i915_gem.c 142.1 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!obj->cache_coherent)
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !obj->cache_coherent)
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

402
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
427
	unsigned int seq = __read_seqcount_begin(&resv->seq);
428
	struct dma_fence *excl;
429
	bool prune_fences = false;
430 431 432 433

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
434 435
		int ret;

436 437
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
438 439 440
		if (ret)
			return ret;

441 442 443 444
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
445
			if (timeout < 0)
446
				break;
447

448 449 450 451 452 453
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
454 455

		prune_fences = count && timeout >= 0;
456 457
	} else {
		excl = reservation_object_get_excl_rcu(resv);
458 459
	}

460
	if (excl && timeout >= 0) {
461
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
462 463
		prune_fences = timeout >= 0;
	}
464 465 466

	dma_fence_put(excl);

467 468 469 470
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
471
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
472 473 474 475 476
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
477 478
	}

479
	return timeout;
480 481
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

546 547 548 549 550 551
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
552
 */
553 554 555 556 557
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
558
{
559 560 561 562 563 564 565
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
566

567 568 569
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
570
	return timeout < 0 ? timeout : 0;
571 572 573 574 575 576 577 578 579
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

580 581 582 583
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
584
	int ret;
585

586 587
	if (align > obj->base.size)
		return -EINVAL;
588

589
	if (obj->ops == &i915_gem_phys_ops)
590 591
		return 0;

C
Chris Wilson 已提交
592
	if (obj->mm.madv != I915_MADV_WILLNEED)
593 594 595 596 597
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
598 599 600 601
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

602
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
603 604
	if (obj->mm.pages)
		return -EBUSY;
605

606
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
607 608
	obj->ops = &i915_gem_phys_ops;

609 610 611 612 613 614 615 616 617
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
618 619 620 621 622
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
623
		     struct drm_file *file)
624 625
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
626
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
627 628 629 630

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
631
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
632 633
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
634

635
	drm_clflush_virt_range(vaddr, args->size);
636
	i915_gem_chipset_flush(to_i915(obj->base.dev));
637

638
	intel_fb_obj_flush(obj, ORIGIN_CPU);
639
	return 0;
640 641
}

642
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
643
{
644
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
645 646 647 648
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
649
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
650
	kmem_cache_free(dev_priv->objects, obj);
651 652
}

653 654
static int
i915_gem_create(struct drm_file *file,
655
		struct drm_i915_private *dev_priv,
656 657
		uint64_t size,
		uint32_t *handle_p)
658
{
659
	struct drm_i915_gem_object *obj;
660 661
	int ret;
	u32 handle;
662

663
	size = roundup(size, PAGE_SIZE);
664 665
	if (size == 0)
		return -EINVAL;
666 667

	/* Allocate the new object */
668
	obj = i915_gem_object_create(dev_priv, size);
669 670
	if (IS_ERR(obj))
		return PTR_ERR(obj);
671

672
	ret = drm_gem_handle_create(file, &obj->base, &handle);
673
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
674
	i915_gem_object_put(obj);
675 676
	if (ret)
		return ret;
677

678
	*handle_p = handle;
679 680 681
	return 0;
}

682 683 684 685 686 687
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
688
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
689
	args->size = args->pitch * args->height;
690
	return i915_gem_create(file, to_i915(dev),
691
			       args->size, &args->handle);
692 693
}

694 695 696 697 698 699
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

700 701
/**
 * Creates a new mm object and returns a handle to it.
702 703 704
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
705 706 707 708 709
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
710
	struct drm_i915_private *dev_priv = to_i915(dev);
711
	struct drm_i915_gem_create *args = data;
712

713
	i915_gem_flush_free_objects(dev_priv);
714

715
	return i915_gem_create(file, dev_priv,
716
			       args->size, &args->handle);
717 718
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
			if (intel_runtime_pm_get_if_in_use(dev_priv)) {
				spin_lock_irq(&dev_priv->uncore.lock);
				POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
				spin_unlock_irq(&dev_priv->uncore.lock);
				intel_runtime_pm_put(dev_priv);
			}
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
769 770 771 772 773

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
774 775 776 777 778
	}

	obj->base.write_domain = 0;
}

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

805
static inline int
806 807
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

831 832 833 834 835 836
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
837
				    unsigned int *needs_clflush)
838 839 840
{
	int ret;

841
	lockdep_assert_held(&obj->base.dev->struct_mutex);
842

843
	*needs_clflush = 0;
844 845
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
846

847 848 849 850 851
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
852 853 854
	if (ret)
		return ret;

C
Chris Wilson 已提交
855
	ret = i915_gem_object_pin_pages(obj);
856 857 858
	if (ret)
		return ret;

859
	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
860 861 862 863 864 865 866
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

867
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
868

869 870 871 872 873
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
874 875
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
876
		*needs_clflush = CLFLUSH_BEFORE;
877

878
out:
879
	/* return with the pages pinned */
880
	return 0;
881 882 883 884

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
885 886 887 888 889 890 891
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

892 893
	lockdep_assert_held(&obj->base.dev->struct_mutex);

894 895 896 897
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

898 899 900 901 902 903
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
904 905 906
	if (ret)
		return ret;

C
Chris Wilson 已提交
907
	ret = i915_gem_object_pin_pages(obj);
908 909 910
	if (ret)
		return ret;

911
	if (obj->cache_coherent || !static_cpu_has(X86_FEATURE_CLFLUSH)) {
912 913 914 915 916 917 918
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

919
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
920

921 922 923 924 925
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
926
	if (!obj->cache_dirty) {
927
		*needs_clflush |= CLFLUSH_AFTER;
928

929 930 931 932 933 934 935
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
936

937
out:
938
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
939
	obj->mm.dirty = true;
940
	/* return with the pages pinned */
941
	return 0;
942 943 944 945

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
946 947
}

948 949 950 951
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
952
	if (unlikely(swizzled)) {
953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

970 971 972
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
973
shmem_pread_slow(struct page *page, int offset, int length,
974 975 976 977 978 979 980 981
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
982
		shmem_clflush_swizzled_range(vaddr + offset, length,
983
					     page_do_bit17_swizzling);
984 985

	if (page_do_bit17_swizzling)
986
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
987
	else
988
		ret = __copy_to_user(user_data, vaddr + offset, length);
989 990
	kunmap(page);

991
	return ret ? - EFAULT : 0;
992 993
}

994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1070 1071
{
	void *vaddr;
1072
	unsigned long unwritten;
1073 1074

	/* We can use the cpu mem copy function because this is X86. */
1075 1076 1077 1078 1079 1080 1081 1082 1083
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1084 1085 1086 1087
	return unwritten;
}

static int
1088 1089
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1090
{
1091 1092
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1093
	struct drm_mm_node node;
1094 1095 1096
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1097 1098
	int ret;

1099 1100 1101 1102 1103 1104 1105
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1106 1107 1108
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1109
		ret = i915_vma_put_fence(vma);
1110 1111 1112 1113 1114
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1115
	if (IS_ERR(vma)) {
1116
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1117
		if (ret)
1118 1119
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1120 1121 1122 1123 1124 1125
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1126
	mutex_unlock(&i915->drm.struct_mutex);
1127

1128 1129 1130
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1147
					       node.start, I915_CACHE_NONE, 0);
1148 1149 1150 1151
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1152 1153 1154

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1155 1156 1157 1158 1159 1160 1161 1162 1163
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1164
	mutex_lock(&i915->drm.struct_mutex);
1165 1166 1167 1168
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1169
				       node.start, node.size);
1170 1171
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1172
		i915_vma_unpin(vma);
1173
	}
1174 1175 1176
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1177

1178 1179 1180
	return ret;
}

1181 1182
/**
 * Reads data from the object referenced by handle.
1183 1184 1185
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1186 1187 1188 1189 1190
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1191
		     struct drm_file *file)
1192 1193
{
	struct drm_i915_gem_pread *args = data;
1194
	struct drm_i915_gem_object *obj;
1195
	int ret;
1196

1197 1198 1199 1200
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1201
		       u64_to_user_ptr(args->data_ptr),
1202 1203 1204
		       args->size))
		return -EFAULT;

1205
	obj = i915_gem_object_lookup(file, args->handle);
1206 1207
	if (!obj)
		return -ENOENT;
1208

1209
	/* Bounds check source.  */
1210
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1211
		ret = -EINVAL;
1212
		goto out;
C
Chris Wilson 已提交
1213 1214
	}

C
Chris Wilson 已提交
1215 1216
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1217 1218 1219 1220
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1221
	if (ret)
1222
		goto out;
1223

1224
	ret = i915_gem_object_pin_pages(obj);
1225
	if (ret)
1226
		goto out;
1227

1228
	ret = i915_gem_shmem_pread(obj, args);
1229
	if (ret == -EFAULT || ret == -ENODEV)
1230
		ret = i915_gem_gtt_pread(obj, args);
1231

1232 1233
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1234
	i915_gem_object_put(obj);
1235
	return ret;
1236 1237
}

1238 1239
/* This is the fast write path which cannot handle
 * page faults in the source data
1240
 */
1241

1242 1243 1244 1245
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1246
{
1247
	void *vaddr;
1248
	unsigned long unwritten;
1249

1250
	/* We can use the cpu mem copy function because this is X86. */
1251 1252
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1253
						      user_data, length);
1254 1255 1256 1257 1258 1259 1260
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1261 1262 1263 1264

	return unwritten;
}

1265 1266 1267
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1268
 * @obj: i915 GEM object
1269
 * @args: pwrite arguments structure
1270
 */
1271
static int
1272 1273
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1274
{
1275
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1276 1277
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1278 1279 1280
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1281
	int ret;
1282

1283 1284 1285
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1286

1287
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1288
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1289
				       PIN_MAPPABLE | PIN_NONBLOCK);
1290 1291 1292
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1293
		ret = i915_vma_put_fence(vma);
1294 1295 1296 1297 1298
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1299
	if (IS_ERR(vma)) {
1300
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1301
		if (ret)
1302 1303
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1304
	}
D
Daniel Vetter 已提交
1305 1306 1307 1308 1309

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1310 1311
	mutex_unlock(&i915->drm.struct_mutex);

1312
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1313

1314 1315 1316 1317
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1318 1319
		/* Operation in this page
		 *
1320 1321 1322
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1323
		 */
1324
		u32 page_base = node.start;
1325 1326
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1327 1328 1329 1330 1331 1332 1333 1334 1335 1336
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1337
		/* If we get a fault while copying data, then (presumably) our
1338 1339
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1340 1341
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1342
		 */
1343 1344 1345 1346
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1347
		}
1348

1349 1350 1351
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1352
	}
1353
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1354 1355

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1356
out_unpin:
1357 1358 1359
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1360
				       node.start, node.size);
1361 1362
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1363
		i915_vma_unpin(vma);
1364
	}
1365
out_unlock:
1366
	intel_runtime_pm_put(i915);
1367
	mutex_unlock(&i915->drm.struct_mutex);
1368
	return ret;
1369 1370
}

1371
static int
1372
shmem_pwrite_slow(struct page *page, int offset, int length,
1373 1374 1375 1376
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1377
{
1378 1379
	char *vaddr;
	int ret;
1380

1381
	vaddr = kmap(page);
1382
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1383
		shmem_clflush_swizzled_range(vaddr + offset, length,
1384
					     page_do_bit17_swizzling);
1385
	if (page_do_bit17_swizzling)
1386 1387
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1388
	else
1389
		ret = __copy_from_user(vaddr + offset, user_data, length);
1390
	if (needs_clflush_after)
1391
		shmem_clflush_swizzled_range(vaddr + offset, length,
1392
					     page_do_bit17_swizzling);
1393
	kunmap(page);
1394

1395
	return ret ? -EFAULT : 0;
1396 1397
}

1398 1399 1400 1401 1402
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1403
static int
1404 1405 1406 1407
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1408
{
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1441
	unsigned int needs_clflush;
1442 1443
	unsigned int offset, idx;
	int ret;
1444

1445
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1446 1447 1448
	if (ret)
		return ret;

1449 1450 1451 1452
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1453

1454 1455 1456
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1457

1458 1459 1460 1461 1462 1463 1464
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1465

1466 1467 1468 1469 1470 1471
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1472

1473 1474 1475
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1476

1477 1478 1479 1480
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1481
		if (ret)
1482
			break;
1483

1484 1485 1486
		remain -= length;
		user_data += length;
		offset = 0;
1487
	}
1488

1489
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1490
	i915_gem_obj_finish_shmem_access(obj);
1491
	return ret;
1492 1493 1494 1495
}

/**
 * Writes data to the object referenced by handle.
1496 1497 1498
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1499 1500 1501 1502 1503
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1504
		      struct drm_file *file)
1505 1506
{
	struct drm_i915_gem_pwrite *args = data;
1507
	struct drm_i915_gem_object *obj;
1508 1509 1510 1511 1512 1513
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1514
		       u64_to_user_ptr(args->data_ptr),
1515 1516 1517
		       args->size))
		return -EFAULT;

1518
	obj = i915_gem_object_lookup(file, args->handle);
1519 1520
	if (!obj)
		return -ENOENT;
1521

1522
	/* Bounds check destination. */
1523
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1524
		ret = -EINVAL;
1525
		goto err;
C
Chris Wilson 已提交
1526 1527
	}

C
Chris Wilson 已提交
1528 1529
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1530 1531 1532 1533 1534 1535
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1536 1537 1538 1539 1540
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1541 1542 1543
	if (ret)
		goto err;

1544
	ret = i915_gem_object_pin_pages(obj);
1545
	if (ret)
1546
		goto err;
1547

D
Daniel Vetter 已提交
1548
	ret = -EFAULT;
1549 1550 1551 1552 1553 1554
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1555
	if (!i915_gem_object_has_struct_page(obj) ||
1556
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1557 1558
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1559 1560
		 * textures). Fallback to the shmem path in that case.
		 */
1561
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1562

1563
	if (ret == -EFAULT || ret == -ENOSPC) {
1564 1565
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1566
		else
1567
			ret = i915_gem_shmem_pwrite(obj, args);
1568
	}
1569

1570
	i915_gem_object_unpin_pages(obj);
1571
err:
C
Chris Wilson 已提交
1572
	i915_gem_object_put(obj);
1573
	return ret;
1574 1575
}

1576 1577 1578 1579 1580 1581 1582 1583
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1584
			break;
1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1597
	list_move_tail(&obj->global_link, list);
1598 1599
}

1600
/**
1601 1602
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1603 1604 1605
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1606 1607 1608
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1609
			  struct drm_file *file)
1610 1611
{
	struct drm_i915_gem_set_domain *args = data;
1612
	struct drm_i915_gem_object *obj;
1613 1614
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1615
	int err;
1616

1617
	/* Only handle setting domains to types used by the CPU. */
1618
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1619 1620 1621 1622 1623 1624 1625 1626
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1627
	obj = i915_gem_object_lookup(file, args->handle);
1628 1629
	if (!obj)
		return -ENOENT;
1630

1631 1632 1633 1634
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1635
	err = i915_gem_object_wait(obj,
1636 1637 1638 1639
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1640
	if (err)
C
Chris Wilson 已提交
1641
		goto out;
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1653
		goto out;
1654 1655 1656

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1657
		goto out_unpin;
1658

1659 1660 1661 1662
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1663
	else
1664
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1665

1666 1667
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1668

1669
	mutex_unlock(&dev->struct_mutex);
1670

1671
	if (write_domain != 0)
1672 1673
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1674

C
Chris Wilson 已提交
1675
out_unpin:
1676
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1677 1678
out:
	i915_gem_object_put(obj);
1679
	return err;
1680 1681 1682 1683
}

/**
 * Called when user space has done writes to this buffer
1684 1685 1686
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1687 1688 1689
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1690
			 struct drm_file *file)
1691 1692
{
	struct drm_i915_gem_sw_finish *args = data;
1693
	struct drm_i915_gem_object *obj;
1694

1695
	obj = i915_gem_object_lookup(file, args->handle);
1696 1697
	if (!obj)
		return -ENOENT;
1698 1699

	/* Pinned buffers may be scanout, so flush the cache */
1700
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1701
	i915_gem_object_put(obj);
1702 1703

	return 0;
1704 1705 1706
}

/**
1707 1708 1709 1710 1711
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1712 1713 1714
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1725 1726 1727
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1728
		    struct drm_file *file)
1729 1730
{
	struct drm_i915_gem_mmap *args = data;
1731
	struct drm_i915_gem_object *obj;
1732 1733
	unsigned long addr;

1734 1735 1736
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1737
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1738 1739
		return -ENODEV;

1740 1741
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1742
		return -ENOENT;
1743

1744 1745 1746
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1747
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1748
		i915_gem_object_put(obj);
1749 1750 1751
		return -EINVAL;
	}

1752
	addr = vm_mmap(obj->base.filp, 0, args->size,
1753 1754
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1755 1756 1757 1758
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1759
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1760
			i915_gem_object_put(obj);
1761 1762
			return -EINTR;
		}
1763 1764 1765 1766 1767 1768 1769
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1770 1771

		/* This may race, but that's ok, it only gets set */
1772
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1773
	}
C
Chris Wilson 已提交
1774
	i915_gem_object_put(obj);
1775 1776 1777 1778 1779 1780 1781 1782
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1783 1784
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1785
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1786 1787
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1808 1809 1810
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1838
	return 2;
1839 1840
}

1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1852 1853
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1854
		min_t(unsigned int, chunk,
1855
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1856 1857 1858 1859 1860 1861 1862 1863

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1864 1865
/**
 * i915_gem_fault - fault a page into the GTT
1866
 * @vmf: fault info
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1878 1879 1880
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1881
 */
1882
int i915_gem_fault(struct vm_fault *vmf)
1883
{
1884
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1885
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1886
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1887
	struct drm_device *dev = obj->base.dev;
1888 1889
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1890
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1891
	struct i915_vma *vma;
1892
	pgoff_t page_offset;
1893
	unsigned int flags;
1894
	int ret;
1895

1896
	/* We don't use vmf->pgoff since that has the fake offset */
1897
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1898

C
Chris Wilson 已提交
1899 1900
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1901
	/* Try to flush the object off the GPU first without holding the lock.
1902
	 * Upon acquiring the lock, we will perform our sanity checks and then
1903 1904 1905
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1906 1907 1908 1909
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1910
	if (ret)
1911 1912
		goto err;

1913 1914 1915 1916
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1917 1918 1919 1920 1921
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1922

1923
	/* Access to snoopable pages through the GTT is incoherent. */
1924
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1925
		ret = -EFAULT;
1926
		goto err_unlock;
1927 1928
	}

1929 1930 1931 1932 1933 1934 1935 1936
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1937
	/* Now pin it into the GTT as needed */
1938
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1939 1940
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1941
		struct i915_ggtt_view view =
1942
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1943

1944 1945 1946 1947 1948
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1949 1950
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1951 1952
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1953
		goto err_unlock;
C
Chris Wilson 已提交
1954
	}
1955

1956 1957
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1958
		goto err_unpin;
1959

1960
	ret = i915_vma_get_fence(vma);
1961
	if (ret)
1962
		goto err_unpin;
1963

1964
	/* Mark as being mmapped into userspace for later revocation */
1965
	assert_rpm_wakelock_held(dev_priv);
1966 1967 1968
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1969
	/* Finally, remap it using the new GTT offset */
1970
	ret = remap_io_mapping(area,
1971
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1972 1973 1974
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1975

1976
err_unpin:
C
Chris Wilson 已提交
1977
	__i915_vma_unpin(vma);
1978
err_unlock:
1979
	mutex_unlock(&dev->struct_mutex);
1980 1981
err_rpm:
	intel_runtime_pm_put(dev_priv);
1982
	i915_gem_object_unpin_pages(obj);
1983
err:
1984
	switch (ret) {
1985
	case -EIO:
1986 1987 1988 1989 1990 1991 1992
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1993 1994 1995
			ret = VM_FAULT_SIGBUS;
			break;
		}
1996
	case -EAGAIN:
D
Daniel Vetter 已提交
1997 1998 1999 2000
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
2001
		 */
2002 2003
	case 0:
	case -ERESTARTSYS:
2004
	case -EINTR:
2005 2006 2007 2008 2009
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
2010 2011
		ret = VM_FAULT_NOPAGE;
		break;
2012
	case -ENOMEM:
2013 2014
		ret = VM_FAULT_OOM;
		break;
2015
	case -ENOSPC:
2016
	case -EFAULT:
2017 2018
		ret = VM_FAULT_SIGBUS;
		break;
2019
	default:
2020
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2021 2022
		ret = VM_FAULT_SIGBUS;
		break;
2023
	}
2024
	return ret;
2025 2026
}

2027 2028 2029 2030
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
2031
 * Preserve the reservation of the mmapping with the DRM core code, but
2032 2033 2034 2035 2036 2037 2038 2039 2040
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
2041
void
2042
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2043
{
2044 2045
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

2046 2047 2048
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
2049 2050 2051 2052
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
2053
	 */
2054
	lockdep_assert_held(&i915->drm.struct_mutex);
2055
	intel_runtime_pm_get(i915);
2056

2057
	if (list_empty(&obj->userfault_link))
2058
		goto out;
2059

2060
	list_del_init(&obj->userfault_link);
2061 2062
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2063 2064 2065 2066 2067 2068 2069 2070 2071

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2072 2073 2074

out:
	intel_runtime_pm_put(i915);
2075 2076
}

2077
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2078
{
2079
	struct drm_i915_gem_object *obj, *on;
2080
	int i;
2081

2082 2083 2084 2085 2086 2087
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2088

2089 2090 2091
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2092 2093 2094
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2095 2096 2097 2098 2099 2100 2101 2102

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2113 2114 2115 2116 2117 2118 2119

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2120 2121
}

2122 2123
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2124
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2125
	int err;
2126

2127
	err = drm_gem_create_mmap_offset(&obj->base);
2128
	if (likely(!err))
2129
		return 0;
2130

2131 2132 2133 2134 2135
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2136

2137
		i915_gem_drain_freed_objects(dev_priv);
2138
		err = drm_gem_create_mmap_offset(&obj->base);
2139 2140 2141 2142
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2143

2144
	return err;
2145 2146 2147 2148 2149 2150 2151
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2152
int
2153 2154
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2155
		  uint32_t handle,
2156
		  uint64_t *offset)
2157
{
2158
	struct drm_i915_gem_object *obj;
2159 2160
	int ret;

2161
	obj = i915_gem_object_lookup(file, handle);
2162 2163
	if (!obj)
		return -ENOENT;
2164

2165
	ret = i915_gem_object_create_mmap_offset(obj);
2166 2167
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2168

C
Chris Wilson 已提交
2169
	i915_gem_object_put(obj);
2170
	return ret;
2171 2172
}

2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2194
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2195 2196
}

D
Daniel Vetter 已提交
2197 2198 2199
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2200
{
2201
	i915_gem_object_free_mmap_offset(obj);
2202

2203 2204
	if (obj->base.filp == NULL)
		return;
2205

D
Daniel Vetter 已提交
2206 2207 2208 2209 2210
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2211
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2212
	obj->mm.madv = __I915_MADV_PURGED;
2213
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2214
}
2215

2216
/* Try to discard unwanted pages */
2217
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2218
{
2219 2220
	struct address_space *mapping;

2221 2222 2223
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2224
	switch (obj->mm.madv) {
2225 2226 2227 2228 2229 2230 2231 2232 2233
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2234
	mapping = obj->base.filp->f_mapping,
2235
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2236 2237
}

2238
static void
2239 2240
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2241
{
2242 2243
	struct sgt_iter sgt_iter;
	struct page *page;
2244

2245
	__i915_gem_object_release_shmem(obj, pages, true);
2246

2247
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2248

2249
	if (i915_gem_object_needs_bit17_swizzle(obj))
2250
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2251

2252
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2253
		if (obj->mm.dirty)
2254
			set_page_dirty(page);
2255

C
Chris Wilson 已提交
2256
		if (obj->mm.madv == I915_MADV_WILLNEED)
2257
			mark_page_accessed(page);
2258

2259
		put_page(page);
2260
	}
C
Chris Wilson 已提交
2261
	obj->mm.dirty = false;
2262

2263 2264
	sg_free_table(pages);
	kfree(pages);
2265
}
C
Chris Wilson 已提交
2266

2267 2268 2269 2270 2271
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2272 2273
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2274 2275
}

2276 2277
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2278
{
2279
	struct sg_table *pages;
2280

C
Chris Wilson 已提交
2281
	if (i915_gem_object_has_pinned_pages(obj))
2282
		return;
2283

2284
	GEM_BUG_ON(obj->bind_count);
2285 2286 2287 2288
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2289
	mutex_lock_nested(&obj->mm.lock, subclass);
2290 2291
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2292

2293 2294 2295
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2296 2297
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2298

C
Chris Wilson 已提交
2299
	if (obj->mm.mapping) {
2300 2301
		void *ptr;

2302
		ptr = page_mask_bits(obj->mm.mapping);
2303 2304
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2305
		else
2306 2307
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2308
		obj->mm.mapping = NULL;
2309 2310
	}

2311 2312
	__i915_gem_object_reset_page_iter(obj);

2313 2314 2315
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2316 2317
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2318 2319
}

2320
static bool i915_sg_trim(struct sg_table *orig_st)
2321 2322 2323 2324 2325 2326
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2327
		return false;
2328

2329
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2330
		return false;
2331 2332 2333 2334 2335 2336 2337

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2338
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2339 2340 2341 2342

	sg_free_table(orig_st);

	*orig_st = new_st;
2343
	return true;
2344 2345
}

2346
static struct sg_table *
C
Chris Wilson 已提交
2347
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2348
{
2349
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2350 2351
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2352
	struct address_space *mapping;
2353 2354
	struct sg_table *st;
	struct scatterlist *sg;
2355
	struct sgt_iter sgt_iter;
2356
	struct page *page;
2357
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2358
	unsigned int max_segment;
2359
	gfp_t noreclaim;
I
Imre Deak 已提交
2360
	int ret;
2361

C
Chris Wilson 已提交
2362 2363 2364 2365
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2366 2367
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2368

2369
	max_segment = swiotlb_max_segment();
2370
	if (!max_segment)
2371
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2372

2373 2374
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2375
		return ERR_PTR(-ENOMEM);
2376

2377
rebuild_st:
2378 2379
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2380
		return ERR_PTR(-ENOMEM);
2381
	}
2382

2383 2384 2385 2386 2387
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2388
	mapping = obj->base.filp->f_mapping;
2389
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2390 2391
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2392 2393 2394
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2395 2396 2397 2398 2399 2400 2401
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2402
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2413

C
Chris Wilson 已提交
2414 2415 2416
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2417 2418 2419 2420
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2421
			 */
2422 2423 2424
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
				 * this we want the future __GFP_MAYFAIL.
				 */
I
Imre Deak 已提交
2439
			}
2440 2441
		} while (1);

2442 2443 2444
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2445 2446 2447 2448 2449 2450 2451 2452
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2453 2454 2455

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2456
	}
2457
	if (sg) /* loop terminated early; short sg table */
2458
		sg_mark_end(sg);
2459

2460 2461 2462
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2463
	ret = i915_gem_gtt_prepare_pages(obj, st);
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2483

2484
	if (i915_gem_object_needs_bit17_swizzle(obj))
2485
		i915_gem_object_do_bit_17_swizzle(obj, st);
2486

2487
	return st;
2488

2489
err_sg:
2490
	sg_mark_end(sg);
2491
err_pages:
2492 2493
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2494 2495
	sg_free_table(st);
	kfree(st);
2496 2497 2498 2499 2500 2501 2502 2503 2504

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2505 2506 2507
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2508 2509 2510 2511 2512 2513
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2514
	lockdep_assert_held(&obj->mm.lock);
2515 2516 2517 2518 2519

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2520 2521 2522 2523 2524 2525 2526

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2527 2528 2529 2530 2531 2532
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2533 2534
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2546 2547
}

2548
/* Ensure that the associated pages are gathered from the backing storage
2549
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2550
 * multiple times before they are released by a single call to
2551
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2552 2553 2554
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2555
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2556
{
2557
	int err;
2558

2559 2560 2561
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2562

2563
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2564 2565 2566
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2567

2568 2569 2570
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2571

2572 2573
unlock:
	mutex_unlock(&obj->mm.lock);
2574
	return err;
2575 2576
}

2577
/* The 'mapping' part of i915_gem_object_pin_map() below */
2578 2579
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2580 2581
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2582
	struct sg_table *sgt = obj->mm.pages;
2583 2584
	struct sgt_iter sgt_iter;
	struct page *page;
2585 2586
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2587
	unsigned long i = 0;
2588
	pgprot_t pgprot;
2589 2590 2591
	void *addr;

	/* A single page can always be kmapped */
2592
	if (n_pages == 1 && type == I915_MAP_WB)
2593 2594
		return kmap(sg_page(sgt->sgl));

2595 2596
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2597
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2598 2599 2600
		if (!pages)
			return NULL;
	}
2601

2602 2603
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2604 2605 2606 2607

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2608 2609 2610 2611 2612 2613 2614 2615 2616
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2617

2618
	if (pages != stack_pages)
M
Michal Hocko 已提交
2619
		kvfree(pages);
2620 2621 2622 2623 2624

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2625 2626
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2627
{
2628 2629 2630
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2631 2632
	int ret;

2633
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2634

2635
	ret = mutex_lock_interruptible(&obj->mm.lock);
2636 2637 2638
	if (ret)
		return ERR_PTR(ret);

2639 2640
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2641
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2642 2643 2644
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2645

2646 2647 2648
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2649 2650 2651
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2652

2653
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2654 2655 2656
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2657
			goto err_unpin;
2658
		}
2659 2660 2661 2662 2663 2664

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2665
		ptr = obj->mm.mapping = NULL;
2666 2667
	}

2668 2669 2670 2671
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2672
			goto err_unpin;
2673 2674
		}

2675
		obj->mm.mapping = page_pack_bits(ptr, type);
2676 2677
	}

2678 2679
out_unlock:
	mutex_unlock(&obj->mm.lock);
2680 2681
	return ptr;

2682 2683 2684 2685 2686
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2687 2688
}

2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2758
static bool ban_context(const struct i915_gem_context *ctx)
2759
{
2760 2761
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2762 2763
}

2764
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2765
{
2766
	ctx->guilty_count++;
2767 2768 2769
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2770 2771

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2772
			 ctx->name, ctx->ban_score,
2773
			 yesno(i915_gem_context_is_banned(ctx)));
2774

2775
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2776 2777
		return;

2778 2779 2780
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2781 2782 2783 2784
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2785
	ctx->active_count++;
2786 2787
}

2788
struct drm_i915_gem_request *
2789
i915_gem_find_active_request(struct intel_engine_cs *engine)
2790
{
2791 2792
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2793

2794 2795 2796 2797 2798 2799 2800 2801
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2802
	spin_lock_irqsave(&engine->timeline->lock, flags);
2803
	list_for_each_entry(request, &engine->timeline->requests, link) {
2804 2805
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2806
			continue;
2807

2808
		GEM_BUG_ON(request->engine != engine);
2809 2810
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2811 2812 2813

		active = request;
		break;
2814
	}
2815
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2816

2817
	return active;
2818 2819
}

2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2834
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2835 2836 2837
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2838
	int err = 0;
2839 2840

	/* Ensure irq handler finishes, and not run again. */
2841 2842 2843
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2855 2856 2857 2858 2859 2860 2861 2862
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2863
		tasklet_kill(&engine->irq_tasklet);
2864
		tasklet_disable(&engine->irq_tasklet);
2865

2866 2867 2868
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2869 2870 2871 2872 2873 2874 2875
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2876
	i915_gem_revoke_fences(dev_priv);
2877 2878

	return err;
2879 2880
}

2881
static void skip_request(struct drm_i915_gem_request *request)
2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2896 2897

	dma_fence_set_error(&request->fence, -EIO);
2898 2899
}

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2923 2924 2925 2926 2927 2928
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2961
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2962 2963 2964
{
	struct drm_i915_gem_request *request;

2965
	request = i915_gem_find_active_request(engine);
2966 2967 2968
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2969

2970 2971 2972 2973
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2974 2975 2976

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2977
}
2978

2979
void i915_gem_reset(struct drm_i915_private *dev_priv)
2980
{
2981
	struct intel_engine_cs *engine;
2982
	enum intel_engine_id id;
2983

2984 2985
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2986 2987
	i915_gem_retire_requests(dev_priv);

2988 2989 2990
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2991
		i915_gem_reset_engine(engine);
2992 2993 2994 2995
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2996

2997
	i915_gem_restore_fences(dev_priv);
2998 2999 3000 3001 3002 3003 3004

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
3005 3006
}

3007 3008
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3009 3010 3011
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3012
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3013

3014
	for_each_engine(engine, dev_priv, id) {
3015
		tasklet_enable(&engine->irq_tasklet);
3016 3017
		kthread_unpark(engine->breadcrumbs.signaler);
	}
3018 3019
}

3020 3021
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3022
	dma_fence_set_error(&request->fence, -EIO);
3023 3024
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3025 3026
}

3027
static void engine_set_wedged(struct intel_engine_cs *engine)
3028
{
3029 3030 3031
	struct drm_i915_gem_request *request;
	unsigned long flags;

3032 3033 3034 3035 3036 3037
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3038
	engine->submit_request = nop_submit_request;
3039

3040 3041 3042 3043 3044 3045
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3046 3047 3048 3049
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
3050
	intel_engine_init_global_seqno(engine,
3051
				       intel_engine_last_submit(engine));
3052

3053 3054 3055 3056 3057 3058
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3059
	if (i915.enable_execlists) {
3060
		struct execlist_port *port = engine->execlist_port;
3061
		unsigned long flags;
3062
		unsigned int n;
3063 3064 3065

		spin_lock_irqsave(&engine->timeline->lock, flags);

3066 3067
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3068
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3069 3070
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3071 3072

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3073
	}
3074 3075
}

3076
static int __i915_gem_set_wedged_BKL(void *data)
3077
{
3078
	struct drm_i915_private *i915 = data;
3079
	struct intel_engine_cs *engine;
3080
	enum intel_engine_id id;
3081

3082
	for_each_engine(engine, i915, id)
3083
		engine_set_wedged(engine);
3084 3085 3086 3087 3088 3089

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
3090 3091
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3092

3093 3094 3095 3096 3097 3098
	/* Retire completed requests first so the list of inflight/incomplete
	 * requests is accurate and we don't try and mark successful requests
	 * as in error during __i915_gem_set_wedged_BKL().
	 */
	i915_gem_retire_requests(dev_priv);

3099
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3100

3101
	i915_gem_contexts_lost(dev_priv);
3102 3103

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3104 3105
}

3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3165
static void
3166 3167
i915_gem_retire_work_handler(struct work_struct *work)
{
3168
	struct drm_i915_private *dev_priv =
3169
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3170
	struct drm_device *dev = &dev_priv->drm;
3171

3172
	/* Come back later if the device is busy... */
3173
	if (mutex_trylock(&dev->struct_mutex)) {
3174
		i915_gem_retire_requests(dev_priv);
3175
		mutex_unlock(&dev->struct_mutex);
3176
	}
3177 3178 3179 3180 3181

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3182 3183
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3184 3185
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3186
				   round_jiffies_up_relative(HZ));
3187
	}
3188
}
3189

3190 3191 3192 3193
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3194
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3195
	struct drm_device *dev = &dev_priv->drm;
3196 3197 3198 3199 3200
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3201 3202 3203 3204
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3205
	wait_for(intel_engines_are_idle(dev_priv), 10);
3206
	if (READ_ONCE(dev_priv->gt.active_requests))
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3220 3221 3222 3223 3224 3225 3226
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3227
	if (dev_priv->gt.active_requests)
3228
		goto out_unlock;
3229

3230
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3231 3232
		DRM_ERROR("Timeout waiting for engines to idle\n");

3233
	intel_engines_mark_idle(dev_priv);
3234
	i915_gem_timelines_mark_idle(dev_priv);
3235

3236 3237 3238
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3239

3240 3241 3242 3243 3244
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3245

3246 3247 3248 3249
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3250
	}
3251 3252
}

3253 3254 3255 3256 3257 3258 3259 3260 3261 3262
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3263

3264 3265 3266 3267
	vma = obj->vma_hashed;
	if (vma && vma->ctx->file_priv == fpriv)
		i915_vma_unlink_ctx(vma);

3268 3269 3270 3271 3272
	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3273 3274 3275
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3287 3288
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3289 3290 3291
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3316 3317
	ktime_t start;
	long ret;
3318

3319 3320 3321
	if (args->flags != 0)
		return -EINVAL;

3322
	obj = i915_gem_object_lookup(file, args->bo_handle);
3323
	if (!obj)
3324 3325
		return -ENOENT;

3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3347 3348
	}

C
Chris Wilson 已提交
3349
	i915_gem_object_put(obj);
3350
	return ret;
3351 3352
}

3353
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3354
{
3355
	int ret, i;
3356

3357 3358 3359 3360 3361
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3362

3363 3364 3365
	return 0;
}

3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
{
	return wait_for(intel_engine_is_idle(engine), timeout_ms);
}

static int wait_for_engines(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
			i915_gem_set_wedged(i915);
			return -EIO;
		}

		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
			   intel_engine_last_submit(engine));
	}

	return 0;
}

3389 3390 3391 3392
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3393 3394 3395 3396
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3407 3408 3409

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3410 3411

		ret = wait_for_engines(i915);
3412 3413
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3414
	}
3415

3416
	return ret;
3417 3418
}

3419 3420
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3421 3422 3423 3424 3425 3426 3427
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3504 3505
/**
 * Moves a single object to the GTT read, and possibly write domain.
3506 3507
 * @obj: object to act on
 * @write: ask for write access or read only
3508 3509 3510 3511
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3512
int
3513
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3514
{
3515
	int ret;
3516

3517
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3518

3519 3520 3521 3522 3523 3524
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3525 3526 3527
	if (ret)
		return ret;

3528 3529 3530
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3531 3532 3533 3534 3535 3536 3537 3538
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3539
	ret = i915_gem_object_pin_pages(obj);
3540 3541 3542
	if (ret)
		return ret;

3543
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3544

3545 3546 3547 3548 3549 3550 3551
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3552 3553 3554
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3555
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3556
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3557
	if (write) {
3558 3559
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3560
		obj->mm.dirty = true;
3561 3562
	}

C
Chris Wilson 已提交
3563
	i915_gem_object_unpin_pages(obj);
3564 3565 3566
	return 0;
}

3567 3568
/**
 * Changes the cache-level of an object across all VMA.
3569 3570
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3582 3583 3584
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3585
	struct i915_vma *vma;
3586
	int ret;
3587

3588 3589
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3590
	if (obj->cache_level == cache_level)
3591
		return 0;
3592

3593 3594 3595 3596 3597
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3598 3599
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3600 3601 3602
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3603
		if (i915_vma_is_pinned(vma)) {
3604 3605 3606 3607
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3620 3621
	}

3622 3623 3624 3625 3626 3627 3628
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3629
	if (obj->bind_count) {
3630 3631 3632 3633
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3634 3635 3636 3637 3638 3639
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3640 3641 3642
		if (ret)
			return ret;

3643 3644
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3661 3662 3663 3664 3665
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3666 3667 3668 3669 3670 3671 3672 3673
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3674 3675
		}

3676
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3677 3678 3679 3680 3681 3682 3683
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3684 3685
	}

3686
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3687 3688
		vma->node.color = cache_level;
	obj->cache_level = cache_level;
3689
	obj->cache_coherent = i915_gem_object_is_coherent(obj);
3690
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3691

3692 3693 3694
	return 0;
}

B
Ben Widawsky 已提交
3695 3696
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3697
{
B
Ben Widawsky 已提交
3698
	struct drm_i915_gem_caching *args = data;
3699
	struct drm_i915_gem_object *obj;
3700
	int err = 0;
3701

3702 3703 3704 3705 3706 3707
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3708

3709 3710 3711 3712 3713 3714
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3715 3716 3717 3718
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3719 3720 3721 3722
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3723 3724 3725
out:
	rcu_read_unlock();
	return err;
3726 3727
}

B
Ben Widawsky 已提交
3728 3729
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3730
{
3731
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3732
	struct drm_i915_gem_caching *args = data;
3733 3734
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3735
	int ret = 0;
3736

B
Ben Widawsky 已提交
3737 3738
	switch (args->caching) {
	case I915_CACHING_NONE:
3739 3740
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3741
	case I915_CACHING_CACHED:
3742 3743 3744 3745 3746 3747
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3748
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3749 3750
			return -ENODEV;

3751 3752
		level = I915_CACHE_LLC;
		break;
3753
	case I915_CACHING_DISPLAY:
3754
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3755
		break;
3756 3757 3758 3759
	default:
		return -EINVAL;
	}

3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3771
	if (ret)
3772
		goto out;
B
Ben Widawsky 已提交
3773

3774 3775 3776
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3777 3778 3779

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3780 3781 3782

out:
	i915_gem_object_put(obj);
3783 3784 3785
	return ret;
}

3786
/*
3787 3788 3789
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3790
 */
C
Chris Wilson 已提交
3791
struct i915_vma *
3792 3793
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3794
				     const struct i915_ggtt_view *view)
3795
{
C
Chris Wilson 已提交
3796
	struct i915_vma *vma;
3797 3798
	int ret;

3799 3800
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3801 3802 3803
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3804
	obj->pin_display++;
3805

3806 3807 3808 3809 3810 3811 3812 3813 3814
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3815
	ret = i915_gem_object_set_cache_level(obj,
3816 3817
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3818 3819
	if (ret) {
		vma = ERR_PTR(ret);
3820
		goto err_unpin_display;
C
Chris Wilson 已提交
3821
	}
3822

3823 3824
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3825 3826 3827 3828
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3829
	 */
3830
	vma = ERR_PTR(-ENOSPC);
3831
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3832 3833
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3850
	if (IS_ERR(vma))
3851
		goto err_unpin_display;
3852

3853 3854
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3855
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3856
	__i915_gem_object_flush_for_display(obj);
3857
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3858

3859 3860 3861
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3862
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3863

C
Chris Wilson 已提交
3864
	return vma;
3865 3866

err_unpin_display:
3867
	obj->pin_display--;
C
Chris Wilson 已提交
3868
	return vma;
3869 3870 3871
}

void
C
Chris Wilson 已提交
3872
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3873
{
3874
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3875

C
Chris Wilson 已提交
3876
	if (WARN_ON(vma->obj->pin_display == 0))
3877 3878
		return;

3879
	if (--vma->obj->pin_display == 0)
3880
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3881

3882
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3883
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3884

C
Chris Wilson 已提交
3885
	i915_vma_unpin(vma);
3886 3887
}

3888 3889
/**
 * Moves a single object to the CPU read, and possibly write domain.
3890 3891
 * @obj: object to act on
 * @write: requesting write or read-only access
3892 3893 3894 3895
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3896
int
3897
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3898 3899 3900
{
	int ret;

3901
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3902

3903 3904 3905 3906 3907 3908
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3909 3910 3911
	if (ret)
		return ret;

3912
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3913

3914
	/* Flush the CPU cache if it's still invalid. */
3915
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3916
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3917
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3918 3919 3920 3921 3922
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3923
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3924 3925 3926 3927

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3928 3929
	if (write)
		__start_cpu_write(obj);
3930 3931 3932 3933

	return 0;
}

3934 3935 3936
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3937 3938 3939 3940
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3941 3942 3943
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3944
static int
3945
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3946
{
3947
	struct drm_i915_private *dev_priv = to_i915(dev);
3948
	struct drm_i915_file_private *file_priv = file->driver_priv;
3949
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3950
	struct drm_i915_gem_request *request, *target = NULL;
3951
	long ret;
3952

3953 3954 3955
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3956

3957
	spin_lock(&file_priv->mm.lock);
3958
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3959 3960
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3961

3962 3963 3964 3965
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3966

3967
		target = request;
3968
	}
3969
	if (target)
3970
		i915_gem_request_get(target);
3971
	spin_unlock(&file_priv->mm.lock);
3972

3973
	if (target == NULL)
3974
		return 0;
3975

3976 3977 3978
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3979
	i915_gem_request_put(target);
3980

3981
	return ret < 0 ? ret : 0;
3982 3983
}

C
Chris Wilson 已提交
3984
struct i915_vma *
3985 3986
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3987
			 u64 size,
3988 3989
			 u64 alignment,
			 u64 flags)
3990
{
3991 3992
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3993 3994
	struct i915_vma *vma;
	int ret;
3995

3996 3997
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3998
	vma = i915_vma_instance(obj, vm, view);
3999
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4000
		return vma;
4001 4002 4003 4004

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4005
			return ERR_PTR(-ENOSPC);
4006

4007 4008 4009 4010 4011 4012 4013 4014
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4015
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4034
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4035 4036 4037
				return ERR_PTR(-ENOSPC);
		}

4038 4039
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4040 4041 4042
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4043
		     !!(flags & PIN_MAPPABLE),
4044
		     i915_vma_is_map_and_fenceable(vma));
4045 4046
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4047
			return ERR_PTR(ret);
4048 4049
	}

C
Chris Wilson 已提交
4050 4051 4052
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4053

C
Chris Wilson 已提交
4054
	return vma;
4055 4056
}

4057
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4072 4073 4074 4075 4076 4077 4078 4079 4080
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4081 4082
}

4083
static __always_inline unsigned int
4084
__busy_set_if_active(const struct dma_fence *fence,
4085 4086
		     unsigned int (*flag)(unsigned int id))
{
4087
	struct drm_i915_gem_request *rq;
4088

4089 4090 4091 4092
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4093
	 *
4094
	 * Note we only report on the status of native fences.
4095
	 */
4096 4097 4098 4099 4100 4101 4102 4103
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4104
	return flag(rq->engine->uabi_id);
4105 4106
}

4107
static __always_inline unsigned int
4108
busy_check_reader(const struct dma_fence *fence)
4109
{
4110
	return __busy_set_if_active(fence, __busy_read_flag);
4111 4112
}

4113
static __always_inline unsigned int
4114
busy_check_writer(const struct dma_fence *fence)
4115
{
4116 4117 4118 4119
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4120 4121
}

4122 4123
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4124
		    struct drm_file *file)
4125 4126
{
	struct drm_i915_gem_busy *args = data;
4127
	struct drm_i915_gem_object *obj;
4128 4129
	struct reservation_object_list *list;
	unsigned int seq;
4130
	int err;
4131

4132
	err = -ENOENT;
4133 4134
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4135
	if (!obj)
4136
		goto out;
4137

4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4156

4157 4158
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4159

4160 4161 4162 4163
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4164

4165 4166 4167 4168 4169 4170
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4171
	}
4172

4173 4174 4175 4176
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4177 4178 4179
out:
	rcu_read_unlock();
	return err;
4180 4181 4182 4183 4184 4185
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4186
	return i915_gem_ring_throttle(dev, file_priv);
4187 4188
}

4189 4190 4191 4192
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4193
	struct drm_i915_private *dev_priv = to_i915(dev);
4194
	struct drm_i915_gem_madvise *args = data;
4195
	struct drm_i915_gem_object *obj;
4196
	int err;
4197 4198 4199 4200 4201 4202 4203 4204 4205

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4206
	obj = i915_gem_object_lookup(file_priv, args->handle);
4207 4208 4209 4210 4211 4212
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4213

C
Chris Wilson 已提交
4214
	if (obj->mm.pages &&
4215
	    i915_gem_object_is_tiled(obj) &&
4216
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4217 4218
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4219
			__i915_gem_object_unpin_pages(obj);
4220 4221 4222
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4223
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4224
			__i915_gem_object_pin_pages(obj);
4225 4226
			obj->mm.quirked = true;
		}
4227 4228
	}

C
Chris Wilson 已提交
4229 4230
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4231

C
Chris Wilson 已提交
4232
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4233
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4234 4235
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4236
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4237
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4238

4239
out:
4240
	i915_gem_object_put(obj);
4241
	return err;
4242 4243
}

4244 4245 4246 4247 4248 4249 4250
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4251
	intel_fb_obj_flush(obj, ORIGIN_CS);
4252 4253
}

4254 4255
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4256
{
4257 4258
	mutex_init(&obj->mm.lock);

4259
	INIT_LIST_HEAD(&obj->global_link);
4260
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4261
	INIT_LIST_HEAD(&obj->vma_list);
4262
	INIT_LIST_HEAD(&obj->batch_pool_link);
4263

4264 4265
	obj->ops = ops;

4266 4267 4268
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4269
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4270
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4271 4272 4273 4274

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4275

4276
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4277 4278
}

4279
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4280 4281
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4282

4283 4284
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4285 4286

	.pwrite = i915_gem_object_pwrite_gtt,
4287 4288
};

4289
struct drm_i915_gem_object *
4290
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4291
{
4292
	struct drm_i915_gem_object *obj;
4293
	struct address_space *mapping;
D
Daniel Vetter 已提交
4294
	gfp_t mask;
4295
	int ret;
4296

4297 4298 4299 4300 4301
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4302
	if (size >> PAGE_SHIFT > INT_MAX)
4303 4304 4305 4306 4307
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4308
	obj = i915_gem_object_alloc(dev_priv);
4309
	if (obj == NULL)
4310
		return ERR_PTR(-ENOMEM);
4311

4312
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4313 4314
	if (ret)
		goto fail;
4315

4316
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4317
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4318 4319 4320 4321 4322
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4323
	mapping = obj->base.filp->f_mapping;
4324
	mapping_set_gfp_mask(mapping, mask);
4325
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4326

4327
	i915_gem_object_init(obj, &i915_gem_object_ops);
4328

4329 4330
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4331

4332
	if (HAS_LLC(dev_priv)) {
4333
		/* On some devices, we can have the GPU use the LLC (the CPU
4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4349 4350
	obj->cache_coherent = i915_gem_object_is_coherent(obj);
	obj->cache_dirty = !obj->cache_coherent;
4351

4352 4353
	trace_i915_gem_object_create(obj);

4354
	return obj;
4355 4356 4357 4358

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4359 4360
}

4361 4362 4363 4364 4365 4366 4367 4368
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4369
	if (obj->mm.madv != I915_MADV_WILLNEED)
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4385 4386
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4387
{
4388
	struct drm_i915_gem_object *obj, *on;
4389

4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4404 4405
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4406

4407
		list_del(&obj->global_link);
4408 4409 4410 4411
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4412 4413
	cond_resched();

4414 4415 4416 4417 4418 4419
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4420

4421 4422
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4423
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4424 4425 4426 4427 4428
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4429
		reservation_object_fini(&obj->__builtin_resv);
4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4452

4453 4454 4455 4456 4457 4458 4459
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4460

4461
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4462
		__i915_gem_free_objects(i915, freed);
4463 4464 4465
		if (need_resched())
			break;
	}
4466
}
4467

4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4482

4483 4484 4485
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4486

4487 4488 4489
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4490
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4491
		obj->mm.madv = I915_MADV_DONTNEED;
4492

4493 4494 4495 4496 4497 4498
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4499 4500
}

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4512 4513 4514 4515 4516 4517
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4518 4519
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4520 4521
}

4522 4523 4524 4525 4526 4527 4528 4529
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4530
	 * of the reset, so this could be applied to even earlier gen.
4531
	 */
4532
	if (INTEL_GEN(i915) >= 5) {
4533 4534 4535 4536 4537
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4538
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4539
{
4540
	struct drm_device *dev = &dev_priv->drm;
4541
	int ret;
4542

4543
	intel_runtime_pm_get(dev_priv);
4544 4545
	intel_suspend_gt_powersave(dev_priv);

4546
	mutex_lock(&dev->struct_mutex);
4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4558
		goto err_unlock;
4559

4560 4561 4562
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4563
	if (ret)
4564
		goto err_unlock;
4565

4566
	assert_kernel_context_is_current(dev_priv);
4567
	i915_gem_contexts_lost(dev_priv);
4568 4569
	mutex_unlock(&dev->struct_mutex);

4570 4571
	intel_guc_suspend(dev_priv);

4572
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4573
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4574 4575 4576 4577 4578 4579 4580 4581

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4582

4583 4584 4585
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4586
	WARN_ON(dev_priv->gt.awake);
4587
	WARN_ON(!intel_engines_are_idle(dev_priv));
4588

4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4608
	i915_gem_sanitize(dev_priv);
4609
	goto out_rpm_put;
4610

4611
err_unlock:
4612
	mutex_unlock(&dev->struct_mutex);
4613 4614
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4615
	return ret;
4616 4617
}

4618
void i915_gem_resume(struct drm_i915_private *dev_priv)
4619
{
4620
	struct drm_device *dev = &dev_priv->drm;
4621

4622 4623
	WARN_ON(dev_priv->gt.awake);

4624
	mutex_lock(&dev->struct_mutex);
4625
	i915_gem_restore_gtt_mappings(dev_priv);
4626 4627 4628 4629 4630

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4631
	dev_priv->gt.resume(dev_priv);
4632 4633 4634 4635

	mutex_unlock(&dev->struct_mutex);
}

4636
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4637
{
4638
	if (INTEL_GEN(dev_priv) < 5 ||
4639 4640 4641 4642 4643 4644
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4645
	if (IS_GEN5(dev_priv))
4646 4647
		return;

4648
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4649
	if (IS_GEN6(dev_priv))
4650
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4651
	else if (IS_GEN7(dev_priv))
4652
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4653
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4654
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4655 4656
	else
		BUG();
4657
}
D
Daniel Vetter 已提交
4658

4659
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4660 4661 4662 4663 4664 4665 4666
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4667
static void init_unused_rings(struct drm_i915_private *dev_priv)
4668
{
4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4681 4682 4683
	}
}

4684
static int __i915_gem_restart_engines(void *data)
4685
{
4686
	struct drm_i915_private *i915 = data;
4687
	struct intel_engine_cs *engine;
4688
	enum intel_engine_id id;
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4702
	int ret;
4703

4704 4705
	dev_priv->gt.last_init_time = ktime_get();

4706 4707 4708
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4709
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4710
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4711

4712
	if (IS_HASWELL(dev_priv))
4713
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4714
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4715

4716
	if (HAS_PCH_NOP(dev_priv)) {
4717
		if (IS_IVYBRIDGE(dev_priv)) {
4718 4719 4720
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4721
		} else if (INTEL_GEN(dev_priv) >= 7) {
4722 4723 4724 4725
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4726 4727
	}

4728
	i915_gem_init_swizzling(dev_priv);
4729

4730 4731 4732 4733 4734 4735
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4736
	init_unused_rings(dev_priv);
4737

4738
	BUG_ON(!dev_priv->kernel_context);
4739

4740
	ret = i915_ppgtt_init_hw(dev_priv);
4741 4742 4743 4744 4745 4746
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4747 4748 4749
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4750

4751
	intel_mocs_init_l3cc_table(dev_priv);
4752

4753 4754 4755 4756
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4757

4758 4759
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4760
	return ret;
4761 4762
}

4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4776
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4777 4778 4779 4780 4781
		return false;

	return true;
}

4782
int i915_gem_init(struct drm_i915_private *dev_priv)
4783 4784 4785
{
	int ret;

4786
	mutex_lock(&dev_priv->drm.struct_mutex);
4787

4788
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4789

4790
	if (!i915.enable_execlists) {
4791
		dev_priv->gt.resume = intel_legacy_submission_resume;
4792
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4793
	} else {
4794
		dev_priv->gt.resume = intel_lr_context_resume;
4795
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4796 4797
	}

4798 4799 4800 4801 4802 4803 4804 4805
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4806 4807 4808
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4809 4810 4811 4812

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4813

4814
	ret = i915_gem_contexts_init(dev_priv);
4815 4816
	if (ret)
		goto out_unlock;
4817

4818
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4819
	if (ret)
4820
		goto out_unlock;
4821

4822
	ret = i915_gem_init_hw(dev_priv);
4823
	if (ret == -EIO) {
4824
		/* Allow engine initialisation to fail by marking the GPU as
4825 4826 4827 4828
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4829
		i915_gem_set_wedged(dev_priv);
4830
		ret = 0;
4831
	}
4832 4833

out_unlock:
4834
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4835
	mutex_unlock(&dev_priv->drm.struct_mutex);
4836

4837
	return ret;
4838 4839
}

4840 4841 4842 4843 4844
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4845
void
4846
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4847
{
4848
	struct intel_engine_cs *engine;
4849
	enum intel_engine_id id;
4850

4851
	for_each_engine(engine, dev_priv, id)
4852
		dev_priv->gt.cleanup_engine(engine);
4853 4854
}

4855 4856 4857
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4858
	int i;
4859 4860 4861 4862

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4863 4864 4865
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4866 4867 4868 4869
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4870
	if (intel_vgpu_active(dev_priv))
4871 4872 4873 4874
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4875 4876 4877 4878 4879 4880 4881
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4882
	i915_gem_restore_fences(dev_priv);
4883

4884
	i915_gem_detect_bit_6_swizzle(dev_priv);
4885 4886
}

4887
int
4888
i915_gem_load_init(struct drm_i915_private *dev_priv)
4889
{
4890
	int err = -ENOMEM;
4891

4892 4893
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4894 4895
		goto err_out;

4896 4897
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4898 4899
		goto err_objects;

4900 4901 4902
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4903
					SLAB_TYPESAFE_BY_RCU);
4904
	if (!dev_priv->requests)
4905 4906
		goto err_vmas;

4907 4908 4909 4910 4911 4912
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4913 4914 4915 4916
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4917 4918
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4919
	err = i915_gem_timeline_init__global(dev_priv);
4920 4921
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4922
		goto err_priorities;
4923

4924 4925
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4926 4927
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4928
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4929
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4930
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4931
			  i915_gem_retire_work_handler);
4932
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4933
			  i915_gem_idle_work_handler);
4934
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4935
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4936

4937
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4938

4939 4940
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4941
	spin_lock_init(&dev_priv->fb_tracking.lock);
4942 4943 4944

	return 0;

4945 4946
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4947 4948
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4949 4950 4951 4952 4953 4954 4955 4956
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4957
}
4958

4959
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4960
{
4961
	i915_gem_drain_freed_objects(dev_priv);
4962
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4963
	WARN_ON(dev_priv->mm.object_count);
4964

4965 4966 4967 4968 4969
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4970
	kmem_cache_destroy(dev_priv->priorities);
4971
	kmem_cache_destroy(dev_priv->dependencies);
4972 4973 4974
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4975 4976 4977

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4978 4979
}

4980 4981
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4982 4983 4984
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
4985 4986 4987 4988 4989
	i915_gem_shrink_all(dev_priv);

	return 0;
}

4990 4991 4992
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4993 4994 4995 4996 4997
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4998 4999 5000 5001 5002 5003 5004 5005 5006 5007

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5008 5009
	 *
	 * To try and reduce the hibernation image, we manually shrink
5010
	 * the objects as well, see i915_gem_freeze()
5011 5012
	 */

5013
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5014
	i915_gem_drain_freed_objects(dev_priv);
5015

5016
	mutex_lock(&dev_priv->drm.struct_mutex);
5017
	for (p = phases; *p; p++) {
5018 5019
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5020
	}
5021
	mutex_unlock(&dev_priv->drm.struct_mutex);
5022 5023 5024 5025

	return 0;
}

5026
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5027
{
5028
	struct drm_i915_file_private *file_priv = file->driver_priv;
5029
	struct drm_i915_gem_request *request;
5030 5031 5032 5033 5034

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5035
	spin_lock(&file_priv->mm.lock);
5036
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5037
		request->file_priv = NULL;
5038
	spin_unlock(&file_priv->mm.lock);
5039

5040
	if (!list_empty(&file_priv->rps.link)) {
5041
		spin_lock(&to_i915(dev)->rps.client_lock);
5042
		list_del(&file_priv->rps.link);
5043
		spin_unlock(&to_i915(dev)->rps.client_lock);
5044
	}
5045 5046
}

5047
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5048 5049
{
	struct drm_i915_file_private *file_priv;
5050
	int ret;
5051

5052
	DRM_DEBUG("\n");
5053 5054 5055 5056 5057 5058

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5059
	file_priv->dev_priv = i915;
5060
	file_priv->file = file;
5061
	INIT_LIST_HEAD(&file_priv->rps.link);
5062 5063 5064 5065

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5066
	file_priv->bsd_engine = -1;
5067

5068
	ret = i915_gem_context_open(i915, file);
5069 5070
	if (ret)
		kfree(file_priv);
5071

5072
	return ret;
5073 5074
}

5075 5076
/**
 * i915_gem_track_fb - update frontbuffer tracking
5077 5078 5079
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5080 5081 5082 5083
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5084 5085 5086 5087
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5088 5089 5090 5091 5092 5093 5094 5095 5096
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5097
	if (old) {
5098 5099
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5100 5101 5102
	}

	if (new) {
5103 5104
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5105 5106 5107
	}
}

5108 5109
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5110
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5111 5112 5113
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5114 5115 5116
	struct file *file;
	size_t offset;
	int err;
5117

5118
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5119
	if (IS_ERR(obj))
5120 5121
		return obj;

5122
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5123

5124 5125 5126 5127 5128 5129
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5130

5131 5132 5133 5134 5135
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5136

5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5151 5152 5153 5154

	return obj;

fail:
5155
	i915_gem_object_put(obj);
5156
	return ERR_PTR(err);
5157
}
5158 5159 5160 5161 5162 5163

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5164
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5165 5166 5167 5168 5169
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5170
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5295
	if (!obj->mm.dirty)
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5311 5312 5313

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5314
#include "selftests/mock_gem_device.c"
5315
#include "selftests/huge_gem_object.c"
5316
#include "selftests/i915_gem_object.c"
5317
#include "selftests/i915_gem_coherency.c"
5318
#endif