blk-mq.c 67.4 KB
Newer Older
1 2 3 4 5 6
/*
 * Block multiqueue core code
 *
 * Copyright (C) 2013-2014 Jens Axboe
 * Copyright (C) 2013-2014 Christoph Hellwig
 */
7 8 9 10 11
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
12
#include <linux/kmemleak.h>
13 14 15 16 17 18 19 20 21 22 23
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/smp.h>
#include <linux/llist.h>
#include <linux/list_sort.h>
#include <linux/cpu.h>
#include <linux/cache.h>
#include <linux/sched/sysctl.h>
#include <linux/delay.h>
24
#include <linux/crash_dump.h>
25
#include <linux/prefetch.h>
26 27 28 29 30 31 32

#include <trace/events/block.h>

#include <linux/blk-mq.h>
#include "blk.h"
#include "blk-mq.h"
#include "blk-mq-tag.h"
33
#include "blk-stat.h"
J
Jens Axboe 已提交
34
#include "blk-wbt.h"
35
#include "blk-mq-sched.h"
36 37 38 39 40 41 42 43 44

static DEFINE_MUTEX(all_q_mutex);
static LIST_HEAD(all_q_list);

/*
 * Check if any of the ctx's have pending work in this hardware queue
 */
static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
{
45 46 47
	return sbitmap_any_bit_set(&hctx->ctx_map) ||
			!list_empty_careful(&hctx->dispatch) ||
			blk_mq_sched_has_work(hctx);
48 49
}

50 51 52 53 54 55
/*
 * Mark this ctx as having pending work in this hardware queue
 */
static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
				     struct blk_mq_ctx *ctx)
{
56 57
	if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
		sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
58 59 60 61 62
}

static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
				      struct blk_mq_ctx *ctx)
{
63
	sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
64 65
}

66
void blk_mq_freeze_queue_start(struct request_queue *q)
67
{
68
	int freeze_depth;
69

70 71
	freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
	if (freeze_depth == 1) {
72
		percpu_ref_kill(&q->q_usage_counter);
73
		blk_mq_run_hw_queues(q, false);
74
	}
75
}
76
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
77 78 79

static void blk_mq_freeze_queue_wait(struct request_queue *q)
{
80
	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 82
}

83 84 85 86
/*
 * Guarantee no request is in use, so we can change any data structure of
 * the queue afterward.
 */
87
void blk_freeze_queue(struct request_queue *q)
88
{
89 90 91 92 93 94 95
	/*
	 * In the !blk_mq case we are only calling this to kill the
	 * q_usage_counter, otherwise this increases the freeze depth
	 * and waits for it to return to zero.  For this reason there is
	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
	 * exported to drivers as the only user for unfreeze is blk_mq.
	 */
96 97 98
	blk_mq_freeze_queue_start(q);
	blk_mq_freeze_queue_wait(q);
}
99 100 101 102 103 104 105 106 107

void blk_mq_freeze_queue(struct request_queue *q)
{
	/*
	 * ...just an alias to keep freeze and unfreeze actions balanced
	 * in the blk_mq_* namespace
	 */
	blk_freeze_queue(q);
}
108
EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
109

110
void blk_mq_unfreeze_queue(struct request_queue *q)
111
{
112
	int freeze_depth;
113

114 115 116
	freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
	WARN_ON_ONCE(freeze_depth < 0);
	if (!freeze_depth) {
117
		percpu_ref_reinit(&q->q_usage_counter);
118
		wake_up_all(&q->mq_freeze_wq);
119
	}
120
}
121
EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
122

123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
/**
 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
 * @q: request queue.
 *
 * Note: this function does not prevent that the struct request end_io()
 * callback function is invoked. Additionally, it is not prevented that
 * new queue_rq() calls occur unless the queue has been stopped first.
 */
void blk_mq_quiesce_queue(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;
	bool rcu = false;

	blk_mq_stop_hw_queues(q);

	queue_for_each_hw_ctx(q, hctx, i) {
		if (hctx->flags & BLK_MQ_F_BLOCKING)
			synchronize_srcu(&hctx->queue_rq_srcu);
		else
			rcu = true;
	}
	if (rcu)
		synchronize_rcu();
}
EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);

150 151 152 153 154 155 156 157
void blk_mq_wake_waiters(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hw_queue_mapped(hctx))
			blk_mq_tag_wakeup_all(hctx->tags, true);
158 159 160 161 162 163 164

	/*
	 * If we are called because the queue has now been marked as
	 * dying, we need to ensure that processes currently waiting on
	 * the queue are notified as well.
	 */
	wake_up_all(&q->mq_freeze_wq);
165 166
}

167 168 169 170 171 172
bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
{
	return blk_mq_has_free_tags(hctx->tags);
}
EXPORT_SYMBOL(blk_mq_can_queue);

173 174
void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
			struct request *rq, unsigned int op)
175
{
176 177 178
	INIT_LIST_HEAD(&rq->queuelist);
	/* csd/requeue_work/fifo_time is initialized before use */
	rq->q = q;
179
	rq->mq_ctx = ctx;
180
	rq->cmd_flags = op;
181 182
	if (blk_queue_io_stat(q))
		rq->rq_flags |= RQF_IO_STAT;
183 184 185 186 187 188
	/* do not touch atomic flags, it needs atomic ops against the timer */
	rq->cpu = -1;
	INIT_HLIST_NODE(&rq->hash);
	RB_CLEAR_NODE(&rq->rb_node);
	rq->rq_disk = NULL;
	rq->part = NULL;
189
	rq->start_time = jiffies;
190 191
#ifdef CONFIG_BLK_CGROUP
	rq->rl = NULL;
192
	set_start_time_ns(rq);
193 194 195 196 197 198 199 200 201 202
	rq->io_start_time_ns = 0;
#endif
	rq->nr_phys_segments = 0;
#if defined(CONFIG_BLK_DEV_INTEGRITY)
	rq->nr_integrity_segments = 0;
#endif
	rq->special = NULL;
	/* tag was already set */
	rq->errors = 0;

203 204
	rq->cmd = rq->__cmd;

205 206 207 208 209 210
	rq->extra_len = 0;
	rq->sense_len = 0;
	rq->resid_len = 0;
	rq->sense = NULL;

	INIT_LIST_HEAD(&rq->timeout_list);
211 212
	rq->timeout = 0;

213 214 215 216
	rq->end_io = NULL;
	rq->end_io_data = NULL;
	rq->next_rq = NULL;

217
	ctx->rq_dispatched[op_is_sync(op)]++;
218
}
219
EXPORT_SYMBOL_GPL(blk_mq_rq_ctx_init);
220

221 222
struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data,
				       unsigned int op)
223 224 225 226
{
	struct request *rq;
	unsigned int tag;

227
	tag = blk_mq_get_tag(data);
228
	if (tag != BLK_MQ_TAG_FAIL) {
229 230 231
		struct blk_mq_tags *tags = blk_mq_tags_from_data(data);

		rq = tags->static_rqs[tag];
232

233 234 235 236
		if (data->flags & BLK_MQ_REQ_INTERNAL) {
			rq->tag = -1;
			rq->internal_tag = tag;
		} else {
237 238 239 240
			if (blk_mq_tag_busy(data->hctx)) {
				rq->rq_flags = RQF_MQ_INFLIGHT;
				atomic_inc(&data->hctx->nr_active);
			}
241 242 243 244
			rq->tag = tag;
			rq->internal_tag = -1;
		}

245
		blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
246 247 248 249 250
		return rq;
	}

	return NULL;
}
251
EXPORT_SYMBOL_GPL(__blk_mq_alloc_request);
252

253 254
struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
		unsigned int flags)
255
{
256
	struct blk_mq_alloc_data alloc_data = { .flags = flags };
257
	struct request *rq;
258
	int ret;
259

260
	ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
261 262
	if (ret)
		return ERR_PTR(ret);
263

264
	rq = blk_mq_sched_get_request(q, NULL, rw, &alloc_data);
265

266 267 268 269
	blk_mq_put_ctx(alloc_data.ctx);
	blk_queue_exit(q);

	if (!rq)
270
		return ERR_PTR(-EWOULDBLOCK);
271 272 273 274

	rq->__data_len = 0;
	rq->__sector = (sector_t) -1;
	rq->bio = rq->biotail = NULL;
275 276
	return rq;
}
277
EXPORT_SYMBOL(blk_mq_alloc_request);
278

M
Ming Lin 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
		unsigned int flags, unsigned int hctx_idx)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	struct blk_mq_alloc_data alloc_data;
	int ret;

	/*
	 * If the tag allocator sleeps we could get an allocation for a
	 * different hardware context.  No need to complicate the low level
	 * allocator for this for the rare use case of a command tied to
	 * a specific queue.
	 */
	if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
		return ERR_PTR(-EINVAL);

	if (hctx_idx >= q->nr_hw_queues)
		return ERR_PTR(-EIO);

	ret = blk_queue_enter(q, true);
	if (ret)
		return ERR_PTR(ret);

304 305 306 307
	/*
	 * Check if the hardware context is actually mapped to anything.
	 * If not tell the caller that it should skip this queue.
	 */
M
Ming Lin 已提交
308
	hctx = q->queue_hw_ctx[hctx_idx];
309 310 311 312
	if (!blk_mq_hw_queue_mapped(hctx)) {
		ret = -EXDEV;
		goto out_queue_exit;
	}
M
Ming Lin 已提交
313 314 315
	ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));

	blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
316
	rq = __blk_mq_alloc_request(&alloc_data, rw);
M
Ming Lin 已提交
317
	if (!rq) {
318 319
		ret = -EWOULDBLOCK;
		goto out_queue_exit;
M
Ming Lin 已提交
320 321 322
	}

	return rq;
323 324 325 326

out_queue_exit:
	blk_queue_exit(q);
	return ERR_PTR(ret);
M
Ming Lin 已提交
327 328 329
}
EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);

330 331
void __blk_mq_finish_request(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			     struct request *rq)
332
{
333
	const int sched_tag = rq->internal_tag;
334 335
	struct request_queue *q = rq->q;

336
	if (rq->rq_flags & RQF_MQ_INFLIGHT)
337
		atomic_dec(&hctx->nr_active);
J
Jens Axboe 已提交
338 339

	wbt_done(q->rq_wb, &rq->issue_stat);
340
	rq->rq_flags = 0;
341

342
	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
343
	clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
344 345 346 347
	if (rq->tag != -1)
		blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
	if (sched_tag != -1)
		blk_mq_sched_completed_request(hctx, rq);
348
	blk_queue_exit(q);
349 350
}

351
static void blk_mq_finish_hctx_request(struct blk_mq_hw_ctx *hctx,
352
				     struct request *rq)
353 354 355 356
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

	ctx->rq_completed[rq_is_sync(rq)]++;
357 358 359 360 361 362
	__blk_mq_finish_request(hctx, ctx, rq);
}

void blk_mq_finish_request(struct request *rq)
{
	blk_mq_finish_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
363 364 365 366
}

void blk_mq_free_request(struct request *rq)
{
367
	blk_mq_sched_put_request(rq);
368
}
J
Jens Axboe 已提交
369
EXPORT_SYMBOL_GPL(blk_mq_free_request);
370

371
inline void __blk_mq_end_request(struct request *rq, int error)
372
{
M
Ming Lei 已提交
373 374
	blk_account_io_done(rq);

C
Christoph Hellwig 已提交
375
	if (rq->end_io) {
J
Jens Axboe 已提交
376
		wbt_done(rq->q->rq_wb, &rq->issue_stat);
377
		rq->end_io(rq, error);
C
Christoph Hellwig 已提交
378 379 380
	} else {
		if (unlikely(blk_bidi_rq(rq)))
			blk_mq_free_request(rq->next_rq);
381
		blk_mq_free_request(rq);
C
Christoph Hellwig 已提交
382
	}
383
}
384
EXPORT_SYMBOL(__blk_mq_end_request);
385

386
void blk_mq_end_request(struct request *rq, int error)
387 388 389
{
	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
		BUG();
390
	__blk_mq_end_request(rq, error);
391
}
392
EXPORT_SYMBOL(blk_mq_end_request);
393

394
static void __blk_mq_complete_request_remote(void *data)
395
{
396
	struct request *rq = data;
397

398
	rq->q->softirq_done_fn(rq);
399 400
}

401
static void blk_mq_ipi_complete_request(struct request *rq)
402 403
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;
C
Christoph Hellwig 已提交
404
	bool shared = false;
405 406
	int cpu;

C
Christoph Hellwig 已提交
407
	if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
408 409 410
		rq->q->softirq_done_fn(rq);
		return;
	}
411 412

	cpu = get_cpu();
C
Christoph Hellwig 已提交
413 414 415 416
	if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
		shared = cpus_share_cache(cpu, ctx->cpu);

	if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
417
		rq->csd.func = __blk_mq_complete_request_remote;
418 419
		rq->csd.info = rq;
		rq->csd.flags = 0;
420
		smp_call_function_single_async(ctx->cpu, &rq->csd);
421
	} else {
422
		rq->q->softirq_done_fn(rq);
423
	}
424 425
	put_cpu();
}
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
static void blk_mq_stat_add(struct request *rq)
{
	if (rq->rq_flags & RQF_STATS) {
		/*
		 * We could rq->mq_ctx here, but there's less of a risk
		 * of races if we have the completion event add the stats
		 * to the local software queue.
		 */
		struct blk_mq_ctx *ctx;

		ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
		blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
	}
}

442
static void __blk_mq_complete_request(struct request *rq)
443 444 445
{
	struct request_queue *q = rq->q;

446 447
	blk_mq_stat_add(rq);

448
	if (!q->softirq_done_fn)
449
		blk_mq_end_request(rq, rq->errors);
450 451 452 453
	else
		blk_mq_ipi_complete_request(rq);
}

454 455 456 457 458 459 460 461
/**
 * blk_mq_complete_request - end I/O on a request
 * @rq:		the request being processed
 *
 * Description:
 *	Ends all I/O on a request. It does not handle partial completions.
 *	The actual completion happens out-of-order, through a IPI handler.
 **/
462
void blk_mq_complete_request(struct request *rq, int error)
463
{
464 465 466
	struct request_queue *q = rq->q;

	if (unlikely(blk_should_fake_timeout(q)))
467
		return;
468 469
	if (!blk_mark_rq_complete(rq)) {
		rq->errors = error;
470
		__blk_mq_complete_request(rq);
471
	}
472 473
}
EXPORT_SYMBOL(blk_mq_complete_request);
474

475 476 477 478 479 480
int blk_mq_request_started(struct request *rq)
{
	return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
}
EXPORT_SYMBOL_GPL(blk_mq_request_started);

481
void blk_mq_start_request(struct request *rq)
482 483 484
{
	struct request_queue *q = rq->q;

485 486
	blk_mq_sched_started_request(rq);

487 488
	trace_block_rq_issue(q, rq);

C
Christoph Hellwig 已提交
489
	rq->resid_len = blk_rq_bytes(rq);
C
Christoph Hellwig 已提交
490 491
	if (unlikely(blk_bidi_rq(rq)))
		rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
C
Christoph Hellwig 已提交
492

493 494 495
	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
		blk_stat_set_issue_time(&rq->issue_stat);
		rq->rq_flags |= RQF_STATS;
J
Jens Axboe 已提交
496
		wbt_issue(q->rq_wb, &rq->issue_stat);
497 498
	}

499
	blk_add_timer(rq);
500

501 502 503 504 505 506
	/*
	 * Ensure that ->deadline is visible before set the started
	 * flag and clear the completed flag.
	 */
	smp_mb__before_atomic();

507 508 509 510 511 512
	/*
	 * Mark us as started and clear complete. Complete might have been
	 * set if requeue raced with timeout, which then marked it as
	 * complete. So be sure to clear complete again when we start
	 * the request, otherwise we'll ignore the completion event.
	 */
513 514 515 516
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
		set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
	if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
		clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
517 518 519 520 521 522 523 524 525

	if (q->dma_drain_size && blk_rq_bytes(rq)) {
		/*
		 * Make sure space for the drain appears.  We know we can do
		 * this because max_hw_segments has been adjusted to be one
		 * fewer than the device can handle.
		 */
		rq->nr_phys_segments++;
	}
526
}
527
EXPORT_SYMBOL(blk_mq_start_request);
528

529
static void __blk_mq_requeue_request(struct request *rq)
530 531 532 533
{
	struct request_queue *q = rq->q;

	trace_block_rq_requeue(q, rq);
J
Jens Axboe 已提交
534
	wbt_requeue(q->rq_wb, &rq->issue_stat);
535
	blk_mq_sched_requeue_request(rq);
536

537 538 539 540
	if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		if (q->dma_drain_size && blk_rq_bytes(rq))
			rq->nr_phys_segments--;
	}
541 542
}

543
void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
544 545 546 547
{
	__blk_mq_requeue_request(rq);

	BUG_ON(blk_queued_rq(rq));
548
	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
549 550 551
}
EXPORT_SYMBOL(blk_mq_requeue_request);

552 553 554
static void blk_mq_requeue_work(struct work_struct *work)
{
	struct request_queue *q =
555
		container_of(work, struct request_queue, requeue_work.work);
556 557 558 559 560 561 562 563 564
	LIST_HEAD(rq_list);
	struct request *rq, *next;
	unsigned long flags;

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
565
		if (!(rq->rq_flags & RQF_SOFTBARRIER))
566 567
			continue;

568
		rq->rq_flags &= ~RQF_SOFTBARRIER;
569
		list_del_init(&rq->queuelist);
570
		blk_mq_sched_insert_request(rq, true, false, false);
571 572 573 574 575
	}

	while (!list_empty(&rq_list)) {
		rq = list_entry(rq_list.next, struct request, queuelist);
		list_del_init(&rq->queuelist);
576
		blk_mq_sched_insert_request(rq, false, false, false);
577 578
	}

579
	blk_mq_run_hw_queues(q, false);
580 581
}

582 583
void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
				bool kick_requeue_list)
584 585 586 587 588 589 590 591
{
	struct request_queue *q = rq->q;
	unsigned long flags;

	/*
	 * We abuse this flag that is otherwise used by the I/O scheduler to
	 * request head insertation from the workqueue.
	 */
592
	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
593 594 595

	spin_lock_irqsave(&q->requeue_lock, flags);
	if (at_head) {
596
		rq->rq_flags |= RQF_SOFTBARRIER;
597 598 599 600 601
		list_add(&rq->queuelist, &q->requeue_list);
	} else {
		list_add_tail(&rq->queuelist, &q->requeue_list);
	}
	spin_unlock_irqrestore(&q->requeue_lock, flags);
602 603 604

	if (kick_requeue_list)
		blk_mq_kick_requeue_list(q);
605 606 607 608 609
}
EXPORT_SYMBOL(blk_mq_add_to_requeue_list);

void blk_mq_kick_requeue_list(struct request_queue *q)
{
610
	kblockd_schedule_delayed_work(&q->requeue_work, 0);
611 612 613
}
EXPORT_SYMBOL(blk_mq_kick_requeue_list);

614 615 616 617 618 619 620 621
void blk_mq_delay_kick_requeue_list(struct request_queue *q,
				    unsigned long msecs)
{
	kblockd_schedule_delayed_work(&q->requeue_work,
				      msecs_to_jiffies(msecs));
}
EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);

622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
void blk_mq_abort_requeue_list(struct request_queue *q)
{
	unsigned long flags;
	LIST_HEAD(rq_list);

	spin_lock_irqsave(&q->requeue_lock, flags);
	list_splice_init(&q->requeue_list, &rq_list);
	spin_unlock_irqrestore(&q->requeue_lock, flags);

	while (!list_empty(&rq_list)) {
		struct request *rq;

		rq = list_first_entry(&rq_list, struct request, queuelist);
		list_del_init(&rq->queuelist);
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
	}
}
EXPORT_SYMBOL(blk_mq_abort_requeue_list);

642 643
struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
{
644 645
	if (tag < tags->nr_tags) {
		prefetch(tags->rqs[tag]);
646
		return tags->rqs[tag];
647
	}
648 649

	return NULL;
650 651 652
}
EXPORT_SYMBOL(blk_mq_tag_to_rq);

653
struct blk_mq_timeout_data {
654 655
	unsigned long next;
	unsigned int next_set;
656 657
};

658
void blk_mq_rq_timed_out(struct request *req, bool reserved)
659
{
J
Jens Axboe 已提交
660
	const struct blk_mq_ops *ops = req->q->mq_ops;
661
	enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
662 663 664 665 666 667 668 669 670 671

	/*
	 * We know that complete is set at this point. If STARTED isn't set
	 * anymore, then the request isn't active and the "timeout" should
	 * just be ignored. This can happen due to the bitflag ordering.
	 * Timeout first checks if STARTED is set, and if it is, assumes
	 * the request is active. But if we race with completion, then
	 * we both flags will get cleared. So check here again, and ignore
	 * a timeout event with a request that isn't active.
	 */
672 673
	if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
		return;
674

675
	if (ops->timeout)
676
		ret = ops->timeout(req, reserved);
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	switch (ret) {
	case BLK_EH_HANDLED:
		__blk_mq_complete_request(req);
		break;
	case BLK_EH_RESET_TIMER:
		blk_add_timer(req);
		blk_clear_rq_complete(req);
		break;
	case BLK_EH_NOT_HANDLED:
		break;
	default:
		printk(KERN_ERR "block: bad eh return: %d\n", ret);
		break;
	}
692
}
693

694 695 696 697
static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
		struct request *rq, void *priv, bool reserved)
{
	struct blk_mq_timeout_data *data = priv;
698

699 700 701 702 703
	if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
		/*
		 * If a request wasn't started before the queue was
		 * marked dying, kill it here or it'll go unnoticed.
		 */
704 705 706 707
		if (unlikely(blk_queue_dying(rq->q))) {
			rq->errors = -EIO;
			blk_mq_end_request(rq, rq->errors);
		}
708
		return;
709
	}
710

711 712
	if (time_after_eq(jiffies, rq->deadline)) {
		if (!blk_mark_rq_complete(rq))
713
			blk_mq_rq_timed_out(rq, reserved);
714 715 716 717
	} else if (!data->next_set || time_after(data->next, rq->deadline)) {
		data->next = rq->deadline;
		data->next_set = 1;
	}
718 719
}

720
static void blk_mq_timeout_work(struct work_struct *work)
721
{
722 723
	struct request_queue *q =
		container_of(work, struct request_queue, timeout_work);
724 725 726 727 728
	struct blk_mq_timeout_data data = {
		.next		= 0,
		.next_set	= 0,
	};
	int i;
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743
	/* A deadlock might occur if a request is stuck requiring a
	 * timeout at the same time a queue freeze is waiting
	 * completion, since the timeout code would not be able to
	 * acquire the queue reference here.
	 *
	 * That's why we don't use blk_queue_enter here; instead, we use
	 * percpu_ref_tryget directly, because we need to be able to
	 * obtain a reference even in the short window between the queue
	 * starting to freeze, by dropping the first reference in
	 * blk_mq_freeze_queue_start, and the moment the last request is
	 * consumed, marked by the instant q_usage_counter reaches
	 * zero.
	 */
	if (!percpu_ref_tryget(&q->q_usage_counter))
744 745
		return;

746
	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
747

748 749 750
	if (data.next_set) {
		data.next = blk_rq_timeout(round_jiffies_up(data.next));
		mod_timer(&q->timeout, data.next);
751
	} else {
752 753
		struct blk_mq_hw_ctx *hctx;

754 755 756 757 758
		queue_for_each_hw_ctx(q, hctx, i) {
			/* the hctx may be unmapped, so check it here */
			if (blk_mq_hw_queue_mapped(hctx))
				blk_mq_tag_idle(hctx);
		}
759
	}
760
	blk_queue_exit(q);
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
}

/*
 * Reverse check our software queue for entries that we could potentially
 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 * too much time checking for merges.
 */
static bool blk_mq_attempt_merge(struct request_queue *q,
				 struct blk_mq_ctx *ctx, struct bio *bio)
{
	struct request *rq;
	int checked = 8;

	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
		int el_ret;

		if (!checked--)
			break;

		if (!blk_rq_merge_ok(rq, bio))
			continue;

		el_ret = blk_try_merge(rq, bio);
784 785 786 787 788 789
		if (el_ret == ELEVATOR_NO_MERGE)
			continue;

		if (!blk_mq_sched_allow_merge(q, rq, bio))
			break;

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
		if (el_ret == ELEVATOR_BACK_MERGE) {
			if (bio_attempt_back_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
			if (bio_attempt_front_merge(q, rq, bio)) {
				ctx->rq_merged++;
				return true;
			}
			break;
		}
	}

	return false;
}

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
struct flush_busy_ctx_data {
	struct blk_mq_hw_ctx *hctx;
	struct list_head *list;
};

static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
{
	struct flush_busy_ctx_data *flush_data = data;
	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];

	sbitmap_clear_bit(sb, bitnr);
	spin_lock(&ctx->lock);
	list_splice_tail_init(&ctx->rq_list, flush_data->list);
	spin_unlock(&ctx->lock);
	return true;
}

826 827 828 829
/*
 * Process software queues that have been marked busy, splicing them
 * to the for-dispatch
 */
830
void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
831
{
832 833 834 835
	struct flush_busy_ctx_data data = {
		.hctx = hctx,
		.list = list,
	};
836

837
	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
838
}
839
EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
840

841 842 843 844
static inline unsigned int queued_to_index(unsigned int queued)
{
	if (!queued)
		return 0;
845

846
	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
847 848
}

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
static bool blk_mq_get_driver_tag(struct request *rq,
				  struct blk_mq_hw_ctx **hctx, bool wait)
{
	struct blk_mq_alloc_data data = {
		.q = rq->q,
		.ctx = rq->mq_ctx,
		.hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
		.flags = wait ? 0 : BLK_MQ_REQ_NOWAIT,
	};

	if (blk_mq_hctx_stopped(data.hctx))
		return false;

	if (rq->tag != -1) {
done:
		if (hctx)
			*hctx = data.hctx;
		return true;
	}

	rq->tag = blk_mq_get_tag(&data);
	if (rq->tag >= 0) {
871 872 873 874
		if (blk_mq_tag_busy(data.hctx)) {
			rq->rq_flags |= RQF_MQ_INFLIGHT;
			atomic_inc(&data.hctx->nr_active);
		}
875 876 877 878 879 880 881
		data.hctx->tags->rqs[rq->tag] = rq;
		goto done;
	}

	return false;
}

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
static void blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
				  struct request *rq)
{
	if (rq->tag == -1 || rq->internal_tag == -1)
		return;

	blk_mq_put_tag(hctx, hctx->tags, rq->mq_ctx, rq->tag);
	rq->tag = -1;

	if (rq->rq_flags & RQF_MQ_INFLIGHT) {
		rq->rq_flags &= ~RQF_MQ_INFLIGHT;
		atomic_dec(&hctx->nr_active);
	}
}

897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
/*
 * If we fail getting a driver tag because all the driver tags are already
 * assigned and on the dispatch list, BUT the first entry does not have a
 * tag, then we could deadlock. For that case, move entries with assigned
 * driver tags to the front, leaving the set of tagged requests in the
 * same order, and the untagged set in the same order.
 */
static bool reorder_tags_to_front(struct list_head *list)
{
	struct request *rq, *tmp, *first = NULL;

	list_for_each_entry_safe_reverse(rq, tmp, list, queuelist) {
		if (rq == first)
			break;
		if (rq->tag != -1) {
			list_move(&rq->queuelist, list);
			if (!first)
				first = rq;
		}
	}

	return first != NULL;
}

921
bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
922 923 924
{
	struct request_queue *q = hctx->queue;
	struct request *rq;
925 926
	LIST_HEAD(driver_list);
	struct list_head *dptr;
927
	int queued, ret = BLK_MQ_RQ_QUEUE_OK;
928

929 930 931 932 933 934
	/*
	 * Start off with dptr being NULL, so we start the first request
	 * immediately, even if we have more pending.
	 */
	dptr = NULL;

935 936 937
	/*
	 * Now process all the entries, sending them to the driver.
	 */
938
	queued = 0;
939
	while (!list_empty(list)) {
940
		struct blk_mq_queue_data bd;
941

942
		rq = list_first_entry(list, struct request, queuelist);
943 944 945
		if (!blk_mq_get_driver_tag(rq, &hctx, false)) {
			if (!queued && reorder_tags_to_front(list))
				continue;
946 947 948 949 950 951 952

			/*
			 * We failed getting a driver tag. Mark the queue(s)
			 * as needing a restart. Retry getting a tag again,
			 * in case the needed IO completed right before we
			 * marked the queue as needing a restart.
			 */
953
			blk_mq_sched_mark_restart(hctx);
954 955
			if (!blk_mq_get_driver_tag(rq, &hctx, false))
				break;
956
		}
957 958
		list_del_init(&rq->queuelist);

959 960
		bd.rq = rq;
		bd.list = dptr;
961
		bd.last = list_empty(list);
962 963

		ret = q->mq_ops->queue_rq(hctx, &bd);
964 965 966
		switch (ret) {
		case BLK_MQ_RQ_QUEUE_OK:
			queued++;
967
			break;
968
		case BLK_MQ_RQ_QUEUE_BUSY:
969
			blk_mq_put_driver_tag(hctx, rq);
970
			list_add(&rq->queuelist, list);
971
			__blk_mq_requeue_request(rq);
972 973 974 975
			break;
		default:
			pr_err("blk-mq: bad return on queue: %d\n", ret);
		case BLK_MQ_RQ_QUEUE_ERROR:
976
			rq->errors = -EIO;
977
			blk_mq_end_request(rq, rq->errors);
978 979 980 981 982
			break;
		}

		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
			break;
983 984 985 986 987

		/*
		 * We've done the first request. If we have more than 1
		 * left in the list, set dptr to defer issue.
		 */
988
		if (!dptr && list->next != list->prev)
989
			dptr = &driver_list;
990 991
	}

992
	hctx->dispatched[queued_to_index(queued)]++;
993 994 995 996 997

	/*
	 * Any items that need requeuing? Stuff them into hctx->dispatch,
	 * that is where we will continue on next queue run.
	 */
998
	if (!list_empty(list)) {
999
		spin_lock(&hctx->lock);
1000
		list_splice(list, &hctx->dispatch);
1001
		spin_unlock(&hctx->lock);
1002

1003 1004 1005 1006 1007 1008 1009 1010
		/*
		 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
		 * it's possible the queue is stopped and restarted again
		 * before this. Queue restart will dispatch requests. And since
		 * requests in rq_list aren't added into hctx->dispatch yet,
		 * the requests in rq_list might get lost.
		 *
		 * blk_mq_run_hw_queue() already checks the STOPPED bit
1011 1012 1013 1014 1015 1016
		 *
		 * If RESTART is set, then let completion restart the queue
		 * instead of potentially looping here.
		 */
		if (!blk_mq_sched_needs_restart(hctx))
			blk_mq_run_hw_queue(hctx, true);
1017
	}
1018 1019 1020 1021

	return ret != BLK_MQ_RQ_QUEUE_BUSY;
}

1022 1023 1024 1025 1026 1027 1028 1029 1030
static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	int srcu_idx;

	WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
		cpu_online(hctx->next_cpu));

	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
		rcu_read_lock();
1031
		blk_mq_sched_dispatch_requests(hctx);
1032 1033 1034
		rcu_read_unlock();
	} else {
		srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
1035
		blk_mq_sched_dispatch_requests(hctx);
1036 1037 1038 1039
		srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
	}
}

1040 1041 1042 1043 1044 1045 1046 1047
/*
 * It'd be great if the workqueue API had a way to pass
 * in a mask and had some smarts for more clever placement.
 * For now we just round-robin here, switching for every
 * BLK_MQ_CPU_WORK_BATCH queued items.
 */
static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
{
1048 1049
	if (hctx->queue->nr_hw_queues == 1)
		return WORK_CPU_UNBOUND;
1050 1051

	if (--hctx->next_cpu_batch <= 0) {
1052
		int next_cpu;
1053 1054 1055 1056 1057 1058 1059 1060 1061

		next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
		if (next_cpu >= nr_cpu_ids)
			next_cpu = cpumask_first(hctx->cpumask);

		hctx->next_cpu = next_cpu;
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}

1062
	return hctx->next_cpu;
1063 1064
}

1065 1066
void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
1067 1068
	if (unlikely(blk_mq_hctx_stopped(hctx) ||
		     !blk_mq_hw_queue_mapped(hctx)))
1069 1070
		return;

1071
	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1072 1073
		int cpu = get_cpu();
		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1074
			__blk_mq_run_hw_queue(hctx);
1075
			put_cpu();
1076 1077
			return;
		}
1078

1079
		put_cpu();
1080
	}
1081

1082
	kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1083 1084
}

1085
void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1086 1087 1088 1089 1090
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i) {
1091
		if (!blk_mq_hctx_has_pending(hctx) ||
1092
		    blk_mq_hctx_stopped(hctx))
1093 1094
			continue;

1095
		blk_mq_run_hw_queue(hctx, async);
1096 1097
	}
}
1098
EXPORT_SYMBOL(blk_mq_run_hw_queues);
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/**
 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
 * @q: request queue.
 *
 * The caller is responsible for serializing this function against
 * blk_mq_{start,stop}_hw_queue().
 */
bool blk_mq_queue_stopped(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		if (blk_mq_hctx_stopped(hctx))
			return true;

	return false;
}
EXPORT_SYMBOL(blk_mq_queue_stopped);

1120 1121
void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
{
1122
	cancel_work(&hctx->run_work);
1123
	cancel_delayed_work(&hctx->delay_work);
1124 1125 1126 1127
	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queue);

1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
void blk_mq_stop_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_stop_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_stop_hw_queues);

1138 1139 1140
void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
{
	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1141

1142
	blk_mq_run_hw_queue(hctx, false);
1143 1144 1145
}
EXPORT_SYMBOL(blk_mq_start_hw_queue);

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
void blk_mq_start_hw_queues(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	int i;

	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_hw_queue(hctx);
}
EXPORT_SYMBOL(blk_mq_start_hw_queues);

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
{
	if (!blk_mq_hctx_stopped(hctx))
		return;

	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
	blk_mq_run_hw_queue(hctx, async);
}
EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);

1166
void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1167 1168 1169 1170
{
	struct blk_mq_hw_ctx *hctx;
	int i;

1171 1172
	queue_for_each_hw_ctx(q, hctx, i)
		blk_mq_start_stopped_hw_queue(hctx, async);
1173 1174 1175
}
EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);

1176
static void blk_mq_run_work_fn(struct work_struct *work)
1177 1178 1179
{
	struct blk_mq_hw_ctx *hctx;

1180
	hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1181

1182 1183 1184
	__blk_mq_run_hw_queue(hctx);
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
static void blk_mq_delay_work_fn(struct work_struct *work)
{
	struct blk_mq_hw_ctx *hctx;

	hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);

	if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
		__blk_mq_run_hw_queue(hctx);
}

void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
{
1197 1198
	if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
		return;
1199

1200
	blk_mq_stop_hw_queue(hctx);
1201 1202
	kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
			&hctx->delay_work, msecs_to_jiffies(msecs));
1203 1204 1205
}
EXPORT_SYMBOL(blk_mq_delay_queue);

1206 1207 1208
static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
					    struct request *rq,
					    bool at_head)
1209
{
J
Jens Axboe 已提交
1210 1211
	struct blk_mq_ctx *ctx = rq->mq_ctx;

1212 1213
	trace_block_rq_insert(hctx->queue, rq);

1214 1215 1216 1217
	if (at_head)
		list_add(&rq->queuelist, &ctx->rq_list);
	else
		list_add_tail(&rq->queuelist, &ctx->rq_list);
1218
}
1219

1220 1221
void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
			     bool at_head)
1222 1223 1224
{
	struct blk_mq_ctx *ctx = rq->mq_ctx;

J
Jens Axboe 已提交
1225
	__blk_mq_insert_req_list(hctx, rq, at_head);
1226 1227 1228
	blk_mq_hctx_mark_pending(hctx, ctx);
}

1229 1230
void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
			    struct list_head *list)
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241

{
	/*
	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
	 * offline now
	 */
	spin_lock(&ctx->lock);
	while (!list_empty(list)) {
		struct request *rq;

		rq = list_first_entry(list, struct request, queuelist);
J
Jens Axboe 已提交
1242
		BUG_ON(rq->mq_ctx != ctx);
1243
		list_del_init(&rq->queuelist);
J
Jens Axboe 已提交
1244
		__blk_mq_insert_req_list(hctx, rq, false);
1245
	}
1246
	blk_mq_hctx_mark_pending(hctx, ctx);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
	spin_unlock(&ctx->lock);
}

static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
{
	struct request *rqa = container_of(a, struct request, queuelist);
	struct request *rqb = container_of(b, struct request, queuelist);

	return !(rqa->mq_ctx < rqb->mq_ctx ||
		 (rqa->mq_ctx == rqb->mq_ctx &&
		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
}

void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
{
	struct blk_mq_ctx *this_ctx;
	struct request_queue *this_q;
	struct request *rq;
	LIST_HEAD(list);
	LIST_HEAD(ctx_list);
	unsigned int depth;

	list_splice_init(&plug->mq_list, &list);

	list_sort(NULL, &list, plug_ctx_cmp);

	this_q = NULL;
	this_ctx = NULL;
	depth = 0;

	while (!list_empty(&list)) {
		rq = list_entry_rq(list.next);
		list_del_init(&rq->queuelist);
		BUG_ON(!rq->q);
		if (rq->mq_ctx != this_ctx) {
			if (this_ctx) {
1283 1284 1285 1286
				trace_block_unplug(this_q, depth, from_schedule);
				blk_mq_sched_insert_requests(this_q, this_ctx,
								&ctx_list,
								from_schedule);
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
			}

			this_ctx = rq->mq_ctx;
			this_q = rq->q;
			depth = 0;
		}

		depth++;
		list_add_tail(&rq->queuelist, &ctx_list);
	}

	/*
	 * If 'this_ctx' is set, we know we have entries to complete
	 * on 'ctx_list'. Do those.
	 */
	if (this_ctx) {
1303 1304 1305
		trace_block_unplug(this_q, depth, from_schedule);
		blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
						from_schedule);
1306 1307 1308 1309 1310 1311
	}
}

static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
{
	init_request_from_bio(rq, bio);
1312

1313
	blk_account_io_start(rq, true);
1314 1315
}

1316 1317 1318 1319 1320 1321
static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
{
	return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
		!blk_queue_nomerges(hctx->queue);
}

1322 1323 1324
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
1325
{
1326
	if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1327 1328 1329 1330 1331 1332 1333
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
1334 1335
		struct request_queue *q = hctx->queue;

1336 1337 1338 1339 1340
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}
1341

1342
		spin_unlock(&ctx->lock);
1343
		__blk_mq_finish_request(hctx, ctx, rq);
1344
		return true;
1345
	}
1346
}
1347

1348 1349
static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
1350 1351 1352 1353
	if (rq->tag != -1)
		return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);

	return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1354 1355
}

1356
static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1357 1358 1359 1360 1361 1362 1363
{
	struct request_queue *q = rq->q;
	struct blk_mq_queue_data bd = {
		.rq = rq,
		.list = NULL,
		.last = 1
	};
1364 1365 1366
	struct blk_mq_hw_ctx *hctx;
	blk_qc_t new_cookie;
	int ret;
1367

1368
	if (q->elevator)
1369 1370
		goto insert;

1371 1372 1373 1374 1375
	if (!blk_mq_get_driver_tag(rq, &hctx, false))
		goto insert;

	new_cookie = request_to_qc_t(hctx, rq);

1376 1377 1378 1379 1380 1381
	/*
	 * For OK queue, we are done. For error, kill it. Any other
	 * error (busy), just add it to our list as we previously
	 * would have done
	 */
	ret = q->mq_ops->queue_rq(hctx, &bd);
1382 1383
	if (ret == BLK_MQ_RQ_QUEUE_OK) {
		*cookie = new_cookie;
1384
		return;
1385
	}
1386

1387 1388 1389 1390 1391 1392
	__blk_mq_requeue_request(rq);

	if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
		*cookie = BLK_QC_T_NONE;
		rq->errors = -EIO;
		blk_mq_end_request(rq, rq->errors);
1393
		return;
1394
	}
1395

1396
insert:
1397
	blk_mq_sched_insert_request(rq, false, true, true);
1398 1399
}

1400 1401 1402 1403 1404
/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
1405
static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1406
{
1407
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1408
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1409
	struct blk_mq_alloc_data data = { .flags = 0 };
1410
	struct request *rq;
1411
	unsigned int request_count = 0, srcu_idx;
1412
	struct blk_plug *plug;
1413
	struct request *same_queue_rq = NULL;
1414
	blk_qc_t cookie;
J
Jens Axboe 已提交
1415
	unsigned int wb_acct;
1416 1417 1418 1419

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1420
		bio_io_error(bio);
1421
		return BLK_QC_T_NONE;
1422 1423
	}

1424 1425
	blk_queue_split(q, &bio, q->bio_split);

1426 1427 1428
	if (!is_flush_fua && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
		return BLK_QC_T_NONE;
1429

1430 1431 1432
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1433 1434
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1435 1436 1437
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1438 1439
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1440
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1441 1442 1443
	}

	wbt_track(&rq->issue_stat, wb_acct);
1444

1445
	cookie = request_to_qc_t(data.hctx, rq);
1446 1447 1448

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1449
		blk_mq_get_driver_tag(rq, NULL, true);
1450 1451 1452 1453
		blk_insert_flush(rq);
		goto run_queue;
	}

1454
	plug = current->plug;
1455 1456 1457 1458 1459
	/*
	 * If the driver supports defer issued based on 'last', then
	 * queue it up like normal since we can potentially save some
	 * CPU this way.
	 */
1460 1461 1462
	if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
	    !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
		struct request *old_rq = NULL;
1463 1464 1465 1466

		blk_mq_bio_to_request(rq, bio);

		/*
1467
		 * We do limited plugging. If the bio can be merged, do that.
1468 1469
		 * Otherwise the existing request in the plug list will be
		 * issued. So the plug list will have one request at most
1470
		 */
1471
		if (plug) {
1472 1473
			/*
			 * The plug list might get flushed before this. If that
1474 1475 1476
			 * happens, same_queue_rq is invalid and plug list is
			 * empty
			 */
1477 1478
			if (same_queue_rq && !list_empty(&plug->mq_list)) {
				old_rq = same_queue_rq;
1479
				list_del_init(&old_rq->queuelist);
1480
			}
1481 1482 1483 1484 1485
			list_add_tail(&rq->queuelist, &plug->mq_list);
		} else /* is_sync */
			old_rq = rq;
		blk_mq_put_ctx(data.ctx);
		if (!old_rq)
1486
			goto done;
1487 1488 1489

		if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
			rcu_read_lock();
1490
			blk_mq_try_issue_directly(old_rq, &cookie);
1491 1492 1493
			rcu_read_unlock();
		} else {
			srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1494
			blk_mq_try_issue_directly(old_rq, &cookie);
1495 1496
			srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
		}
1497
		goto done;
1498 1499
	}

1500 1501 1502
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1503 1504
		blk_mq_sched_insert_request(rq, false, true,
						!is_sync || is_flush_fua);
1505 1506
		goto done;
	}
1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
	blk_mq_put_ctx(data.ctx);
1518 1519
done:
	return cookie;
1520 1521 1522 1523 1524 1525
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
1526
static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1527
{
1528
	const int is_sync = op_is_sync(bio->bi_opf);
J
Jens Axboe 已提交
1529
	const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1530 1531
	struct blk_plug *plug;
	unsigned int request_count = 0;
1532
	struct blk_mq_alloc_data data = { .flags = 0 };
1533
	struct request *rq;
1534
	blk_qc_t cookie;
J
Jens Axboe 已提交
1535
	unsigned int wb_acct;
1536 1537 1538 1539

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1540
		bio_io_error(bio);
1541
		return BLK_QC_T_NONE;
1542 1543
	}

1544 1545
	blk_queue_split(q, &bio, q->bio_split);

1546 1547 1548 1549 1550
	if (!is_flush_fua && !blk_queue_nomerges(q)) {
		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
			return BLK_QC_T_NONE;
	} else
		request_count = blk_plug_queued_count(q);
1551

1552 1553 1554
	if (blk_mq_sched_bio_merge(q, bio))
		return BLK_QC_T_NONE;

J
Jens Axboe 已提交
1555 1556
	wb_acct = wbt_wait(q->rq_wb, bio, NULL);

1557 1558 1559
	trace_block_getrq(q, bio, bio->bi_opf);

	rq = blk_mq_sched_get_request(q, bio, bio->bi_opf, &data);
J
Jens Axboe 已提交
1560 1561
	if (unlikely(!rq)) {
		__wbt_done(q->rq_wb, wb_acct);
1562
		return BLK_QC_T_NONE;
J
Jens Axboe 已提交
1563 1564 1565
	}

	wbt_track(&rq->issue_stat, wb_acct);
1566

1567
	cookie = request_to_qc_t(data.hctx, rq);
1568 1569 1570

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
1571
		blk_mq_get_driver_tag(rq, NULL, true);
1572 1573 1574 1575 1576 1577 1578 1579 1580
		blk_insert_flush(rq);
		goto run_queue;
	}

	/*
	 * A task plug currently exists. Since this is completely lockless,
	 * utilize that to temporarily store requests until the task is
	 * either done or scheduled away.
	 */
1581 1582
	plug = current->plug;
	if (plug) {
1583 1584
		struct request *last = NULL;

1585
		blk_mq_bio_to_request(rq, bio);
1586 1587 1588 1589 1590 1591 1592

		/*
		 * @request_count may become stale because of schedule
		 * out, so check the list again.
		 */
		if (list_empty(&plug->mq_list))
			request_count = 0;
M
Ming Lei 已提交
1593
		if (!request_count)
1594
			trace_block_plug(q);
1595 1596
		else
			last = list_entry_rq(plug->mq_list.prev);
1597 1598 1599

		blk_mq_put_ctx(data.ctx);

1600 1601
		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1602 1603
			blk_flush_plug_list(plug, false);
			trace_block_plug(q);
1604
		}
1605

1606
		list_add_tail(&rq->queuelist, &plug->mq_list);
1607
		return cookie;
1608 1609
	}

1610 1611 1612
	if (q->elevator) {
		blk_mq_put_ctx(data.ctx);
		blk_mq_bio_to_request(rq, bio);
1613 1614
		blk_mq_sched_insert_request(rq, false, true,
						!is_sync || is_flush_fua);
1615 1616
		goto done;
	}
1617 1618 1619 1620 1621 1622 1623 1624 1625
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1626 1627
	}

1628
	blk_mq_put_ctx(data.ctx);
1629
done:
1630
	return cookie;
1631 1632
}

1633 1634
void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx)
1635
{
1636
	struct page *page;
1637

1638
	if (tags->rqs && set->ops->exit_request) {
1639
		int i;
1640

1641
		for (i = 0; i < tags->nr_tags; i++) {
J
Jens Axboe 已提交
1642 1643 1644
			struct request *rq = tags->static_rqs[i];

			if (!rq)
1645
				continue;
J
Jens Axboe 已提交
1646
			set->ops->exit_request(set->driver_data, rq,
1647
						hctx_idx, i);
J
Jens Axboe 已提交
1648
			tags->static_rqs[i] = NULL;
1649
		}
1650 1651
	}

1652 1653
	while (!list_empty(&tags->page_list)) {
		page = list_first_entry(&tags->page_list, struct page, lru);
1654
		list_del_init(&page->lru);
1655 1656 1657 1658 1659
		/*
		 * Remove kmemleak object previously allocated in
		 * blk_mq_init_rq_map().
		 */
		kmemleak_free(page_address(page));
1660 1661
		__free_pages(page, page->private);
	}
1662
}
1663

1664 1665
void blk_mq_free_rq_map(struct blk_mq_tags *tags)
{
1666
	kfree(tags->rqs);
1667
	tags->rqs = NULL;
J
Jens Axboe 已提交
1668 1669
	kfree(tags->static_rqs);
	tags->static_rqs = NULL;
1670

1671
	blk_mq_free_tags(tags);
1672 1673
}

1674 1675 1676 1677
struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
					unsigned int hctx_idx,
					unsigned int nr_tags,
					unsigned int reserved_tags)
1678
{
1679
	struct blk_mq_tags *tags;
1680

1681
	tags = blk_mq_init_tags(nr_tags, reserved_tags,
S
Shaohua Li 已提交
1682 1683
				set->numa_node,
				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1684 1685
	if (!tags)
		return NULL;
1686

1687
	tags->rqs = kzalloc_node(nr_tags * sizeof(struct request *),
1688
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1689
				 set->numa_node);
1690 1691 1692 1693
	if (!tags->rqs) {
		blk_mq_free_tags(tags);
		return NULL;
	}
1694

J
Jens Axboe 已提交
1695 1696 1697 1698 1699 1700 1701 1702 1703
	tags->static_rqs = kzalloc_node(nr_tags * sizeof(struct request *),
				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
				 set->numa_node);
	if (!tags->static_rqs) {
		kfree(tags->rqs);
		blk_mq_free_tags(tags);
		return NULL;
	}

1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719
	return tags;
}

static size_t order_to_size(unsigned int order)
{
	return (size_t)PAGE_SIZE << order;
}

int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
		     unsigned int hctx_idx, unsigned int depth)
{
	unsigned int i, j, entries_per_page, max_order = 4;
	size_t rq_size, left;

	INIT_LIST_HEAD(&tags->page_list);

1720 1721 1722 1723
	/*
	 * rq_size is the size of the request plus driver payload, rounded
	 * to the cacheline size
	 */
1724
	rq_size = round_up(sizeof(struct request) + set->cmd_size,
1725
				cache_line_size());
1726
	left = rq_size * depth;
1727

1728
	for (i = 0; i < depth; ) {
1729 1730 1731 1732 1733
		int this_order = max_order;
		struct page *page;
		int to_do;
		void *p;

1734
		while (this_order && left < order_to_size(this_order - 1))
1735 1736 1737
			this_order--;

		do {
1738
			page = alloc_pages_node(set->numa_node,
1739
				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1740
				this_order);
1741 1742 1743 1744 1745 1746 1747 1748 1749
			if (page)
				break;
			if (!this_order--)
				break;
			if (order_to_size(this_order) < rq_size)
				break;
		} while (1);

		if (!page)
1750
			goto fail;
1751 1752

		page->private = this_order;
1753
		list_add_tail(&page->lru, &tags->page_list);
1754 1755

		p = page_address(page);
1756 1757 1758 1759
		/*
		 * Allow kmemleak to scan these pages as they contain pointers
		 * to additional allocations like via ops->init_request().
		 */
1760
		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1761
		entries_per_page = order_to_size(this_order) / rq_size;
1762
		to_do = min(entries_per_page, depth - i);
1763 1764
		left -= to_do * rq_size;
		for (j = 0; j < to_do; j++) {
J
Jens Axboe 已提交
1765 1766 1767
			struct request *rq = p;

			tags->static_rqs[i] = rq;
1768 1769
			if (set->ops->init_request) {
				if (set->ops->init_request(set->driver_data,
J
Jens Axboe 已提交
1770
						rq, hctx_idx, i,
1771
						set->numa_node)) {
J
Jens Axboe 已提交
1772
					tags->static_rqs[i] = NULL;
1773
					goto fail;
1774
				}
1775 1776
			}

1777 1778 1779 1780
			p += rq_size;
			i++;
		}
	}
1781
	return 0;
1782

1783
fail:
1784 1785
	blk_mq_free_rqs(set, tags, hctx_idx);
	return -ENOMEM;
1786 1787
}

J
Jens Axboe 已提交
1788 1789 1790 1791 1792
/*
 * 'cpu' is going away. splice any existing rq_list entries from this
 * software queue to the hw queue dispatch list, and ensure that it
 * gets run.
 */
1793
static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1794
{
1795
	struct blk_mq_hw_ctx *hctx;
1796 1797 1798
	struct blk_mq_ctx *ctx;
	LIST_HEAD(tmp);

1799
	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
J
Jens Axboe 已提交
1800
	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1801 1802 1803 1804 1805 1806 1807 1808 1809

	spin_lock(&ctx->lock);
	if (!list_empty(&ctx->rq_list)) {
		list_splice_init(&ctx->rq_list, &tmp);
		blk_mq_hctx_clear_pending(hctx, ctx);
	}
	spin_unlock(&ctx->lock);

	if (list_empty(&tmp))
1810
		return 0;
1811

J
Jens Axboe 已提交
1812 1813 1814
	spin_lock(&hctx->lock);
	list_splice_tail_init(&tmp, &hctx->dispatch);
	spin_unlock(&hctx->lock);
1815 1816

	blk_mq_run_hw_queue(hctx, true);
1817
	return 0;
1818 1819
}

1820
static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1821
{
1822 1823
	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
					    &hctx->cpuhp_dead);
1824 1825
}

1826
/* hctx->ctxs will be freed in queue's release handler */
1827 1828 1829 1830
static void blk_mq_exit_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
{
1831 1832
	unsigned flush_start_tag = set->queue_depth;

1833 1834
	blk_mq_tag_idle(hctx);

1835 1836 1837 1838 1839
	if (set->ops->exit_request)
		set->ops->exit_request(set->driver_data,
				       hctx->fq->flush_rq, hctx_idx,
				       flush_start_tag + hctx_idx);

1840 1841 1842
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);

1843 1844 1845
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		cleanup_srcu_struct(&hctx->queue_rq_srcu);

1846
	blk_mq_remove_cpuhp(hctx);
1847
	blk_free_flush_queue(hctx->fq);
1848
	sbitmap_free(&hctx->ctx_map);
1849 1850
}

M
Ming Lei 已提交
1851 1852 1853 1854 1855 1856 1857 1858 1859
static void blk_mq_exit_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set, int nr_queue)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

	queue_for_each_hw_ctx(q, hctx, i) {
		if (i == nr_queue)
			break;
1860
		blk_mq_exit_hctx(q, set, hctx, i);
M
Ming Lei 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869
	}
}

static void blk_mq_free_hw_queues(struct request_queue *q,
		struct blk_mq_tag_set *set)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

1870
	queue_for_each_hw_ctx(q, hctx, i)
M
Ming Lei 已提交
1871 1872 1873
		free_cpumask_var(hctx->cpumask);
}

1874 1875 1876
static int blk_mq_init_hctx(struct request_queue *q,
		struct blk_mq_tag_set *set,
		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1877
{
1878
	int node;
1879
	unsigned flush_start_tag = set->queue_depth;
1880 1881 1882 1883 1884

	node = hctx->numa_node;
	if (node == NUMA_NO_NODE)
		node = hctx->numa_node = set->numa_node;

1885
	INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1886 1887 1888 1889 1890
	INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
	spin_lock_init(&hctx->lock);
	INIT_LIST_HEAD(&hctx->dispatch);
	hctx->queue = q;
	hctx->queue_num = hctx_idx;
1891
	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1892

1893
	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1894 1895

	hctx->tags = set->tags[hctx_idx];
1896 1897

	/*
1898 1899
	 * Allocate space for all possible cpus to avoid allocation at
	 * runtime
1900
	 */
1901 1902 1903 1904
	hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
					GFP_KERNEL, node);
	if (!hctx->ctxs)
		goto unregister_cpu_notifier;
1905

1906 1907
	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
			      node))
1908
		goto free_ctxs;
1909

1910
	hctx->nr_ctx = 0;
1911

1912 1913 1914
	if (set->ops->init_hctx &&
	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
		goto free_bitmap;
1915

1916 1917 1918
	hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
	if (!hctx->fq)
		goto exit_hctx;
1919

1920 1921 1922 1923 1924
	if (set->ops->init_request &&
	    set->ops->init_request(set->driver_data,
				   hctx->fq->flush_rq, hctx_idx,
				   flush_start_tag + hctx_idx, node))
		goto free_fq;
1925

1926 1927 1928
	if (hctx->flags & BLK_MQ_F_BLOCKING)
		init_srcu_struct(&hctx->queue_rq_srcu);

1929
	return 0;
1930

1931 1932 1933 1934 1935
 free_fq:
	kfree(hctx->fq);
 exit_hctx:
	if (set->ops->exit_hctx)
		set->ops->exit_hctx(hctx, hctx_idx);
1936
 free_bitmap:
1937
	sbitmap_free(&hctx->ctx_map);
1938 1939 1940
 free_ctxs:
	kfree(hctx->ctxs);
 unregister_cpu_notifier:
1941
	blk_mq_remove_cpuhp(hctx);
1942 1943
	return -1;
}
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

static void blk_mq_init_cpu_queues(struct request_queue *q,
				   unsigned int nr_hw_queues)
{
	unsigned int i;

	for_each_possible_cpu(i) {
		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
		struct blk_mq_hw_ctx *hctx;

		memset(__ctx, 0, sizeof(*__ctx));
		__ctx->cpu = i;
		spin_lock_init(&__ctx->lock);
		INIT_LIST_HEAD(&__ctx->rq_list);
		__ctx->queue = q;
1959 1960
		blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
		blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1961 1962 1963 1964 1965

		/* If the cpu isn't online, the cpu is mapped to first hctx */
		if (!cpu_online(i))
			continue;

C
Christoph Hellwig 已提交
1966
		hctx = blk_mq_map_queue(q, i);
1967

1968 1969 1970 1971 1972
		/*
		 * Set local node, IFF we have more than one hw queue. If
		 * not, we remain on the home node of the device
		 */
		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1973
			hctx->numa_node = local_memory_node(cpu_to_node(i));
1974 1975 1976
	}
}

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
{
	int ret = 0;

	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
					set->queue_depth, set->reserved_tags);
	if (!set->tags[hctx_idx])
		return false;

	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
				set->queue_depth);
	if (!ret)
		return true;

	blk_mq_free_rq_map(set->tags[hctx_idx]);
	set->tags[hctx_idx] = NULL;
	return false;
}

static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
					 unsigned int hctx_idx)
{
1999 2000 2001 2002 2003
	if (set->tags[hctx_idx]) {
		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
		blk_mq_free_rq_map(set->tags[hctx_idx]);
		set->tags[hctx_idx] = NULL;
	}
2004 2005
}

2006 2007
static void blk_mq_map_swqueue(struct request_queue *q,
			       const struct cpumask *online_mask)
2008
{
2009
	unsigned int i, hctx_idx;
2010 2011
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
M
Ming Lei 已提交
2012
	struct blk_mq_tag_set *set = q->tag_set;
2013

2014 2015 2016 2017 2018
	/*
	 * Avoid others reading imcomplete hctx->cpumask through sysfs
	 */
	mutex_lock(&q->sysfs_lock);

2019
	queue_for_each_hw_ctx(q, hctx, i) {
2020
		cpumask_clear(hctx->cpumask);
2021 2022 2023 2024 2025 2026
		hctx->nr_ctx = 0;
	}

	/*
	 * Map software to hardware queues
	 */
2027
	for_each_possible_cpu(i) {
2028
		/* If the cpu isn't online, the cpu is mapped to first hctx */
2029
		if (!cpumask_test_cpu(i, online_mask))
2030 2031
			continue;

2032 2033
		hctx_idx = q->mq_map[i];
		/* unmapped hw queue can be remapped after CPU topo changed */
2034 2035
		if (!set->tags[hctx_idx] &&
		    !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2036 2037 2038 2039 2040 2041
			/*
			 * If tags initialization fail for some hctx,
			 * that hctx won't be brought online.  In this
			 * case, remap the current ctx to hctx[0] which
			 * is guaranteed to always have tags allocated
			 */
2042
			q->mq_map[i] = 0;
2043 2044
		}

2045
		ctx = per_cpu_ptr(q->queue_ctx, i);
C
Christoph Hellwig 已提交
2046
		hctx = blk_mq_map_queue(q, i);
K
Keith Busch 已提交
2047

2048
		cpumask_set_cpu(i, hctx->cpumask);
2049 2050 2051
		ctx->index_hw = hctx->nr_ctx;
		hctx->ctxs[hctx->nr_ctx++] = ctx;
	}
2052

2053 2054
	mutex_unlock(&q->sysfs_lock);

2055
	queue_for_each_hw_ctx(q, hctx, i) {
2056
		/*
2057 2058
		 * If no software queues are mapped to this hardware queue,
		 * disable it and free the request entries.
2059 2060
		 */
		if (!hctx->nr_ctx) {
2061 2062 2063 2064
			/* Never unmap queue 0.  We need it as a
			 * fallback in case of a new remap fails
			 * allocation
			 */
2065 2066 2067
			if (i && set->tags[i])
				blk_mq_free_map_and_requests(set, i);

M
Ming Lei 已提交
2068
			hctx->tags = NULL;
2069 2070 2071
			continue;
		}

M
Ming Lei 已提交
2072 2073 2074
		hctx->tags = set->tags[i];
		WARN_ON(!hctx->tags);

2075 2076 2077 2078 2079
		/*
		 * Set the map size to the number of mapped software queues.
		 * This is more accurate and more efficient than looping
		 * over all possibly mapped software queues.
		 */
2080
		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2081

2082 2083 2084
		/*
		 * Initialize batch roundrobin counts
		 */
2085 2086 2087
		hctx->next_cpu = cpumask_first(hctx->cpumask);
		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
	}
2088 2089
}

2090
static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2091 2092 2093 2094
{
	struct blk_mq_hw_ctx *hctx;
	int i;

2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	queue_for_each_hw_ctx(q, hctx, i) {
		if (shared)
			hctx->flags |= BLK_MQ_F_TAG_SHARED;
		else
			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
	}
}

static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
{
	struct request_queue *q;
2106 2107 2108

	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_freeze_queue(q);
2109
		queue_set_hctx_shared(q, shared);
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
		blk_mq_unfreeze_queue(q);
	}
}

static void blk_mq_del_queue_tag_set(struct request_queue *q)
{
	struct blk_mq_tag_set *set = q->tag_set;

	mutex_lock(&set->tag_list_lock);
	list_del_init(&q->tag_set_list);
2120 2121 2122 2123 2124 2125
	if (list_is_singular(&set->tag_list)) {
		/* just transitioned to unshared */
		set->flags &= ~BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, false);
	}
2126 2127 2128 2129 2130 2131 2132 2133 2134
	mutex_unlock(&set->tag_list_lock);
}

static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
				     struct request_queue *q)
{
	q->tag_set = set;

	mutex_lock(&set->tag_list_lock);
2135 2136 2137 2138 2139 2140 2141 2142 2143

	/* Check to see if we're transitioning to shared (from 1 to 2 queues). */
	if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
		set->flags |= BLK_MQ_F_TAG_SHARED;
		/* update existing queue */
		blk_mq_update_tag_set_depth(set, true);
	}
	if (set->flags & BLK_MQ_F_TAG_SHARED)
		queue_set_hctx_shared(q, true);
2144
	list_add_tail(&q->tag_set_list, &set->tag_list);
2145

2146 2147 2148
	mutex_unlock(&set->tag_list_lock);
}

2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
/*
 * It is the actual release handler for mq, but we do it from
 * request queue's release handler for avoiding use-after-free
 * and headache because q->mq_kobj shouldn't have been introduced,
 * but we can't group ctx/kctx kobj without it.
 */
void blk_mq_release(struct request_queue *q)
{
	struct blk_mq_hw_ctx *hctx;
	unsigned int i;

2160 2161
	blk_mq_sched_teardown(q);

2162
	/* hctx kobj stays in hctx */
2163 2164 2165 2166
	queue_for_each_hw_ctx(q, hctx, i) {
		if (!hctx)
			continue;
		kfree(hctx->ctxs);
2167
		kfree(hctx);
2168
	}
2169

2170 2171
	q->mq_map = NULL;

2172 2173 2174 2175 2176 2177
	kfree(q->queue_hw_ctx);

	/* ctx kobj stays in queue_ctx */
	free_percpu(q->queue_ctx);
}

2178
struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
{
	struct request_queue *uninit_q, *q;

	uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
	if (!uninit_q)
		return ERR_PTR(-ENOMEM);

	q = blk_mq_init_allocated_queue(set, uninit_q);
	if (IS_ERR(q))
		blk_cleanup_queue(uninit_q);

	return q;
}
EXPORT_SYMBOL(blk_mq_init_queue);

K
Keith Busch 已提交
2194 2195
static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
						struct request_queue *q)
2196
{
K
Keith Busch 已提交
2197 2198
	int i, j;
	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2199

K
Keith Busch 已提交
2200
	blk_mq_sysfs_unregister(q);
2201
	for (i = 0; i < set->nr_hw_queues; i++) {
K
Keith Busch 已提交
2202
		int node;
2203

K
Keith Busch 已提交
2204 2205 2206 2207
		if (hctxs[i])
			continue;

		node = blk_mq_hw_queue_to_node(q->mq_map, i);
2208 2209
		hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
					GFP_KERNEL, node);
2210
		if (!hctxs[i])
K
Keith Busch 已提交
2211
			break;
2212

2213
		if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
K
Keith Busch 已提交
2214 2215 2216 2217 2218
						node)) {
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
2219

2220
		atomic_set(&hctxs[i]->nr_active, 0);
2221
		hctxs[i]->numa_node = node;
2222
		hctxs[i]->queue_num = i;
K
Keith Busch 已提交
2223 2224 2225 2226 2227 2228 2229 2230

		if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
			free_cpumask_var(hctxs[i]->cpumask);
			kfree(hctxs[i]);
			hctxs[i] = NULL;
			break;
		}
		blk_mq_hctx_kobj_init(hctxs[i]);
2231
	}
K
Keith Busch 已提交
2232 2233 2234 2235
	for (j = i; j < q->nr_hw_queues; j++) {
		struct blk_mq_hw_ctx *hctx = hctxs[j];

		if (hctx) {
2236 2237
			if (hctx->tags)
				blk_mq_free_map_and_requests(set, j);
K
Keith Busch 已提交
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
			blk_mq_exit_hctx(q, set, hctx, j);
			free_cpumask_var(hctx->cpumask);
			kobject_put(&hctx->kobj);
			kfree(hctx->ctxs);
			kfree(hctx);
			hctxs[j] = NULL;

		}
	}
	q->nr_hw_queues = i;
	blk_mq_sysfs_register(q);
}

struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
						  struct request_queue *q)
{
M
Ming Lei 已提交
2254 2255 2256
	/* mark the queue as mq asap */
	q->mq_ops = set->ops;

K
Keith Busch 已提交
2257 2258
	q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
	if (!q->queue_ctx)
M
Ming Lin 已提交
2259
		goto err_exit;
K
Keith Busch 已提交
2260 2261 2262 2263 2264 2265

	q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
						GFP_KERNEL, set->numa_node);
	if (!q->queue_hw_ctx)
		goto err_percpu;

2266
	q->mq_map = set->mq_map;
K
Keith Busch 已提交
2267 2268 2269 2270

	blk_mq_realloc_hw_ctxs(set, q);
	if (!q->nr_hw_queues)
		goto err_hctxs;
2271

2272
	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2273
	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2274 2275 2276

	q->nr_queues = nr_cpu_ids;

2277
	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2278

2279 2280 2281
	if (!(set->flags & BLK_MQ_F_SG_MERGE))
		q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;

2282 2283
	q->sg_reserved_size = INT_MAX;

2284
	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2285 2286 2287
	INIT_LIST_HEAD(&q->requeue_list);
	spin_lock_init(&q->requeue_lock);

2288 2289 2290 2291 2292
	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

2293 2294 2295 2296 2297
	/*
	 * Do this after blk_queue_make_request() overrides it...
	 */
	q->nr_requests = set->queue_depth;

2298 2299 2300 2301 2302
	/*
	 * Default to classic polling
	 */
	q->poll_nsec = -1;

2303 2304
	if (set->ops->complete)
		blk_queue_softirq_done(q, set->ops->complete);
2305

2306
	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2307

2308
	get_online_cpus();
2309 2310
	mutex_lock(&all_q_mutex);

2311
	list_add_tail(&q->all_q_node, &all_q_list);
2312
	blk_mq_add_queue_tag_set(set, q);
2313
	blk_mq_map_swqueue(q, cpu_online_mask);
2314

2315
	mutex_unlock(&all_q_mutex);
2316
	put_online_cpus();
2317

2318 2319 2320 2321 2322 2323 2324 2325
	if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
		int ret;

		ret = blk_mq_sched_init(q);
		if (ret)
			return ERR_PTR(ret);
	}

2326
	return q;
2327

2328
err_hctxs:
K
Keith Busch 已提交
2329
	kfree(q->queue_hw_ctx);
2330
err_percpu:
K
Keith Busch 已提交
2331
	free_percpu(q->queue_ctx);
M
Ming Lin 已提交
2332 2333
err_exit:
	q->mq_ops = NULL;
2334 2335
	return ERR_PTR(-ENOMEM);
}
2336
EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2337 2338 2339

void blk_mq_free_queue(struct request_queue *q)
{
M
Ming Lei 已提交
2340
	struct blk_mq_tag_set	*set = q->tag_set;
2341

2342 2343 2344 2345
	mutex_lock(&all_q_mutex);
	list_del_init(&q->all_q_node);
	mutex_unlock(&all_q_mutex);

J
Jens Axboe 已提交
2346 2347
	wbt_exit(q);

2348 2349
	blk_mq_del_queue_tag_set(q);

M
Ming Lei 已提交
2350 2351
	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
	blk_mq_free_hw_queues(q, set);
2352 2353 2354
}

/* Basically redo blk_mq_init_queue with queue frozen */
2355 2356
static void blk_mq_queue_reinit(struct request_queue *q,
				const struct cpumask *online_mask)
2357
{
2358
	WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2359

2360 2361
	blk_mq_sysfs_unregister(q);

2362 2363 2364 2365 2366 2367
	/*
	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
	 * we should change hctx numa_node according to new topology (this
	 * involves free and re-allocate memory, worthy doing?)
	 */

2368
	blk_mq_map_swqueue(q, online_mask);
2369

2370
	blk_mq_sysfs_register(q);
2371 2372
}

2373 2374 2375 2376 2377 2378 2379 2380
/*
 * New online cpumask which is going to be set in this hotplug event.
 * Declare this cpumasks as global as cpu-hotplug operation is invoked
 * one-by-one and dynamically allocating this could result in a failure.
 */
static struct cpumask cpuhp_online_new;

static void blk_mq_queue_reinit_work(void)
2381 2382 2383 2384
{
	struct request_queue *q;

	mutex_lock(&all_q_mutex);
2385 2386 2387 2388 2389 2390 2391 2392 2393
	/*
	 * We need to freeze and reinit all existing queues.  Freezing
	 * involves synchronous wait for an RCU grace period and doing it
	 * one by one may take a long time.  Start freezing all queues in
	 * one swoop and then wait for the completions so that freezing can
	 * take place in parallel.
	 */
	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_freeze_queue_start(q);
2394
	list_for_each_entry(q, &all_q_list, all_q_node)
2395 2396
		blk_mq_freeze_queue_wait(q);

2397
	list_for_each_entry(q, &all_q_list, all_q_node)
2398
		blk_mq_queue_reinit(q, &cpuhp_online_new);
2399 2400 2401 2402

	list_for_each_entry(q, &all_q_list, all_q_node)
		blk_mq_unfreeze_queue(q);

2403
	mutex_unlock(&all_q_mutex);
2404 2405 2406 2407
}

static int blk_mq_queue_reinit_dead(unsigned int cpu)
{
2408
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423
	blk_mq_queue_reinit_work();
	return 0;
}

/*
 * Before hotadded cpu starts handling requests, new mappings must be
 * established.  Otherwise, these requests in hw queue might never be
 * dispatched.
 *
 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
 * for CPU0, and ctx1 for CPU1).
 *
 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
 *
2424 2425 2426 2427
 * And then while running hw queue, blk_mq_flush_busy_ctxs() finds bit0 is set
 * in pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list is
 * ignored.
2428 2429 2430 2431 2432 2433 2434
 */
static int blk_mq_queue_reinit_prepare(unsigned int cpu)
{
	cpumask_copy(&cpuhp_online_new, cpu_online_mask);
	cpumask_set_cpu(cpu, &cpuhp_online_new);
	blk_mq_queue_reinit_work();
	return 0;
2435 2436
}

2437 2438 2439 2440
static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	int i;

2441 2442
	for (i = 0; i < set->nr_hw_queues; i++)
		if (!__blk_mq_alloc_rq_map(set, i))
2443 2444 2445 2446 2447 2448
			goto out_unwind;

	return 0;

out_unwind:
	while (--i >= 0)
2449
		blk_mq_free_rq_map(set->tags[i]);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

	return -ENOMEM;
}

/*
 * Allocate the request maps associated with this tag_set. Note that this
 * may reduce the depth asked for, if memory is tight. set->queue_depth
 * will be updated to reflect the allocated depth.
 */
static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
{
	unsigned int depth;
	int err;

	depth = set->queue_depth;
	do {
		err = __blk_mq_alloc_rq_maps(set);
		if (!err)
			break;

		set->queue_depth >>= 1;
		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
			err = -ENOMEM;
			break;
		}
	} while (set->queue_depth);

	if (!set->queue_depth || err) {
		pr_err("blk-mq: failed to allocate request map\n");
		return -ENOMEM;
	}

	if (depth != set->queue_depth)
		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
						depth, set->queue_depth);

	return 0;
}

2489 2490 2491 2492 2493 2494
/*
 * Alloc a tag set to be associated with one or more request queues.
 * May fail with EINVAL for various error conditions. May adjust the
 * requested depth down, if if it too large. In that case, the set
 * value will be stored in set->queue_depth.
 */
2495 2496
int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
{
2497 2498
	int ret;

B
Bart Van Assche 已提交
2499 2500
	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);

2501 2502
	if (!set->nr_hw_queues)
		return -EINVAL;
2503
	if (!set->queue_depth)
2504 2505 2506 2507
		return -EINVAL;
	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
		return -EINVAL;

C
Christoph Hellwig 已提交
2508
	if (!set->ops->queue_rq)
2509 2510
		return -EINVAL;

2511 2512 2513 2514 2515
	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
		pr_info("blk-mq: reduced tag depth to %u\n",
			BLK_MQ_MAX_DEPTH);
		set->queue_depth = BLK_MQ_MAX_DEPTH;
	}
2516

2517 2518 2519 2520 2521 2522 2523 2524 2525
	/*
	 * If a crashdump is active, then we are potentially in a very
	 * memory constrained environment. Limit us to 1 queue and
	 * 64 tags to prevent using too much memory.
	 */
	if (is_kdump_kernel()) {
		set->nr_hw_queues = 1;
		set->queue_depth = min(64U, set->queue_depth);
	}
K
Keith Busch 已提交
2526 2527 2528 2529 2530
	/*
	 * There is no use for more h/w queues than cpus.
	 */
	if (set->nr_hw_queues > nr_cpu_ids)
		set->nr_hw_queues = nr_cpu_ids;
2531

K
Keith Busch 已提交
2532
	set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2533 2534
				 GFP_KERNEL, set->numa_node);
	if (!set->tags)
2535
		return -ENOMEM;
2536

2537 2538 2539
	ret = -ENOMEM;
	set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
			GFP_KERNEL, set->numa_node);
2540 2541 2542
	if (!set->mq_map)
		goto out_free_tags;

2543 2544 2545 2546 2547 2548 2549 2550 2551
	if (set->ops->map_queues)
		ret = set->ops->map_queues(set);
	else
		ret = blk_mq_map_queues(set);
	if (ret)
		goto out_free_mq_map;

	ret = blk_mq_alloc_rq_maps(set);
	if (ret)
2552
		goto out_free_mq_map;
2553

2554 2555 2556
	mutex_init(&set->tag_list_lock);
	INIT_LIST_HEAD(&set->tag_list);

2557
	return 0;
2558 2559 2560 2561 2562

out_free_mq_map:
	kfree(set->mq_map);
	set->mq_map = NULL;
out_free_tags:
2563 2564
	kfree(set->tags);
	set->tags = NULL;
2565
	return ret;
2566 2567 2568 2569 2570 2571 2572
}
EXPORT_SYMBOL(blk_mq_alloc_tag_set);

void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
{
	int i;

2573 2574
	for (i = 0; i < nr_cpu_ids; i++)
		blk_mq_free_map_and_requests(set, i);
2575

2576 2577 2578
	kfree(set->mq_map);
	set->mq_map = NULL;

M
Ming Lei 已提交
2579
	kfree(set->tags);
2580
	set->tags = NULL;
2581 2582 2583
}
EXPORT_SYMBOL(blk_mq_free_tag_set);

2584 2585 2586 2587 2588 2589
int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
{
	struct blk_mq_tag_set *set = q->tag_set;
	struct blk_mq_hw_ctx *hctx;
	int i, ret;

2590
	if (!set)
2591 2592
		return -EINVAL;

2593 2594 2595
	blk_mq_freeze_queue(q);
	blk_mq_quiesce_queue(q);

2596 2597
	ret = 0;
	queue_for_each_hw_ctx(q, hctx, i) {
2598 2599
		if (!hctx->tags)
			continue;
2600 2601 2602 2603
		/*
		 * If we're using an MQ scheduler, just update the scheduler
		 * queue depth. This is similar to what the old code would do.
		 */
2604 2605 2606 2607 2608 2609 2610 2611
		if (!hctx->sched_tags) {
			ret = blk_mq_tag_update_depth(hctx, &hctx->tags,
							min(nr, set->queue_depth),
							false);
		} else {
			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
							nr, true);
		}
2612 2613 2614 2615 2616 2617 2618
		if (ret)
			break;
	}

	if (!ret)
		q->nr_requests = nr;

2619 2620 2621
	blk_mq_unfreeze_queue(q);
	blk_mq_start_stopped_hw_queues(q, true);

2622 2623 2624
	return ret;
}

K
Keith Busch 已提交
2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
{
	struct request_queue *q;

	if (nr_hw_queues > nr_cpu_ids)
		nr_hw_queues = nr_cpu_ids;
	if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
		return;

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_freeze_queue(q);

	set->nr_hw_queues = nr_hw_queues;
	list_for_each_entry(q, &set->tag_list, tag_set_list) {
		blk_mq_realloc_hw_ctxs(set, q);

		if (q->nr_hw_queues > 1)
			blk_queue_make_request(q, blk_mq_make_request);
		else
			blk_queue_make_request(q, blk_sq_make_request);

		blk_mq_queue_reinit(q, cpu_online_mask);
	}

	list_for_each_entry(q, &set->tag_list, tag_set_list)
		blk_mq_unfreeze_queue(q);
}
EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
				       struct blk_mq_hw_ctx *hctx,
				       struct request *rq)
{
	struct blk_rq_stat stat[2];
	unsigned long ret = 0;

	/*
	 * If stats collection isn't on, don't sleep but turn it on for
	 * future users
	 */
	if (!blk_stat_enable(q))
		return 0;

	/*
	 * We don't have to do this once per IO, should optimize this
	 * to just use the current window of stats until it changes
	 */
	memset(&stat, 0, sizeof(stat));
	blk_hctx_stat_get(hctx, stat);

	/*
	 * As an optimistic guess, use half of the mean service time
	 * for this type of request. We can (and should) make this smarter.
	 * For instance, if the completion latencies are tight, we can
	 * get closer than just half the mean. This is especially
	 * important on devices where the completion latencies are longer
	 * than ~10 usec.
	 */
	if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
		ret = (stat[BLK_STAT_READ].mean + 1) / 2;
	else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
		ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;

	return ret;
}

2691
static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2692
				     struct blk_mq_hw_ctx *hctx,
2693 2694 2695 2696
				     struct request *rq)
{
	struct hrtimer_sleeper hs;
	enum hrtimer_mode mode;
2697
	unsigned int nsecs;
2698 2699
	ktime_t kt;

2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
	if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
		return false;

	/*
	 * poll_nsec can be:
	 *
	 * -1:	don't ever hybrid sleep
	 *  0:	use half of prev avg
	 * >0:	use this specific value
	 */
	if (q->poll_nsec == -1)
		return false;
	else if (q->poll_nsec > 0)
		nsecs = q->poll_nsec;
	else
		nsecs = blk_mq_poll_nsecs(q, hctx, rq);

	if (!nsecs)
2718 2719 2720 2721 2722 2723 2724 2725
		return false;

	set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);

	/*
	 * This will be replaced with the stats tracking code, using
	 * 'avg_completion_time / 2' as the pre-sleep target.
	 */
T
Thomas Gleixner 已提交
2726
	kt = nsecs;
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748

	mode = HRTIMER_MODE_REL;
	hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
	hrtimer_set_expires(&hs.timer, kt);

	hrtimer_init_sleeper(&hs, current);
	do {
		if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
			break;
		set_current_state(TASK_UNINTERRUPTIBLE);
		hrtimer_start_expires(&hs.timer, mode);
		if (hs.task)
			io_schedule();
		hrtimer_cancel(&hs.timer);
		mode = HRTIMER_MODE_ABS;
	} while (hs.task && !signal_pending(current));

	__set_current_state(TASK_RUNNING);
	destroy_hrtimer_on_stack(&hs.timer);
	return true;
}

J
Jens Axboe 已提交
2749 2750 2751 2752 2753
static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
{
	struct request_queue *q = hctx->queue;
	long state;

2754 2755 2756 2757 2758 2759 2760
	/*
	 * If we sleep, have the caller restart the poll loop to reset
	 * the state. Like for the other success return cases, the
	 * caller is responsible for checking if the IO completed. If
	 * the IO isn't complete, we'll get called again and will go
	 * straight to the busy poll loop.
	 */
2761
	if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2762 2763
		return true;

J
Jens Axboe 已提交
2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	hctx->poll_considered++;

	state = current->state;
	while (!need_resched()) {
		int ret;

		hctx->poll_invoked++;

		ret = q->mq_ops->poll(hctx, rq->tag);
		if (ret > 0) {
			hctx->poll_success++;
			set_current_state(TASK_RUNNING);
			return true;
		}

		if (signal_pending_state(state, current))
			set_current_state(TASK_RUNNING);

		if (current->state == TASK_RUNNING)
			return true;
		if (ret < 0)
			break;
		cpu_relax();
	}

	return false;
}

bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_plug *plug;
	struct request *rq;

	if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
		return false;

	plug = current->plug;
	if (plug)
		blk_flush_plug_list(plug, false);

	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2807 2808 2809 2810
	if (!blk_qc_t_is_internal(cookie))
		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
	else
		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
J
Jens Axboe 已提交
2811 2812 2813 2814 2815

	return __blk_mq_poll(hctx, rq);
}
EXPORT_SYMBOL_GPL(blk_mq_poll);

2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
void blk_mq_disable_hotplug(void)
{
	mutex_lock(&all_q_mutex);
}

void blk_mq_enable_hotplug(void)
{
	mutex_unlock(&all_q_mutex);
}

2826 2827
static int __init blk_mq_init(void)
{
2828 2829
	blk_mq_debugfs_init();

2830 2831
	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
				blk_mq_hctx_notify_dead);
2832

2833 2834 2835
	cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
				  blk_mq_queue_reinit_prepare,
				  blk_mq_queue_reinit_dead);
2836 2837 2838
	return 0;
}
subsys_initcall(blk_mq_init);