
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
489 490 491
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
492
		blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
493
	blk_mq_sched_restart(hctx);
494
	blk_queue_exit(q);
495
}
J
Jens Axboe 已提交
496
EXPORT_SYMBOL_GPL(blk_mq_free_request);
497

498
inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
499
{
M
Ming Lei 已提交
500 501
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
502
	if (rq->end_io) {
J
Jens Axboe 已提交
503
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
504
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
505 506 507
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
508
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
509
	}
510
}
511
EXPORT_SYMBOL(__blk_mq_end_request);
512

513
void blk_mq_end_request(struct request *rq, blk_status_t error)
514 515 516
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
517
	__blk_mq_end_request(rq, error);
518
}
519
EXPORT_SYMBOL(blk_mq_end_request);
520

521
static void __blk_mq_complete_request_remote(void *data)
522
{
523
	struct request *rq = data;
524

525
	rq->q->softirq_done_fn(rq);
526 527
}

528
static void __blk_mq_complete_request(struct request *rq)
529 530
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
531
	bool shared = false;
532 533
	int cpu;

534 535 536 537 538 539 540
	if (rq->internal_tag != -1)
		blk_mq_sched_completed_request(rq);
	if (rq->rq_flags & RQF_STATS) {
		blk_mq_poll_stats_start(rq->q);
		blk_stat_add(rq);
	}

C
Christoph Hellwig 已提交
541
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
542 543 544
		rq->q->softirq_done_fn(rq);
		return;
	}
545 546

	cpu = get_cpu();
C
Christoph Hellwig 已提交
547 548 549 550
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
551
		rq->csd.func = __blk_mq_complete_request_remote;
552 553
		rq->csd.info = rq;
		rq->csd.flags = 0;
554
		smp_call_function_single_async(ctx->cpu, &rq->csd);
555
	} else {
556
		rq->q->softirq_done_fn(rq);
557
	}
558 559
	put_cpu();
}
560 561 562 563 564 565 566 567 568

/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
569
void blk_mq_complete_request(struct request *rq)
570
{
571 572 573
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
574
		return;
575
	if (!blk_mark_rq_complete(rq))
576
		__blk_mq_complete_request(rq);
577 578
}
EXPORT_SYMBOL(blk_mq_complete_request);
579

580 581 582 583 584 585
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

586
void blk_mq_start_request(struct request *rq)
587 588 589
{
	struct request_queue *q = rq->q;

590 591
	blk_mq_sched_started_request(rq);

592 593
	trace_block_rq_issue(q, rq);

594
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
595
		blk_stat_set_issue(&rq->issue_stat, blk_rq_sectors(rq));
596
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
597
		wbt_issue(q->rq_wb, &rq->issue_stat);
598 599
	}

600
	blk_add_timer(rq);
601

602
	WARN_ON_ONCE(test_bit(REQ_ATOM_STARTED, &rq->atomic_flags));
603

604 605 606 607 608
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
609 610 611 612
	 *
	 * Ensure that ->deadline is visible before we set STARTED, such that
	 * blk_mq_check_expired() is guaranteed to observe our ->deadline when
	 * it observes STARTED.
613
	 */
614 615 616 617 618 619 620 621 622 623 624 625
	smp_wmb();
	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags)) {
		/*
		 * Coherence order guarantees these consecutive stores to a
		 * single variable propagate in the specified order. Thus the
		 * clear_bit() is ordered _after_ the set bit. See
		 * blk_mq_check_expired().
		 *
		 * (the bits must be part of the same byte for this to be
		 * true).
		 */
626
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
627
	}
628 629 630 631 632 633 634 635 636

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
637
}
638
EXPORT_SYMBOL(blk_mq_start_request);
639

640 641
/*
 * When we reach here because queue is busy, REQ_ATOM_COMPLETE
642
 * flag isn't set yet, so there may be race with timeout handler,
643 644 645 646 647 648
 * but given rq->deadline is just set in .queue_rq() under
 * this situation, the race won't be possible in reality because
 * rq->timeout should be set as big enough to cover the window
 * between blk_mq_start_request() called from .queue_rq() and
 * clearing REQ_ATOM_STARTED here.
 */
649
static void __blk_mq_requeue_request(struct request *rq)
650 651 652 653
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
654
	wbt_requeue(q->rq_wb, &rq->issue_stat);
655
	blk_mq_sched_requeue_request(rq);
656

657 658 659 660
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
661 662
}

663
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
664 665 666 667
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
668
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
669 670 671
}
EXPORT_SYMBOL(blk_mq_requeue_request);

672 673 674
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
675
		container_of(work, struct request_queue, requeue_work.work);
676 677 678
	LIST_HEAD(rq_list);
	struct request *rq, *next;

679
	spin_lock_irq(&q->requeue_lock);
680
	list_splice_init(&q->requeue_list, &rq_list);
681
	spin_unlock_irq(&q->requeue_lock);
682 683

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
684
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
685 686
			continue;

687
		rq->rq_flags &= ~RQF_SOFTBARRIER;
688
		list_del_init(&rq->queuelist);
689
		blk_mq_sched_insert_request(rq, true, false, false, true);
690 691 692 693 694
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
695
		blk_mq_sched_insert_request(rq, false, false, false, true);
696 697
	}

698
	blk_mq_run_hw_queues(q, false);
699 700
}

701 702
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
703 704 705 706 707 708 709 710
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
711
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
712 713 714

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
715
		rq->rq_flags |= RQF_SOFTBARRIER;
716 717 718 719 720
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
721 722 723

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
724 725 726 727 728
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
729
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
730 731 732
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

733 734 735
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
736 737
	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
				    msecs_to_jiffies(msecs));
738 739 740
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

741 742
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
743 744
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
745
		return tags->rqs[tag];
746
	}
747 748

	return NULL;
749 750 751
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

752
struct blk_mq_timeout_data {
753 754
	unsigned long next;
	unsigned int next_set;
755 756
};

757
void blk_mq_rq_timed_out(struct request *req, bool reserved)
758
{
J
Jens Axboe 已提交
759
	const struct blk_mq_ops *ops = req->q->mq_ops;
760
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
761 762 763 764 765 766 767

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
768
	 * both flags will get cleared. So check here again, and ignore
769 770
	 * a timeout event with a request that isn't active.
	 */
771 772
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
773

774
	if (ops->timeout)
775
		ret = ops->timeout(req, reserved);
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
791
}
792

793 794 795 796
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
797
	unsigned long deadline;
798

799
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
800
		return;
801

802 803 804 805 806 807 808 809
	/*
	 * Ensures that if we see STARTED we must also see our
	 * up-to-date deadline, see blk_mq_start_request().
	 */
	smp_rmb();

	deadline = READ_ONCE(rq->deadline);

810 811 812 813 814 815 816 817 818 819 820 821 822
	/*
	 * The rq being checked may have been freed and reallocated
	 * out already here, we avoid this race by checking rq->deadline
	 * and REQ_ATOM_COMPLETE flag together:
	 *
	 * - if rq->deadline is observed as new value because of
	 *   reusing, the rq won't be timed out because of timing.
	 * - if rq->deadline is observed as previous value,
	 *   REQ_ATOM_COMPLETE flag won't be cleared in reuse path
	 *   because we put a barrier between setting rq->deadline
	 *   and clearing the flag in blk_mq_start_request(), so
	 *   this rq won't be timed out too.
	 */
823 824 825 826 827 828 829 830 831 832
	if (time_after_eq(jiffies, deadline)) {
		if (!blk_mark_rq_complete(rq)) {
			/*
			 * Again coherence order ensures that consecutive reads
			 * from the same variable must be in that order. This
			 * ensures that if we see COMPLETE clear, we must then
			 * see STARTED set and we'll ignore this timeout.
			 *
			 * (There's also the MB implied by the test_and_clear())
			 */
833
			blk_mq_rq_timed_out(rq, reserved);
834 835 836
		}
	} else if (!data->next_set || time_after(data->next, deadline)) {
		data->next = deadline;
837 838
		data->next_set = 1;
	}
839 840
}

841
static void blk_mq_timeout_work(struct work_struct *work)
842
{
843 844
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
845 846 847 848 849
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
850

851 852 853 854 855 856 857 858 859
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
860
	 * blk_freeze_queue_start, and the moment the last request is
861 862 863 864
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
865 866
		return;

867
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
868

869 870 871
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
872
	} else {
873 874
		struct blk_mq_hw_ctx *hctx;

875 876 877 878 879
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
880
	}
881
	blk_queue_exit(q);
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

902 903 904 905
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
906
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
907
{
908 909 910 911
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
912

913
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
914
}
915
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
916

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
struct dispatch_rq_data {
	struct blk_mq_hw_ctx *hctx;
	struct request *rq;
};

static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
		void *data)
{
	struct dispatch_rq_data *dispatch_data = data;
	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	spin_lock(&ctx->lock);
	if (unlikely(!list_empty(&ctx->rq_list))) {
		dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
		list_del_init(&dispatch_data->rq->queuelist);
		if (list_empty(&ctx->rq_list))
			sbitmap_clear_bit(sb, bitnr);
	}
	spin_unlock(&ctx->lock);

	return !dispatch_data->rq;
}

struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
					struct blk_mq_ctx *start)
{
	unsigned off = start ? start->index_hw : 0;
	struct dispatch_rq_data data = {
		.hctx = hctx,
		.rq   = NULL,
	};

	__sbitmap_for_each_set(&hctx->ctx_map, off,
			       dispatch_rq_from_ctx, &data);

	return data.rq;
}

956 957 958 959
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
960

961
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
962 963
}

964 965
bool blk_mq_get_driver_tag(struct request *rq, struct blk_mq_hw_ctx **hctx,
			   bool wait)
966 967 968 969 970 971 972
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

973 974
	might_sleep_if(wait);

975 976
	if (rq->tag != -1)
		goto done;
977

978 979 980
	if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
		data.flags |= BLK_MQ_REQ_RESERVED;

981 982
	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
983 984 985 986
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
987 988 989
		data.hctx->tags->rqs[rq->tag] = rq;
	}

990 991 992 993
done:
	if (hctx)
		*hctx = data.hctx;
	return rq->tag != -1;
994 995
}

996 997
static void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				    struct request *rq)
998 999 1000 1001 1002 1003 1004 1005 1006 1007
{
	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static void blk_mq_put_driver_tag_hctx(struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	__blk_mq_put_driver_tag(hctx, rq);
}

static void blk_mq_put_driver_tag(struct request *rq)
{
	struct blk_mq_hw_ctx *hctx;

	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
	__blk_mq_put_driver_tag(hctx, rq);
}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

1052
static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
1053 1054 1055 1056 1057 1058
				void *key)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);

1059
	list_del(&wait->entry);
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	clear_bit_unlock(BLK_MQ_S_TAG_WAITING, &hctx->state);
	blk_mq_run_hw_queue(hctx, true);
	return 1;
}

static bool blk_mq_dispatch_wait_add(struct blk_mq_hw_ctx *hctx)
{
	struct sbq_wait_state *ws;

	/*
	 * The TAG_WAITING bit serves as a lock protecting hctx->dispatch_wait.
	 * The thread which wins the race to grab this bit adds the hardware
	 * queue to the wait queue.
	 */
	if (test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state) ||
	    test_and_set_bit_lock(BLK_MQ_S_TAG_WAITING, &hctx->state))
		return false;

	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
	ws = bt_wait_ptr(&hctx->tags->bitmap_tags, hctx);

	/*
	 * As soon as this returns, it's no longer safe to fiddle with
	 * hctx->dispatch_wait, since a completion can wake up the wait queue
	 * and unlock the bit.
	 */
	add_wait_queue(&ws->wait, &hctx->dispatch_wait);
	return true;
}

1090 1091
bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
		bool got_budget)
1092
{
1093
	struct blk_mq_hw_ctx *hctx;
1094
	struct request *rq;
1095
	int errors, queued;
1096

1097 1098 1099
	if (list_empty(list))
		return false;

1100 1101
	WARN_ON(!list_is_singular(list) && got_budget);

1102 1103 1104
	/*
	 * Now process all the entries, sending them to the driver.
	 */
1105
	errors = queued = 0;
1106
	do {
1107
		struct blk_mq_queue_data bd;
1108
		blk_status_t ret;
1109

1110
		rq = list_first_entry(list, struct request, queuelist);
1111 1112 1113
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
1114 1115

			/*
1116 1117
			 * The initial allocation attempt failed, so we need to
			 * rerun the hardware queue when a tag is freed.
1118
			 */
1119 1120 1121
			if (!blk_mq_dispatch_wait_add(hctx)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
1122
				break;
1123
			}
1124 1125 1126 1127 1128 1129

			/*
			 * It's possible that a tag was freed in the window
			 * between the allocation failure and adding the
			 * hardware queue to the wait queue.
			 */
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
			if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
				if (got_budget)
					blk_mq_put_dispatch_budget(hctx);
				break;
			}
		}

		if (!got_budget) {
			ret = blk_mq_get_dispatch_budget(hctx);
			if (ret == BLK_STS_RESOURCE)
1140
				break;
1141 1142
			if (ret != BLK_STS_OK)
				goto fail_rq;
1143
		}
1144

1145 1146
		list_del_init(&rq->queuelist);

1147
		bd.rq = rq;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160

		/*
		 * Flag last if we have no more requests, or if we have more
		 * but can't assign a driver tag to it.
		 */
		if (list_empty(list))
			bd.last = true;
		else {
			struct request *nxt;

			nxt = list_first_entry(list, struct request, queuelist);
			bd.last = !blk_mq_get_driver_tag(nxt, NULL, false);
		}
1161 1162

		ret = q->mq_ops->queue_rq(hctx, &bd);
1163
		if (ret == BLK_STS_RESOURCE) {
1164
			blk_mq_put_driver_tag_hctx(hctx, rq);
1165
			list_add(&rq->queuelist, list);
1166
			__blk_mq_requeue_request(rq);
1167
			break;
1168 1169
		}

1170
 fail_rq:
1171
		if (unlikely(ret != BLK_STS_OK)) {
1172
			errors++;
1173
			blk_mq_end_request(rq, BLK_STS_IOERR);
1174
			continue;
1175 1176
		}

1177
		queued++;
1178
	} while (!list_empty(list));
1179

1180
	hctx->dispatched[queued_to_index(queued)]++;
1181 1182 1183 1184 1185

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
1186
	if (!list_empty(list)) {
1187
		/*
1188 1189
		 * If an I/O scheduler has been configured and we got a driver
		 * tag for the next request already, free it again.
1190 1191 1192 1193
		 */
		rq = list_first_entry(list, struct request, queuelist);
		blk_mq_put_driver_tag(rq);

1194
		spin_lock(&hctx->lock);
1195
		list_splice_init(list, &hctx->dispatch);
1196
		spin_unlock(&hctx->lock);
1197

1198
		/*
1199 1200 1201
		 * If SCHED_RESTART was set by the caller of this function and
		 * it is no longer set that means that it was cleared by another
		 * thread and hence that a queue rerun is needed.
1202
		 *
1203 1204 1205 1206
		 * If TAG_WAITING is set that means that an I/O scheduler has
		 * been configured and another thread is waiting for a driver
		 * tag. To guarantee fairness, do not rerun this hardware queue
		 * but let the other thread grab the driver tag.
1207
		 *
1208 1209 1210 1211 1212 1213 1214
		 * If no I/O scheduler has been configured it is possible that
		 * the hardware queue got stopped and restarted before requests
		 * were pushed back onto the dispatch list. Rerun the queue to
		 * avoid starvation. Notes:
		 * - blk_mq_run_hw_queue() checks whether or not a queue has
		 *   been stopped before rerunning a queue.
		 * - Some but not all block drivers stop a queue before
1215
		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1216
		 *   and dm-rq.
1217
		 */
1218 1219
		if (!blk_mq_sched_needs_restart(hctx) &&
		    !test_bit(BLK_MQ_S_TAG_WAITING, &hctx->state))
1220
			blk_mq_run_hw_queue(hctx, true);
1221
	}
1222

1223
	return (queued + errors) != 0;
1224 1225
}

1226 1227 1228
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;
1229
	bool run_queue;
1230

1231 1232 1233 1234
	/*
	 * We should be running this queue from one of the CPUs that
	 * are mapped to it.
	 */
1235 1236 1237
	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

1238 1239 1240 1241 1242 1243
	/*
	 * We can't run the queue inline with ints disabled. Ensure that
	 * we catch bad users of this early.
	 */
	WARN_ON_ONCE(in_interrupt());

1244 1245
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1246
		run_queue = blk_mq_sched_dispatch_requests(hctx);
1247 1248
		rcu_read_unlock();
	} else {
1249 1250
		might_sleep();

1251
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
1252
		run_queue = blk_mq_sched_dispatch_requests(hctx);
1253
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1254
	}
1255 1256 1257

	if (run_queue)
		blk_mq_run_hw_queue(hctx, true);
1258 1259
}

1260 1261 1262 1263 1264 1265 1266 1267
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1268 1269
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1270 1271

	if (--hctx->next_cpu_batch <= 0) {
1272
		int next_cpu;
1273 1274 1275 1276 1277 1278 1279 1280 1281

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1282
	return hctx->next_cpu;
1283 1284
}

1285 1286
static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
					unsigned long msecs)
1287
{
1288 1289 1290 1291
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
		return;

	if (unlikely(blk_mq_hctx_stopped(hctx)))
1292 1293
		return;

1294
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1295 1296
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1297
			__blk_mq_run_hw_queue(hctx);
1298
			put_cpu();
1299 1300
			return;
		}
1301

1302
		put_cpu();
1303
	}
1304

1305 1306 1307
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					 &hctx->run_work,
					 msecs_to_jiffies(msecs));
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
}

void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
}
EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);

void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	__blk_mq_delay_run_hw_queue(hctx, async, 0);
1319
}
O
Omar Sandoval 已提交
1320
EXPORT_SYMBOL(blk_mq_run_hw_queue);
1321

1322
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1323 1324 1325 1326 1327
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1328
		if (!blk_mq_hctx_has_pending(hctx) ||
1329
		    blk_mq_hctx_stopped(hctx))
1330 1331
			continue;

1332
		blk_mq_run_hw_queue(hctx, async);
1333 1334
	}
}
1335
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1336

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1357 1358 1359
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1360
 * BLK_STS_RESOURCE is usually returned.
1361 1362 1363 1364 1365
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queue() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1366 1367
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1368
	cancel_delayed_work(&hctx->run_work);
1369

1370
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1371
}
1372
EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1373

1374 1375 1376
/*
 * This function is often used for pausing .queue_rq() by driver when
 * there isn't enough resource or some conditions aren't satisfied, and
1377
 * BLK_STS_RESOURCE is usually returned.
1378 1379 1380 1381 1382
 *
 * We do not guarantee that dispatch can be drained or blocked
 * after blk_mq_stop_hw_queues() returns. Please use
 * blk_mq_quiesce_queue() for that requirement.
 */
1383 1384
void blk_mq_stop_hw_queues(struct request_queue *q)
{
1385 1386 1387 1388 1389
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
1390 1391 1392
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1393 1394 1395
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1396

1397
	blk_mq_run_hw_queue(hctx, false);
1398 1399 1400
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1421
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1422 1423 1424 1425
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1426 1427
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1428 1429 1430
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1431
static void blk_mq_run_work_fn(struct work_struct *work)
1432 1433 1434
{
	struct blk_mq_hw_ctx *hctx;

1435
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1436

1437 1438 1439 1440 1441 1442 1443 1444
	/*
	 * If we are stopped, don't run the queue. The exception is if
	 * BLK_MQ_S_START_ON_RUN is set. For that case, we auto-clear
	 * the STOPPED bit and run it.
	 */
	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state)) {
		if (!test_bit(BLK_MQ_S_START_ON_RUN, &hctx->state))
			return;
1445

1446 1447 1448
		clear_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	}
1449 1450 1451 1452

	__blk_mq_run_hw_queue(hctx);
}

1453 1454 1455

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1456
	if (WARN_ON_ONCE(!blk_mq_hw_queue_mapped(hctx)))
1457
		return;
1458

1459 1460 1461 1462 1463
	/*
	 * Stop the hw queue, then modify currently delayed work.
	 * This should prevent us from running the queue prematurely.
	 * Mark the queue as auto-clearing STOPPED when it runs.
	 */
1464
	blk_mq_stop_hw_queue(hctx);
1465 1466 1467 1468
	set_bit(BLK_MQ_S_START_ON_RUN, &hctx->state);
	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
					&hctx->run_work,
					msecs_to_jiffies(msecs));
1469 1470 1471
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1472 1473 1474
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1475
{
J
Jens Axboe 已提交
1476 1477
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1478 1479
	lockdep_assert_held(&ctx->lock);

1480 1481
	trace_block_rq_insert(hctx->queue, rq);

1482 1483 1484 1485
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1486
}
1487

1488 1489
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1490 1491 1492
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1493 1494
	lockdep_assert_held(&ctx->lock);

J
Jens Axboe 已提交
1495
	__blk_mq_insert_req_list(hctx, rq, at_head);
1496 1497 1498
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
/*
 * Should only be used carefully, when the caller knows we want to
 * bypass a potential IO scheduler on the target device.
 */
void blk_mq_request_bypass_insert(struct request *rq)
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);

	spin_lock(&hctx->lock);
	list_add_tail(&rq->queuelist, &hctx->dispatch);
	spin_unlock(&hctx->lock);

	blk_mq_run_hw_queue(hctx, false);
}

1515 1516
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1528
		BUG_ON(rq->mq_ctx != ctx);
1529
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1530
		__blk_mq_insert_req_list(hctx, rq, false);
1531
	}
1532
	blk_mq_hctx_mark_pending(hctx, ctx);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1569 1570 1571 1572
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1589 1590 1591
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1592 1593 1594 1595 1596
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
1597
	blk_init_request_from_bio(rq, bio);
1598

S
Shaohua Li 已提交
1599 1600
	blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));

1601
	blk_account_io_start(rq, true);
1602 1603
}

1604 1605 1606 1607 1608 1609 1610
static inline void blk_mq_queue_io(struct blk_mq_hw_ctx *hctx,
				   struct blk_mq_ctx *ctx,
				   struct request *rq)
{
	spin_lock(&ctx->lock);
	__blk_mq_insert_request(hctx, rq, false);
	spin_unlock(&ctx->lock);
1611
}
1612

1613 1614
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1615 1616 1617 1618
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1619 1620
}

M
Ming Lei 已提交
1621 1622 1623
static void __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
					struct request *rq,
					blk_qc_t *cookie, bool may_sleep)
1624 1625 1626 1627
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
1628
		.last = true,
1629
	};
1630
	blk_qc_t new_cookie;
1631
	blk_status_t ret;
M
Ming Lei 已提交
1632 1633
	bool run_queue = true;

1634 1635
	/* RCU or SRCU read lock is needed before checking quiesced flag */
	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
M
Ming Lei 已提交
1636 1637 1638
		run_queue = false;
		goto insert;
	}
1639

1640
	if (q->elevator)
1641 1642
		goto insert;

M
Ming Lei 已提交
1643
	if (!blk_mq_get_driver_tag(rq, NULL, false))
1644 1645
		goto insert;

1646 1647 1648 1649 1650 1651 1652
	ret = blk_mq_get_dispatch_budget(hctx);
	if (ret == BLK_STS_RESOURCE) {
		blk_mq_put_driver_tag(rq);
		goto insert;
	} else if (ret != BLK_STS_OK)
		goto fail_rq;

1653 1654
	new_cookie = request_to_qc_t(hctx, rq);

1655 1656 1657 1658 1659 1660
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1661 1662
	switch (ret) {
	case BLK_STS_OK:
1663
		*cookie = new_cookie;
1664
		return;
1665 1666 1667 1668
	case BLK_STS_RESOURCE:
		__blk_mq_requeue_request(rq);
		goto insert;
	default:
1669
 fail_rq:
1670
		*cookie = BLK_QC_T_NONE;
1671
		blk_mq_end_request(rq, ret);
1672
		return;
1673
	}
1674

1675
insert:
M
Ming Lei 已提交
1676
	blk_mq_sched_insert_request(rq, false, run_queue, false, may_sleep);
1677 1678
}

1679 1680 1681 1682 1683
static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
		struct request *rq, blk_qc_t *cookie)
{
	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
M
Ming Lei 已提交
1684
		__blk_mq_try_issue_directly(hctx, rq, cookie, false);
1685 1686
		rcu_read_unlock();
	} else {
1687 1688 1689 1690
		unsigned int srcu_idx;

		might_sleep();

1691
		srcu_idx = srcu_read_lock(hctx->queue_rq_srcu);
M
Ming Lei 已提交
1692
		__blk_mq_try_issue_directly(hctx, rq, cookie, true);
1693
		srcu_read_unlock(hctx->queue_rq_srcu, srcu_idx);
1694 1695 1696
	}
}

1697
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1698
{
1699
	const int is_sync = op_is_sync(bio->bi_opf);
1700
	const int is_flush_fua = op_is_flush(bio->bi_opf);
1701
	struct blk_mq_alloc_data data = { .flags = 0 };
1702
	struct request *rq;
1703
	unsigned int request_count = 0;
1704
	struct blk_plug *plug;
1705
	struct request *same_queue_rq = NULL;
1706
	blk_qc_t cookie;
J
Jens Axboe 已提交
1707
	unsigned int wb_acct;
1708 1709 1710

	blk_queue_bounce(q, &bio);

1711
	blk_queue_split(q, &bio);
1712

1713
	if (!bio_integrity_prep(bio))
1714
		return BLK_QC_T_NONE;
1715

1716 1717 1718
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1719

1720 1721 1722
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1723 1724
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1725 1726
	trace_block_getrq(q, bio, bio->bi_opf);

1727
	rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1728 1729
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1730 1731
		if (bio->bi_opf & REQ_NOWAIT)
			bio_wouldblock_error(bio);
1732
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1733 1734 1735
	}

	wbt_track(&rq->issue_stat, wb_acct);
1736

1737
	cookie = request_to_qc_t(data.hctx, rq);
1738

1739
	plug = current->plug;
1740
	if (unlikely(is_flush_fua)) {
1741
		blk_mq_put_ctx(data.ctx);
1742
		blk_mq_bio_to_request(rq, bio);
1743 1744 1745
		if (q->elevator) {
			blk_mq_sched_insert_request(rq, false, true, true,
					true);
1746
		} else {
1747 1748
			blk_insert_flush(rq);
			blk_mq_run_hw_queue(data.hctx, true);
1749
		}
1750
	} else if (plug && q->nr_hw_queues == 1) {
1751 1752
		struct request *last = NULL;

1753
		blk_mq_put_ctx(data.ctx);
1754
		blk_mq_bio_to_request(rq, bio);
1755 1756 1757 1758 1759 1760 1761

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
1762 1763 1764
		else if (blk_queue_nomerges(q))
			request_count = blk_plug_queued_count(q);

M
Ming Lei 已提交
1765
		if (!request_count)
1766
			trace_block_plug(q);
1767 1768
		else
			last = list_entry_rq(plug->mq_list.prev);
1769

1770 1771
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1772 1773
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1774
		}
1775

1776
		list_add_tail(&rq->queuelist, &plug->mq_list);
1777
	} else if (plug && !blk_queue_nomerges(q)) {
1778
		blk_mq_bio_to_request(rq, bio);
1779 1780

		/*
1781
		 * We do limited plugging. If the bio can be merged, do that.
1782 1783
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1784 1785
		 * The plug list might get flushed before this. If that happens,
		 * the plug list is empty, and same_queue_rq is invalid.
1786
		 */
1787 1788 1789 1790 1791 1792
		if (list_empty(&plug->mq_list))
			same_queue_rq = NULL;
		if (same_queue_rq)
			list_del_init(&same_queue_rq->queuelist);
		list_add_tail(&rq->queuelist, &plug->mq_list);

1793 1794
		blk_mq_put_ctx(data.ctx);

1795 1796 1797
		if (same_queue_rq) {
			data.hctx = blk_mq_map_queue(q,
					same_queue_rq->mq_ctx->cpu);
1798 1799
			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
					&cookie);
1800
		}
1801
	} else if (q->nr_hw_queues > 1 && is_sync) {
1802
		blk_mq_put_ctx(data.ctx);
1803 1804
		blk_mq_bio_to_request(rq, bio);
		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1805
	} else if (q->elevator) {
1806
		blk_mq_put_ctx(data.ctx);
1807
		blk_mq_bio_to_request(rq, bio);
1808
		blk_mq_sched_insert_request(rq, false, true, true, true);
1809
	} else {
1810
		blk_mq_put_ctx(data.ctx);
1811 1812
		blk_mq_bio_to_request(rq, bio);
		blk_mq_queue_io(data.hctx, data.ctx, rq);
1813
		blk_mq_run_hw_queue(data.hctx, true);
1814
	}
1815

1816
	return cookie;
1817 1818
}

1819 1820
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1821
{
1822
	struct page *page;
1823

1824
	if (tags->rqs && set->ops->exit_request) {
1825
		int i;
1826

1827
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1828 1829 1830
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1831
				continue;
1832
			set->ops->exit_request(set, rq, hctx_idx);
J
Jens Axboe 已提交
1833
			tags->static_rqs[i] = NULL;
1834
		}
1835 1836
	}

1837 1838
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1839
		list_del_init(&page->lru);
1840 1841 1842 1843 1844
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1845 1846
		__free_pages(page, page->private);
	}
1847
}
1848

1849 1850
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1851
	kfree(tags->rqs);
1852
	tags->rqs = NULL;
J
Jens Axboe 已提交
1853 1854
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1855

1856
	blk_mq_free_tags(tags);
1857 1858
}

1859 1860 1861 1862
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1863
{
1864
	struct blk_mq_tags *tags;
1865
	int node;
1866

1867 1868 1869 1870 1871
	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;

	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
S
Shaohua Li 已提交
1872
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1873 1874
	if (!tags)
		return NULL;
1875

1876
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1877
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1878
				 node);
1879 1880 1881 1882
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1883

J
Jens Axboe 已提交
1884 1885
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1886
				 node);
J
Jens Axboe 已提交
1887 1888 1889 1890 1891 1892
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;
1906 1907 1908 1909 1910
	int node;

	node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
	if (node == NUMA_NO_NODE)
		node = set->numa_node;
1911 1912 1913

	INIT_LIST_HEAD(&tags->page_list);

1914 1915 1916 1917
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1918
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1919
				cache_line_size());
1920
	left = rq_size * depth;
1921

1922
	for (i = 0; i < depth; ) {
1923 1924 1925 1926 1927
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1928
		while (this_order && left < order_to_size(this_order - 1))
1929 1930 1931
			this_order--;

		do {
1932
			page = alloc_pages_node(node,
1933
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1934
				this_order);
1935 1936 1937 1938 1939 1940 1941 1942 1943
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1944
			goto fail;
1945 1946

		page->private = this_order;
1947
		list_add_tail(&page->lru, &tags->page_list);
1948 1949

		p = page_address(page);
1950 1951 1952 1953
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1954
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1955
		entries_per_page = order_to_size(this_order) / rq_size;
1956
		to_do = min(entries_per_page, depth - i);
1957 1958
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1959 1960 1961
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1962
			if (set->ops->init_request) {
1963
				if (set->ops->init_request(set, rq, hctx_idx,
1964
						node)) {
J
Jens Axboe 已提交
1965
					tags->static_rqs[i] = NULL;
1966
					goto fail;
1967
				}
1968 1969
			}

1970 1971 1972 1973
			p += rq_size;
			i++;
		}
	}
1974
	return 0;
1975

1976
fail:
1977 1978
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1979 1980
}

J
Jens Axboe 已提交
1981 1982 1983 1984 1985
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1986
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1987
{
1988
	struct blk_mq_hw_ctx *hctx;
1989 1990 1991
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1992
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1993
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1994 1995 1996 1997 1998 1999 2000 2001 2002

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
2003
		return 0;
2004

J
Jens Axboe 已提交
2005 2006 2007
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
2008 2009

	blk_mq_run_hw_queue(hctx, true);
2010
	return 0;
2011 2012
}

2013
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2014
{
2015 2016
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
2017 2018
}

2019
/* hctx->ctxs will be freed in queue's release handler */
2020 2021 2022 2023
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
2024 2025
	blk_mq_debugfs_unregister_hctx(hctx);

2026 2027
	blk_mq_tag_idle(hctx);

2028
	if (set->ops->exit_request)
2029
		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2030

2031 2032
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);

2033 2034 2035
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

2036
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2037
		cleanup_srcu_struct(hctx->queue_rq_srcu);
2038

2039
	blk_mq_remove_cpuhp(hctx);
2040
	blk_free_flush_queue(hctx->fq);
2041
	sbitmap_free(&hctx->ctx_map);
2042 2043
}

M
Ming Lei 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
2053
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
2054 2055 2056
	}
}

2057 2058 2059
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2060
{
2061 2062 2063 2064 2065 2066
	int node;

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

2067
	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2068 2069 2070
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
2071
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2072

2073
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2074 2075

	hctx->tags = set->tags[hctx_idx];
2076 2077

	/*
2078 2079
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
2080
	 */
2081 2082 2083 2084
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
2085

2086 2087
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
2088
		goto free_ctxs;
2089

2090
	hctx->nr_ctx = 0;
2091

2092 2093 2094
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
2095

2096 2097 2098
	if (blk_mq_sched_init_hctx(q, hctx, hctx_idx))
		goto exit_hctx;

2099 2100
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
2101
		goto sched_exit_hctx;
2102

2103
	if (set->ops->init_request &&
2104 2105
	    set->ops->init_request(set, hctx->fq->flush_rq, hctx_idx,
				   node))
2106
		goto free_fq;
2107

2108
	if (hctx->flags & BLK_MQ_F_BLOCKING)
2109
		init_srcu_struct(hctx->queue_rq_srcu);
2110

2111 2112
	blk_mq_debugfs_register_hctx(q, hctx);

2113
	return 0;
2114

2115 2116
 free_fq:
	kfree(hctx->fq);
2117 2118
 sched_exit_hctx:
	blk_mq_sched_exit_hctx(q, hctx, hctx_idx);
2119 2120 2121
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
2122
 free_bitmap:
2123
	sbitmap_free(&hctx->ctx_map);
2124 2125 2126
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
2127
	blk_mq_remove_cpuhp(hctx);
2128 2129
	return -1;
}
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;

2145 2146
		/* If the cpu isn't present, the cpu is mapped to first hctx */
		if (!cpu_present(i))
2147 2148
			continue;

C
Christoph Hellwig 已提交
2149
		hctx = blk_mq_map_queue(q, i);
2150

2151 2152 2153 2154 2155
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2156
			hctx->numa_node = local_memory_node(cpu_to_node(i));
2157 2158 2159
	}
}

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
2182 2183 2184 2185 2186
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2187 2188
}

2189
static void blk_mq_map_swqueue(struct request_queue *q)
2190
{
2191
	unsigned int i, hctx_idx;
2192 2193
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2194
	struct blk_mq_tag_set *set = q->tag_set;
2195

2196 2197 2198 2199 2200
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2201
	queue_for_each_hw_ctx(q, hctx, i) {
2202
		cpumask_clear(hctx->cpumask);
2203 2204 2205 2206
		hctx->nr_ctx = 0;
	}

	/*
2207 2208 2209
	 * Map software to hardware queues.
	 *
	 * If the cpu isn't present, the cpu is mapped to first hctx.
2210
	 */
2211
	for_each_present_cpu(i) {
2212 2213
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2214 2215
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2216 2217 2218 2219 2220 2221
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2222
			q->mq_map[i] = 0;
2223 2224
		}

2225
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2226
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2227

2228
		cpumask_set_cpu(i, hctx->cpumask);
2229 2230 2231
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2232

2233 2234
	mutex_unlock(&q->sysfs_lock);

2235
	queue_for_each_hw_ctx(q, hctx, i) {
2236
		/*
2237 2238
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2239 2240
		 */
		if (!hctx->nr_ctx) {
2241 2242 2243 2244
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2245 2246 2247
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2248
			hctx->tags = NULL;
2249 2250 2251
			continue;
		}

M
Ming Lei 已提交
2252 2253 2254
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2255 2256 2257 2258 2259
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2260
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2261

2262 2263 2264
		/*
		 * Initialize batch roundrobin counts
		 */
2265 2266 2267
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2268 2269
}

2270 2271 2272 2273
/*
 * Caller needs to ensure that we're either frozen/quiesced, or that
 * the queue isn't live yet.
 */
2274
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2275 2276 2277 2278
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2279
	queue_for_each_hw_ctx(q, hctx, i) {
2280 2281 2282
		if (shared) {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_inc(&q->shared_hctx_restart);
2283
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2284 2285 2286
		} else {
			if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
				atomic_dec(&q->shared_hctx_restart);
2287
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2288
		}
2289 2290 2291
	}
}

2292 2293
static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
					bool shared)
2294 2295
{
	struct request_queue *q;
2296

2297 2298
	lockdep_assert_held(&set->tag_list_lock);

2299 2300
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2301
		queue_set_hctx_shared(q, shared);
2302 2303 2304 2305 2306 2307 2308 2309 2310
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
2311 2312
	list_del_rcu(&q->tag_set_list);
	INIT_LIST_HEAD(&q->tag_set_list);
2313 2314 2315 2316 2317 2318
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2319
	mutex_unlock(&set->tag_list_lock);
2320 2321

	synchronize_rcu();
2322 2323 2324 2325 2326 2327 2328 2329
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2330 2331 2332 2333 2334 2335 2336 2337 2338

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2339
	list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2340

2341 2342 2343
	mutex_unlock(&set->tag_list_lock);
}

2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	/* hctx kobj stays in hctx */
2356 2357 2358
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
2359
		kobject_put(&hctx->kobj);
2360
	}
2361

2362 2363
	q->mq_map = NULL;

2364 2365
	kfree(q->queue_hw_ctx);

2366 2367 2368 2369 2370 2371
	/*
	 * release .mq_kobj and sw queue's kobject now because
	 * both share lifetime with request queue.
	 */
	blk_mq_sysfs_deinit(q);

2372 2373 2374
	free_percpu(q->queue_ctx);
}

2375
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
{
	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);

	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, queue_rq_srcu),
			   __alignof__(struct blk_mq_hw_ctx)) !=
		     sizeof(struct blk_mq_hw_ctx));

	if (tag_set->flags & BLK_MQ_F_BLOCKING)
		hw_ctx_size += sizeof(struct srcu_struct);

	return hw_ctx_size;
}

K
Keith Busch 已提交
2405 2406
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2407
{
K
Keith Busch 已提交
2408 2409
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2410

K
Keith Busch 已提交
2411
	blk_mq_sysfs_unregister(q);
2412
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2413
		int node;
2414

K
Keith Busch 已提交
2415 2416 2417 2418
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2419
		hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2420
					GFP_KERNEL, node);
2421
		if (!hctxs[i])
K
Keith Busch 已提交
2422
			break;
2423

2424
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2425 2426 2427 2428 2429
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2430

2431
		atomic_set(&hctxs[i]->nr_active, 0);
2432
		hctxs[i]->numa_node = node;
2433
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2434 2435 2436 2437 2438 2439 2440 2441

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2442
	}
K
Keith Busch 已提交
2443 2444 2445 2446
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2447 2448
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
			blk_mq_exit_hctx(q, set, hctx, j);
			kobject_put(&hctx->kobj);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2462 2463 2464
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

2465
	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2466 2467
					     blk_mq_poll_stats_bkt,
					     BLK_MQ_POLL_STATS_BKTS, q);
2468 2469 2470
	if (!q->poll_cb)
		goto err_exit;

K
Keith Busch 已提交
2471 2472
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2473
		goto err_exit;
K
Keith Busch 已提交
2474

2475 2476 2477
	/* init q->mq_kobj and sw queues' kobjects */
	blk_mq_sysfs_init(q);

K
Keith Busch 已提交
2478 2479 2480 2481 2482
	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2483
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2484 2485 2486 2487

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2488

2489
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2490
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2491 2492 2493

	q->nr_queues = nr_cpu_ids;

2494
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2495

2496 2497 2498
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2499 2500
	q->sg_reserved_size = INT_MAX;

2501
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2502 2503 2504
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2505
	blk_queue_make_request(q, blk_mq_make_request);
2506

2507 2508 2509 2510 2511
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2512 2513 2514 2515 2516
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2517 2518
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2519

2520
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2521
	blk_mq_add_queue_tag_set(set, q);
2522
	blk_mq_map_swqueue(q);
2523

2524 2525 2526 2527 2528 2529 2530 2531
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2532
	return q;
2533

2534
err_hctxs:
K
Keith Busch 已提交
2535
	kfree(q->queue_hw_ctx);
2536
err_percpu:
K
Keith Busch 已提交
2537
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2538 2539
err_exit:
	q->mq_ops = NULL;
2540 2541
	return ERR_PTR(-ENOMEM);
}
2542
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2543 2544 2545

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2546
	struct blk_mq_tag_set	*set = q->tag_set;
2547

2548
	blk_mq_del_queue_tag_set(q);
M
Ming Lei 已提交
2549
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2550 2551 2552
}

/* Basically redo blk_mq_init_queue with queue frozen */
2553
static void blk_mq_queue_reinit(struct request_queue *q)
2554
{
2555
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2556

2557
	blk_mq_debugfs_unregister_hctxs(q);
2558 2559
	blk_mq_sysfs_unregister(q);

2560 2561 2562 2563 2564 2565
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2566
	blk_mq_map_swqueue(q);
2567

2568
	blk_mq_sysfs_register(q);
2569
	blk_mq_debugfs_register_hctxs(q);
2570 2571
}

2572 2573 2574 2575
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2576 2577
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2578 2579 2580 2581 2582 2583
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2584
		blk_mq_free_rq_map(set->tags[i]);
2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2624 2625 2626 2627 2628 2629 2630 2631
static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
{
	if (set->ops->map_queues)
		return set->ops->map_queues(set);
	else
		return blk_mq_map_queues(set);
}

2632 2633 2634 2635 2636 2637
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2638 2639
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2640 2641
	int ret;

B
Bart Van Assche 已提交
2642 2643
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2644 2645
	if (!set->nr_hw_queues)
		return -EINVAL;
2646
	if (!set->queue_depth)
2647 2648 2649 2650
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2651
	if (!set->ops->queue_rq)
2652 2653
		return -EINVAL;

2654 2655 2656
	if (!set->ops->get_budget ^ !set->ops->put_budget)
		return -EINVAL;

2657 2658 2659 2660 2661
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2662

2663 2664 2665 2666 2667 2668 2669 2670 2671
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2672 2673 2674 2675 2676
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2677

K
Keith Busch 已提交
2678
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2679 2680
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2681
		return -ENOMEM;
2682

2683 2684 2685
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2686 2687 2688
	if (!set->mq_map)
		goto out_free_tags;

2689
	ret = blk_mq_update_queue_map(set);
2690 2691 2692 2693 2694
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2695
		goto out_free_mq_map;
2696

2697 2698 2699
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2700
	return 0;
2701 2702 2703 2704 2705

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2706 2707
	kfree(set->tags);
	set->tags = NULL;
2708
	return ret;
2709 2710 2711 2712 2713 2714 2715
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2716 2717
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2718

2719 2720 2721
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2722
	kfree(set->tags);
2723
	set->tags = NULL;
2724 2725 2726
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2727 2728 2729 2730 2731 2732
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2733
	if (!set)
2734 2735
		return -EINVAL;

2736 2737
	blk_mq_freeze_queue(q);

2738 2739
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2740 2741
		if (!hctx->tags)
			continue;
2742 2743 2744 2745
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2746 2747 2748 2749 2750 2751 2752 2753
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2754 2755 2756 2757 2758 2759 2760
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2761 2762
	blk_mq_unfreeze_queue(q);

2763 2764 2765
	return ret;
}

2766 2767
static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
							int nr_hw_queues)
K
Keith Busch 已提交
2768 2769 2770
{
	struct request_queue *q;

2771 2772
	lockdep_assert_held(&set->tag_list_lock);

K
Keith Busch 已提交
2773 2774 2775 2776 2777 2778 2779 2780 2781
	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
2782
	blk_mq_update_queue_map(set);
K
Keith Busch 已提交
2783 2784
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);
2785
		blk_mq_queue_reinit(q);
K
Keith Busch 已提交
2786 2787 2788 2789 2790
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
2791 2792 2793 2794 2795 2796 2797

void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	mutex_lock(&set->tag_list_lock);
	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
	mutex_unlock(&set->tag_list_lock);
}
K
Keith Busch 已提交
2798 2799
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
/* Enable polling stats and return whether they were already enabled. */
static bool blk_poll_stats_enable(struct request_queue *q)
{
	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    test_and_set_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags))
		return true;
	blk_stat_add_callback(q, q->poll_cb);
	return false;
}

static void blk_mq_poll_stats_start(struct request_queue *q)
{
	/*
	 * We don't arm the callback if polling stats are not enabled or the
	 * callback is already active.
	 */
	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
	    blk_stat_is_active(q->poll_cb))
		return;

	blk_stat_activate_msecs(q->poll_cb, 100);
}

static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
{
	struct request_queue *q = cb->data;
2826
	int bucket;
2827

2828 2829 2830 2831
	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
		if (cb->stat[bucket].nr_samples)
			q->poll_stat[bucket] = cb->stat[bucket];
	}
2832 2833
}

2834 2835 2836 2837 2838
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	unsigned long ret = 0;
2839
	int bucket;
2840 2841 2842 2843 2844

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
2845
	if (!blk_poll_stats_enable(q))
2846 2847 2848 2849 2850 2851 2852 2853
		return 0;

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
2854 2855
	 * than ~10 usec. We do use the stats for the relevant IO size
	 * if available which does lead to better estimates.
2856
	 */
2857 2858 2859 2860 2861 2862
	bucket = blk_mq_poll_stats_bkt(rq);
	if (bucket < 0)
		return ret;

	if (q->poll_stat[bucket].nr_samples)
		ret = (q->poll_stat[bucket].mean + 1) / 2;
2863 2864 2865 2866

	return ret;
}

2867
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2868
				     struct blk_mq_hw_ctx *hctx,
2869 2870 2871 2872
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2873
	unsigned int nsecs;
2874 2875
	ktime_t kt;

2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2894 2895 2896 2897 2898 2899 2900 2901
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2902
	kt = nsecs;
2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2925 2926 2927 2928 2929
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2930 2931 2932 2933 2934 2935 2936
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2937
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2938 2939
		return true;

J
Jens Axboe 已提交
2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2983 2984
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2985
	else {
2986
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
2987 2988 2989 2990 2991 2992 2993 2994 2995
		/*
		 * With scheduling, if the request has completed, we'll
		 * get a NULL return here, as we clear the sched tag when
		 * that happens. The request still remains valid, like always,
		 * so we should be safe with just the NULL check.
		 */
		if (!rq)
			return false;
	}
J
Jens Axboe 已提交
2996 2997 2998 2999 3000

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

3001 3002
static int __init blk_mq_init(void)
{
3003 3004 3005 3006 3007 3008
	/*
	 * See comment in block/blk.h rq_atomic_flags enum
	 */
	BUILD_BUG_ON((REQ_ATOM_STARTED / BITS_PER_BYTE) !=
			(REQ_ATOM_COMPLETE / BITS_PER_BYTE));

3009 3010
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
3011 3012 3013
	return 0;
}
subsys_initcall(blk_mq_init);