i915_gem.c 138.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50
static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51

52 53
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
54 55 56
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return false;

57
	if (!i915_gem_object_is_coherent(obj))
58 59 60 61 62
		return true;

	return obj->pin_display;
}

63
static int
64
insert_mappable_node(struct i915_ggtt *ggtt,
65 66 67
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
68 69 70 71
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
72 73 74 75 76 77 78 79
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

80 81
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82
				  u64 size)
83
{
84
	spin_lock(&dev_priv->mm.object_stat_lock);
85 86
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
87
	spin_unlock(&dev_priv->mm.object_stat_lock);
88 89 90
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91
				     u64 size)
92
{
93
	spin_lock(&dev_priv->mm.object_stat_lock);
94 95
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
96
	spin_unlock(&dev_priv->mm.object_stat_lock);
97 98
}

99
static int
100
i915_gem_wait_for_error(struct i915_gpu_error *error)
101 102 103
{
	int ret;

104 105
	might_sleep();

106 107 108 109 110
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
111
	ret = wait_event_interruptible_timeout(error->reset_queue,
112
					       !i915_reset_backoff(error),
113
					       I915_RESET_TIMEOUT);
114 115 116 117
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
118
		return ret;
119 120
	} else {
		return 0;
121
	}
122 123
}

124
int i915_mutex_lock_interruptible(struct drm_device *dev)
125
{
126
	struct drm_i915_private *dev_priv = to_i915(dev);
127 128
	int ret;

129
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130 131 132 133 134 135 136 137 138
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
139

140 141
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142
			    struct drm_file *file)
143
{
144
	struct drm_i915_private *dev_priv = to_i915(dev);
145
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
146
	struct drm_i915_gem_get_aperture *args = data;
147
	struct i915_vma *vma;
148
	size_t pinned;
149

150
	pinned = 0;
151
	mutex_lock(&dev->struct_mutex);
152
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153
		if (i915_vma_is_pinned(vma))
154
			pinned += vma->node.size;
155
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156
		if (i915_vma_is_pinned(vma))
157
			pinned += vma->node.size;
158
	mutex_unlock(&dev->struct_mutex);
159

160
	args->aper_size = ggtt->base.total;
161
	args->aper_available_size = args->aper_size - pinned;
162

163 164 165
	return 0;
}

166
static struct sg_table *
167
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168
{
169
	struct address_space *mapping = obj->base.filp->f_mapping;
170
	drm_dma_handle_t *phys;
171 172
	struct sg_table *st;
	struct scatterlist *sg;
173
	char *vaddr;
174
	int i;
175

176
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177
		return ERR_PTR(-EINVAL);
178

179 180 181 182 183 184 185 186 187 188 189
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
190 191 192 193 194
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
195 196 197 198
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
199 200 201 202 203 204

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

205
		put_page(page);
206 207 208
		vaddr += PAGE_SIZE;
	}

209
	i915_gem_chipset_flush(to_i915(obj->base.dev));
210 211

	st = kmalloc(sizeof(*st), GFP_KERNEL);
212 213 214 215
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
216 217 218

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
219 220
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
221 222 223 224 225
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
226

227
	sg_dma_address(sg) = phys->busaddr;
228 229
	sg_dma_len(sg) = obj->base.size;

230 231 232 233 234
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
235
	return st;
236 237 238
}

static void
239
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240 241
				struct sg_table *pages,
				bool needs_clflush)
242
{
C
Chris Wilson 已提交
243
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244

C
Chris Wilson 已提交
245 246
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
247

248 249
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250
	    !i915_gem_object_is_coherent(obj))
251
		drm_clflush_sg(pages);
252 253 254 255 256 257 258 259 260

	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
261
	__i915_gem_object_release_shmem(obj, pages, false);
262

C
Chris Wilson 已提交
263
	if (obj->mm.dirty) {
264
		struct address_space *mapping = obj->base.filp->f_mapping;
265
		char *vaddr = obj->phys_handle->vaddr;
266 267 268
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269 270 271 272 273 274 275 276 277 278 279 280 281
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
282
			if (obj->mm.madv == I915_MADV_WILLNEED)
283
				mark_page_accessed(page);
284
			put_page(page);
285 286
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
287
		obj->mm.dirty = false;
288 289
	}

290 291
	sg_free_table(pages);
	kfree(pages);
292 293

	drm_pci_free(obj->base.dev, obj->phys_handle);
294 295 296 297 298
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
299
	i915_gem_object_unpin_pages(obj);
300 301 302 303 304 305 306 307
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

308 309
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

310
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 312 313
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
314 315 316
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
317

318 319 320 321
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
322
	 */
323 324 325 326 327 328
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
329 330 331 332 333
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

334 335 336 337 338 339 340 341 342 343 344 345 346
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

347 348 349 350 351
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
352
{
353
	struct drm_i915_gem_request *rq;
354

355
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
			gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
		else
			rps = NULL;
389 390
	}

391 392 393 394 395 396
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

397
	if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
		/* The GPU is now idle and this client has stalled.
		 * Since no other client has submitted a request in the
		 * meantime, assume that this client is the only one
		 * supplying work to the GPU but is unable to keep that
		 * work supplied because it is waiting. Since the GPU is
		 * then never kept fully busy, RPS autoclocking will
		 * keep the clocks relatively low, causing further delays.
		 * Compensate by giving the synchronous client credit for
		 * a waitboost next time.
		 */
		spin_lock(&rq->i915->rps.client_lock);
		list_del_init(&rps->link);
		spin_unlock(&rq->i915->rps.client_lock);
	}

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
422
	unsigned int seq = __read_seqcount_begin(&resv->seq);
423
	struct dma_fence *excl;
424
	bool prune_fences = false;
425 426 427 428

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
429 430
		int ret;

431 432
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
433 434 435
		if (ret)
			return ret;

436 437 438 439
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
440
			if (timeout < 0)
441
				break;
442

443 444 445 446 447 448
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
449 450

		prune_fences = count && timeout >= 0;
451 452
	} else {
		excl = reservation_object_get_excl_rcu(resv);
453 454
	}

455
	if (excl && timeout >= 0) {
456
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457 458
		prune_fences = timeout >= 0;
	}
459 460 461

	dma_fence_put(excl);

462 463 464 465
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
466
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467 468 469 470 471
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
472 473
	}

474
	return timeout;
475 476
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

541 542 543 544 545 546
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
547
 */
548 549 550 551 552
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
553
{
554 555 556 557 558 559 560
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
561

562 563 564
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
565
	return timeout < 0 ? timeout : 0;
566 567 568 569 570 571 572 573 574
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

575 576 577 578
int
i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
			    int align)
{
579
	int ret;
580

581 582
	if (align > obj->base.size)
		return -EINVAL;
583

584
	if (obj->ops == &i915_gem_phys_ops)
585 586
		return 0;

C
Chris Wilson 已提交
587
	if (obj->mm.madv != I915_MADV_WILLNEED)
588 589 590 591 592
		return -EFAULT;

	if (obj->base.filp == NULL)
		return -EINVAL;

C
Chris Wilson 已提交
593 594 595 596
	ret = i915_gem_object_unbind(obj);
	if (ret)
		return ret;

597
	__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598 599
	if (obj->mm.pages)
		return -EBUSY;
600

601
	GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602 603
	obj->ops = &i915_gem_phys_ops;

604 605 606 607 608 609 610 611 612
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err_xfer;

	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	return ret;
613 614 615 616 617
}

static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
618
		     struct drm_file *file)
619 620
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
621
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
622 623 624 625

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
626
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627 628
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
629

630
	drm_clflush_virt_range(vaddr, args->size);
631
	i915_gem_chipset_flush(to_i915(obj->base.dev));
632

633
	intel_fb_obj_flush(obj, ORIGIN_CPU);
634
	return 0;
635 636
}

637
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638
{
639
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 641 642 643
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
644
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645
	kmem_cache_free(dev_priv->objects, obj);
646 647
}

648 649
static int
i915_gem_create(struct drm_file *file,
650
		struct drm_i915_private *dev_priv,
651 652
		uint64_t size,
		uint32_t *handle_p)
653
{
654
	struct drm_i915_gem_object *obj;
655 656
	int ret;
	u32 handle;
657

658
	size = roundup(size, PAGE_SIZE);
659 660
	if (size == 0)
		return -EINVAL;
661 662

	/* Allocate the new object */
663
	obj = i915_gem_object_create(dev_priv, size);
664 665
	if (IS_ERR(obj))
		return PTR_ERR(obj);
666

667
	ret = drm_gem_handle_create(file, &obj->base, &handle);
668
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
669
	i915_gem_object_put(obj);
670 671
	if (ret)
		return ret;
672

673
	*handle_p = handle;
674 675 676
	return 0;
}

677 678 679 680 681 682
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
683
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684
	args->size = args->pitch * args->height;
685
	return i915_gem_create(file, to_i915(dev),
686
			       args->size, &args->handle);
687 688 689 690
}

/**
 * Creates a new mm object and returns a handle to it.
691 692 693
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
694 695 696 697 698
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
699
	struct drm_i915_private *dev_priv = to_i915(dev);
700
	struct drm_i915_gem_create *args = data;
701

702
	i915_gem_flush_free_objects(dev_priv);
703

704
	return i915_gem_create(file, dev_priv,
705
			       args->size, &args->handle);
706 707
}

708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

734
static inline int
735 736
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

760 761 762 763 764 765
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766
				    unsigned int *needs_clflush)
767 768 769
{
	int ret;

770
	lockdep_assert_held(&obj->base.dev->struct_mutex);
771

772
	*needs_clflush = 0;
773 774
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
775

776 777 778 779 780
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
781 782 783
	if (ret)
		return ret;

C
Chris Wilson 已提交
784
	ret = i915_gem_object_pin_pages(obj);
785 786 787
	if (ret)
		return ret;

788 789 790 791 792 793 794 795 796
	if (i915_gem_object_is_coherent(obj) ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

797 798
	i915_gem_object_flush_gtt_write_domain(obj);

799 800 801 802 803 804
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805
		*needs_clflush = CLFLUSH_BEFORE;
806

807
out:
808
	/* return with the pages pinned */
809
	return 0;
810 811 812 813

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
814 815 816 817 818 819 820
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

821 822
	lockdep_assert_held(&obj->base.dev->struct_mutex);

823 824 825 826
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

827 828 829 830 831 832
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
833 834 835
	if (ret)
		return ret;

C
Chris Wilson 已提交
836
	ret = i915_gem_object_pin_pages(obj);
837 838 839
	if (ret)
		return ret;

840 841 842 843 844 845 846 847 848
	if (i915_gem_object_is_coherent(obj) ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

849 850
	i915_gem_object_flush_gtt_write_domain(obj);

851 852 853 854 855 856
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857
		*needs_clflush |= CLFLUSH_AFTER;
858 859 860 861 862

	/* Same trick applies to invalidate partially written cachelines read
	 * before writing.
	 */
	if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863
		*needs_clflush |= CLFLUSH_BEFORE;
864

865
out:
866
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
867
	obj->mm.dirty = true;
868
	/* return with the pages pinned */
869
	return 0;
870 871 872 873

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
874 875
}

876 877 878 879
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
880
	if (unlikely(swizzled)) {
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

898 899 900
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
901
shmem_pread_slow(struct page *page, int offset, int length,
902 903 904 905 906 907 908 909
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
910
		shmem_clflush_swizzled_range(vaddr + offset, length,
911
					     page_do_bit17_swizzling);
912 913

	if (page_do_bit17_swizzling)
914
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915
	else
916
		ret = __copy_to_user(user_data, vaddr + offset, length);
917 918
	kunmap(page);

919
	return ret ? - EFAULT : 0;
920 921
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
998 999
{
	void *vaddr;
1000
	unsigned long unwritten;
1001 1002

	/* We can use the cpu mem copy function because this is X86. */
1003 1004 1005 1006 1007 1008 1009 1010 1011
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1012 1013 1014 1015
	return unwritten;
}

static int
1016 1017
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1018
{
1019 1020
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1021
	struct drm_mm_node node;
1022 1023 1024
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1025 1026
	int ret;

1027 1028 1029 1030 1031 1032 1033
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1034 1035 1036
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1037
		ret = i915_vma_put_fence(vma);
1038 1039 1040 1041 1042
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1043
	if (IS_ERR(vma)) {
1044
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045
		if (ret)
1046 1047
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1048 1049 1050 1051 1052 1053
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1054
	mutex_unlock(&i915->drm.struct_mutex);
1055

1056 1057 1058
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075
					       node.start, I915_CACHE_NONE, 0);
1076 1077 1078 1079
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1080 1081 1082

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1083 1084 1085 1086 1087 1088 1089 1090 1091
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1092
	mutex_lock(&i915->drm.struct_mutex);
1093 1094 1095 1096
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1097
				       node.start, node.size);
1098 1099
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1100
		i915_vma_unpin(vma);
1101
	}
1102 1103 1104
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1105

1106 1107 1108
	return ret;
}

1109 1110
/**
 * Reads data from the object referenced by handle.
1111 1112 1113
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1114 1115 1116 1117 1118
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119
		     struct drm_file *file)
1120 1121
{
	struct drm_i915_gem_pread *args = data;
1122
	struct drm_i915_gem_object *obj;
1123
	int ret;
1124

1125 1126 1127 1128
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1129
		       u64_to_user_ptr(args->data_ptr),
1130 1131 1132
		       args->size))
		return -EFAULT;

1133
	obj = i915_gem_object_lookup(file, args->handle);
1134 1135
	if (!obj)
		return -ENOENT;
1136

1137
	/* Bounds check source.  */
1138
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1139
		ret = -EINVAL;
1140
		goto out;
C
Chris Wilson 已提交
1141 1142
	}

C
Chris Wilson 已提交
1143 1144
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1145 1146 1147 1148
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1149
	if (ret)
1150
		goto out;
1151

1152
	ret = i915_gem_object_pin_pages(obj);
1153
	if (ret)
1154
		goto out;
1155

1156
	ret = i915_gem_shmem_pread(obj, args);
1157
	if (ret == -EFAULT || ret == -ENODEV)
1158
		ret = i915_gem_gtt_pread(obj, args);
1159

1160 1161
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1162
	i915_gem_object_put(obj);
1163
	return ret;
1164 1165
}

1166 1167
/* This is the fast write path which cannot handle
 * page faults in the source data
1168
 */
1169

1170 1171 1172 1173
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1174
{
1175
	void *vaddr;
1176
	unsigned long unwritten;
1177

1178
	/* We can use the cpu mem copy function because this is X86. */
1179 1180
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181
						      user_data, length);
1182 1183 1184 1185 1186 1187 1188
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1189 1190 1191 1192

	return unwritten;
}

1193 1194 1195
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1196
 * @obj: i915 GEM object
1197
 * @args: pwrite arguments structure
1198
 */
1199
static int
1200 1201
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1202
{
1203
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204 1205
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1206 1207 1208
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1209
	int ret;
1210

1211 1212 1213
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1214

1215
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1216
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217
				       PIN_MAPPABLE | PIN_NONBLOCK);
1218 1219 1220
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1221
		ret = i915_vma_put_fence(vma);
1222 1223 1224 1225 1226
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1227
	if (IS_ERR(vma)) {
1228
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229
		if (ret)
1230 1231
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1232
	}
D
Daniel Vetter 已提交
1233 1234 1235 1236 1237

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1238 1239
	mutex_unlock(&i915->drm.struct_mutex);

1240
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241

1242 1243 1244 1245
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1246 1247
		/* Operation in this page
		 *
1248 1249 1250
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1251
		 */
1252
		u32 page_base = node.start;
1253 1254
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1265
		/* If we get a fault while copying data, then (presumably) our
1266 1267
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1268 1269
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1270
		 */
1271 1272 1273 1274
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1275
		}
1276

1277 1278 1279
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1280
	}
1281
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1282 1283

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1284
out_unpin:
1285 1286 1287
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1288
				       node.start, node.size);
1289 1290
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1291
		i915_vma_unpin(vma);
1292
	}
1293
out_unlock:
1294
	intel_runtime_pm_put(i915);
1295
	mutex_unlock(&i915->drm.struct_mutex);
1296
	return ret;
1297 1298
}

1299
static int
1300
shmem_pwrite_slow(struct page *page, int offset, int length,
1301 1302 1303 1304
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1305
{
1306 1307
	char *vaddr;
	int ret;
1308

1309
	vaddr = kmap(page);
1310
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311
		shmem_clflush_swizzled_range(vaddr + offset, length,
1312
					     page_do_bit17_swizzling);
1313
	if (page_do_bit17_swizzling)
1314 1315
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1316
	else
1317
		ret = __copy_from_user(vaddr + offset, user_data, length);
1318
	if (needs_clflush_after)
1319
		shmem_clflush_swizzled_range(vaddr + offset, length,
1320
					     page_do_bit17_swizzling);
1321
	kunmap(page);
1322

1323
	return ret ? -EFAULT : 0;
1324 1325
}

1326 1327 1328 1329 1330
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1331
static int
1332 1333 1334 1335
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1336
{
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1369
	unsigned int needs_clflush;
1370 1371
	unsigned int offset, idx;
	int ret;
1372

1373
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374 1375 1376
	if (ret)
		return ret;

1377 1378 1379 1380
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1381

1382 1383 1384
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1385

1386 1387 1388 1389 1390 1391 1392
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393

1394 1395 1396 1397 1398 1399
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1400

1401 1402 1403
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1404

1405 1406 1407 1408
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1409
		if (ret)
1410
			break;
1411

1412 1413 1414
		remain -= length;
		user_data += length;
		offset = 0;
1415
	}
1416

1417
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1418
	i915_gem_obj_finish_shmem_access(obj);
1419
	return ret;
1420 1421 1422 1423
}

/**
 * Writes data to the object referenced by handle.
1424 1425 1426
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1427 1428 1429 1430 1431
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432
		      struct drm_file *file)
1433 1434
{
	struct drm_i915_gem_pwrite *args = data;
1435
	struct drm_i915_gem_object *obj;
1436 1437 1438 1439 1440 1441
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1442
		       u64_to_user_ptr(args->data_ptr),
1443 1444 1445
		       args->size))
		return -EFAULT;

1446
	obj = i915_gem_object_lookup(file, args->handle);
1447 1448
	if (!obj)
		return -ENOENT;
1449

1450
	/* Bounds check destination. */
1451
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1452
		ret = -EINVAL;
1453
		goto err;
C
Chris Wilson 已提交
1454 1455
	}

C
Chris Wilson 已提交
1456 1457
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1458 1459 1460 1461 1462 1463
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1464 1465 1466 1467 1468
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1469 1470 1471
	if (ret)
		goto err;

1472
	ret = i915_gem_object_pin_pages(obj);
1473
	if (ret)
1474
		goto err;
1475

D
Daniel Vetter 已提交
1476
	ret = -EFAULT;
1477 1478 1479 1480 1481 1482
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1483
	if (!i915_gem_object_has_struct_page(obj) ||
1484
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1485 1486
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1487 1488
		 * textures). Fallback to the shmem path in that case.
		 */
1489
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1490

1491
	if (ret == -EFAULT || ret == -ENOSPC) {
1492 1493
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1494
		else
1495
			ret = i915_gem_shmem_pwrite(obj, args);
1496
	}
1497

1498
	i915_gem_object_unpin_pages(obj);
1499
err:
C
Chris Wilson 已提交
1500
	i915_gem_object_put(obj);
1501
	return ret;
1502 1503
}

1504
static inline enum fb_op_origin
1505 1506
write_origin(struct drm_i915_gem_object *obj, unsigned domain)
{
1507 1508
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 1510
}

1511 1512 1513 1514 1515 1516 1517 1518
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1519
			break;
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532
	list_move_tail(&obj->global_link, list);
1533 1534
}

1535
/**
1536 1537
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1538 1539 1540
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1541 1542 1543
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544
			  struct drm_file *file)
1545 1546
{
	struct drm_i915_gem_set_domain *args = data;
1547
	struct drm_i915_gem_object *obj;
1548 1549
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1550
	int err;
1551

1552
	/* Only handle setting domains to types used by the CPU. */
1553
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554 1555 1556 1557 1558 1559 1560 1561
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1562
	obj = i915_gem_object_lookup(file, args->handle);
1563 1564
	if (!obj)
		return -ENOENT;
1565

1566 1567 1568 1569
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1570
	err = i915_gem_object_wait(obj,
1571 1572 1573 1574
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1575
	if (err)
C
Chris Wilson 已提交
1576
		goto out;
1577

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1588
		goto out;
1589 1590 1591

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1592
		goto out_unpin;
1593

1594
	if (read_domains & I915_GEM_DOMAIN_GTT)
1595
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596
	else
1597
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598

1599 1600
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1601

1602
	mutex_unlock(&dev->struct_mutex);
1603

1604 1605 1606
	if (write_domain != 0)
		intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));

C
Chris Wilson 已提交
1607
out_unpin:
1608
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1609 1610
out:
	i915_gem_object_put(obj);
1611
	return err;
1612 1613 1614 1615
}

/**
 * Called when user space has done writes to this buffer
1616 1617 1618
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1619 1620 1621
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622
			 struct drm_file *file)
1623 1624
{
	struct drm_i915_gem_sw_finish *args = data;
1625
	struct drm_i915_gem_object *obj;
1626

1627
	obj = i915_gem_object_lookup(file, args->handle);
1628 1629
	if (!obj)
		return -ENOENT;
1630 1631

	/* Pinned buffers may be scanout, so flush the cache */
1632
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1633
	i915_gem_object_put(obj);
1634 1635

	return 0;
1636 1637 1638
}

/**
1639 1640 1641 1642 1643
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1644 1645 1646
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1657 1658 1659
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660
		    struct drm_file *file)
1661 1662
{
	struct drm_i915_gem_mmap *args = data;
1663
	struct drm_i915_gem_object *obj;
1664 1665
	unsigned long addr;

1666 1667 1668
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1669
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670 1671
		return -ENODEV;

1672 1673
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1674
		return -ENOENT;
1675

1676 1677 1678
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1679
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1680
		i915_gem_object_put(obj);
1681 1682 1683
		return -EINVAL;
	}

1684
	addr = vm_mmap(obj->base.filp, 0, args->size,
1685 1686
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1687 1688 1689 1690
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1691
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1692
			i915_gem_object_put(obj);
1693 1694
			return -EINTR;
		}
1695 1696 1697 1698 1699 1700 1701
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1702 1703

		/* This may race, but that's ok, it only gets set */
1704
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705
	}
C
Chris Wilson 已提交
1706
	i915_gem_object_put(obj);
1707 1708 1709 1710 1711 1712 1713 1714
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1715 1716
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1717
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 1719
}

1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
	return 1;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1781 1782
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1783
		min_t(unsigned int, chunk,
1784
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785 1786 1787 1788 1789 1790 1791 1792

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1793 1794
/**
 * i915_gem_fault - fault a page into the GTT
1795
 * @vmf: fault info
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1807 1808 1809
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810
 */
1811
int i915_gem_fault(struct vm_fault *vmf)
1812
{
1813
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1815
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816
	struct drm_device *dev = obj->base.dev;
1817 1818
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1820
	struct i915_vma *vma;
1821
	pgoff_t page_offset;
1822
	unsigned int flags;
1823
	int ret;
1824

1825
	/* We don't use vmf->pgoff since that has the fake offset */
1826
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827

C
Chris Wilson 已提交
1828 1829
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1830
	/* Try to flush the object off the GPU first without holding the lock.
1831
	 * Upon acquiring the lock, we will perform our sanity checks and then
1832 1833 1834
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1835 1836 1837 1838
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1839
	if (ret)
1840 1841
		goto err;

1842 1843 1844 1845
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1846 1847 1848 1849 1850
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1851

1852
	/* Access to snoopable pages through the GTT is incoherent. */
1853
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854
		ret = -EFAULT;
1855
		goto err_unlock;
1856 1857
	}

1858 1859 1860 1861 1862 1863 1864 1865
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1866
	/* Now pin it into the GTT as needed */
1867
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868 1869
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1870
		struct i915_ggtt_view view =
1871
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872

1873 1874 1875 1876 1877
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1878 1879
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1880 1881
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1882
		goto err_unlock;
C
Chris Wilson 已提交
1883
	}
1884

1885 1886
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1887
		goto err_unpin;
1888

1889
	ret = i915_vma_get_fence(vma);
1890
	if (ret)
1891
		goto err_unpin;
1892

1893
	/* Mark as being mmapped into userspace for later revocation */
1894
	assert_rpm_wakelock_held(dev_priv);
1895 1896 1897
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1898
	/* Finally, remap it using the new GTT offset */
1899
	ret = remap_io_mapping(area,
1900
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901 1902 1903
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1904

1905
err_unpin:
C
Chris Wilson 已提交
1906
	__i915_vma_unpin(vma);
1907
err_unlock:
1908
	mutex_unlock(&dev->struct_mutex);
1909 1910
err_rpm:
	intel_runtime_pm_put(dev_priv);
1911
	i915_gem_object_unpin_pages(obj);
1912
err:
1913
	switch (ret) {
1914
	case -EIO:
1915 1916 1917 1918 1919 1920 1921
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922 1923 1924
			ret = VM_FAULT_SIGBUS;
			break;
		}
1925
	case -EAGAIN:
D
Daniel Vetter 已提交
1926 1927 1928 1929
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1930
		 */
1931 1932
	case 0:
	case -ERESTARTSYS:
1933
	case -EINTR:
1934 1935 1936 1937 1938
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1939 1940
		ret = VM_FAULT_NOPAGE;
		break;
1941
	case -ENOMEM:
1942 1943
		ret = VM_FAULT_OOM;
		break;
1944
	case -ENOSPC:
1945
	case -EFAULT:
1946 1947
		ret = VM_FAULT_SIGBUS;
		break;
1948
	default:
1949
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950 1951
		ret = VM_FAULT_SIGBUS;
		break;
1952
	}
1953
	return ret;
1954 1955
}

1956 1957 1958 1959
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1960
 * Preserve the reservation of the mmapping with the DRM core code, but
1961 1962 1963 1964 1965 1966 1967 1968 1969
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1970
void
1971
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972
{
1973 1974
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1975 1976 1977
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1978 1979 1980 1981
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1982
	 */
1983
	lockdep_assert_held(&i915->drm.struct_mutex);
1984
	intel_runtime_pm_get(i915);
1985

1986
	if (list_empty(&obj->userfault_link))
1987
		goto out;
1988

1989
	list_del_init(&obj->userfault_link);
1990 1991
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
1992 1993 1994 1995 1996 1997 1998 1999 2000

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2001 2002 2003

out:
	intel_runtime_pm_put(i915);
2004 2005
}

2006
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007
{
2008
	struct drm_i915_gem_object *obj, *on;
2009
	int i;
2010

2011 2012 2013 2014 2015 2016
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2017

2018 2019 2020
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2021 2022 2023
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2024 2025 2026 2027 2028 2029 2030 2031

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2042 2043 2044 2045 2046 2047 2048

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2049 2050
}

2051 2052
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2053
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054
	int err;
2055

2056
	err = drm_gem_create_mmap_offset(&obj->base);
2057
	if (likely(!err))
2058
		return 0;
2059

2060 2061 2062 2063 2064
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2065

2066
		i915_gem_drain_freed_objects(dev_priv);
2067
		err = drm_gem_create_mmap_offset(&obj->base);
2068 2069 2070 2071
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2072

2073
	return err;
2074 2075 2076 2077 2078 2079 2080
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2081
int
2082 2083
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2084
		  uint32_t handle,
2085
		  uint64_t *offset)
2086
{
2087
	struct drm_i915_gem_object *obj;
2088 2089
	int ret;

2090
	obj = i915_gem_object_lookup(file, handle);
2091 2092
	if (!obj)
		return -ENOENT;
2093

2094
	ret = i915_gem_object_create_mmap_offset(obj);
2095 2096
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097

C
Chris Wilson 已提交
2098
	i915_gem_object_put(obj);
2099
	return ret;
2100 2101
}

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2123
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 2125
}

D
Daniel Vetter 已提交
2126 2127 2128
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129
{
2130
	i915_gem_object_free_mmap_offset(obj);
2131

2132 2133
	if (obj->base.filp == NULL)
		return;
2134

D
Daniel Vetter 已提交
2135 2136 2137 2138 2139
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2140
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2141
	obj->mm.madv = __I915_MADV_PURGED;
2142
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2143
}
2144

2145
/* Try to discard unwanted pages */
2146
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2147
{
2148 2149
	struct address_space *mapping;

2150 2151 2152
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2153
	switch (obj->mm.madv) {
2154 2155 2156 2157 2158 2159 2160 2161 2162
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2163
	mapping = obj->base.filp->f_mapping,
2164
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 2166
}

2167
static void
2168 2169
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2170
{
2171 2172
	struct sgt_iter sgt_iter;
	struct page *page;
2173

2174
	__i915_gem_object_release_shmem(obj, pages, true);
2175

2176
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2177

2178
	if (i915_gem_object_needs_bit17_swizzle(obj))
2179
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2180

2181
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2182
		if (obj->mm.dirty)
2183
			set_page_dirty(page);
2184

C
Chris Wilson 已提交
2185
		if (obj->mm.madv == I915_MADV_WILLNEED)
2186
			mark_page_accessed(page);
2187

2188
		put_page(page);
2189
	}
C
Chris Wilson 已提交
2190
	obj->mm.dirty = false;
2191

2192 2193
	sg_free_table(pages);
	kfree(pages);
2194
}
C
Chris Wilson 已提交
2195

2196 2197 2198 2199 2200
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
	void **slot;

C
Chris Wilson 已提交
2201 2202
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 2204
}

2205 2206
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2207
{
2208
	struct sg_table *pages;
2209

C
Chris Wilson 已提交
2210
	if (i915_gem_object_has_pinned_pages(obj))
2211
		return;
2212

2213
	GEM_BUG_ON(obj->bind_count);
2214 2215 2216 2217
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2218
	mutex_lock_nested(&obj->mm.lock, subclass);
2219 2220
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2221

2222 2223 2224
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2225 2226
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2227

C
Chris Wilson 已提交
2228
	if (obj->mm.mapping) {
2229 2230
		void *ptr;

C
Chris Wilson 已提交
2231
		ptr = ptr_mask_bits(obj->mm.mapping);
2232 2233
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2234
		else
2235 2236
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2237
		obj->mm.mapping = NULL;
2238 2239
	}

2240 2241
	__i915_gem_object_reset_page_iter(obj);

2242 2243 2244
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2245 2246
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2247 2248
}

2249
static bool i915_sg_trim(struct sg_table *orig_st)
2250 2251 2252 2253 2254 2255
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2256
		return false;
2257

2258
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259
		return false;
2260 2261 2262 2263 2264 2265 2266

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2267
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268 2269 2270 2271

	sg_free_table(orig_st);

	*orig_st = new_st;
2272
	return true;
2273 2274
}

2275
static struct sg_table *
C
Chris Wilson 已提交
2276
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277
{
2278
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279 2280
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2281
	struct address_space *mapping;
2282 2283
	struct sg_table *st;
	struct scatterlist *sg;
2284
	struct sgt_iter sgt_iter;
2285
	struct page *page;
2286
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2287
	unsigned int max_segment;
I
Imre Deak 已提交
2288
	int ret;
C
Chris Wilson 已提交
2289
	gfp_t gfp;
2290

C
Chris Wilson 已提交
2291 2292 2293 2294
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2295 2296
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2297

2298
	max_segment = swiotlb_max_segment();
2299
	if (!max_segment)
2300
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301

2302 2303
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2304
		return ERR_PTR(-ENOMEM);
2305

2306
rebuild_st:
2307 2308
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2309
		return ERR_PTR(-ENOMEM);
2310
	}
2311

2312 2313 2314 2315 2316
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2317
	mapping = obj->base.filp->f_mapping;
2318
	gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2319
	gfp |= __GFP_NORETRY | __GFP_NOWARN;
2320 2321 2322
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
C
Chris Wilson 已提交
2323
		page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2324
		if (unlikely(IS_ERR(page))) {
2325 2326 2327 2328 2329
			i915_gem_shrink(dev_priv,
					page_count,
					I915_SHRINK_BOUND |
					I915_SHRINK_UNBOUND |
					I915_SHRINK_PURGEABLE);
C
Chris Wilson 已提交
2330 2331
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
		}
2332 2333 2334
		if (unlikely(IS_ERR(page))) {
			gfp_t reclaim;

C
Chris Wilson 已提交
2335 2336 2337
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2338 2339 2340 2341
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2342
			 */
2343 2344 2345
			reclaim = mapping_gfp_constraint(mapping, 0);
			reclaim |= __GFP_NORETRY; /* reclaim, but no oom */

2346
			page = shmem_read_mapping_page_gfp(mapping, i, reclaim);
I
Imre Deak 已提交
2347 2348
			if (IS_ERR(page)) {
				ret = PTR_ERR(page);
2349
				goto err_sg;
I
Imre Deak 已提交
2350
			}
C
Chris Wilson 已提交
2351
		}
2352 2353 2354
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2355 2356 2357 2358 2359 2360 2361 2362
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2363 2364 2365

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2366
	}
2367
	if (sg) /* loop terminated early; short sg table */
2368
		sg_mark_end(sg);
2369

2370 2371 2372
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2373
	ret = i915_gem_gtt_prepare_pages(obj, st);
2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2393

2394
	if (i915_gem_object_needs_bit17_swizzle(obj))
2395
		i915_gem_object_do_bit_17_swizzle(obj, st);
2396

2397
	return st;
2398

2399
err_sg:
2400
	sg_mark_end(sg);
2401
err_pages:
2402 2403
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2404 2405
	sg_free_table(st);
	kfree(st);
2406 2407 2408 2409 2410 2411 2412 2413 2414

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2415 2416 2417
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2418 2419 2420 2421 2422 2423
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2424
	lockdep_assert_held(&obj->mm.lock);
2425 2426 2427 2428 2429

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2430 2431 2432 2433 2434 2435 2436

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2437 2438 2439 2440 2441 2442
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2443 2444
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2456 2457
}

2458
/* Ensure that the associated pages are gathered from the backing storage
2459
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2460
 * multiple times before they are released by a single call to
2461
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2462 2463 2464
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2465
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2466
{
2467
	int err;
2468

2469 2470 2471
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2472

2473
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2474 2475 2476
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2477

2478 2479 2480
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2481

2482 2483
unlock:
	mutex_unlock(&obj->mm.lock);
2484
	return err;
2485 2486
}

2487
/* The 'mapping' part of i915_gem_object_pin_map() below */
2488 2489
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2490 2491
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2492
	struct sg_table *sgt = obj->mm.pages;
2493 2494
	struct sgt_iter sgt_iter;
	struct page *page;
2495 2496
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2497
	unsigned long i = 0;
2498
	pgprot_t pgprot;
2499 2500 2501
	void *addr;

	/* A single page can always be kmapped */
2502
	if (n_pages == 1 && type == I915_MAP_WB)
2503 2504
		return kmap(sg_page(sgt->sgl));

2505 2506 2507 2508 2509 2510
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
		pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
		if (!pages)
			return NULL;
	}
2511

2512 2513
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2514 2515 2516 2517

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2518 2519 2520 2521 2522 2523 2524 2525 2526
	switch (type) {
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2527

2528 2529
	if (pages != stack_pages)
		drm_free_large(pages);
2530 2531 2532 2533 2534

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2535 2536
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2537
{
2538 2539 2540
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2541 2542
	int ret;

2543
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2544

2545
	ret = mutex_lock_interruptible(&obj->mm.lock);
2546 2547 2548
	if (ret)
		return ERR_PTR(ret);

2549 2550
	pinned = true;
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2551
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2552 2553 2554
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2555

2556 2557 2558
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2559 2560 2561
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2562

C
Chris Wilson 已提交
2563
	ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2564 2565 2566
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2567
			goto err_unpin;
2568
		}
2569 2570 2571 2572 2573 2574

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2575
		ptr = obj->mm.mapping = NULL;
2576 2577
	}

2578 2579 2580 2581
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2582
			goto err_unpin;
2583 2584
		}

C
Chris Wilson 已提交
2585
		obj->mm.mapping = ptr_pack_bits(ptr, type);
2586 2587
	}

2588 2589
out_unlock:
	mutex_unlock(&obj->mm.lock);
2590 2591
	return ptr;

2592 2593 2594 2595 2596
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2597 2598
}

2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2668
static bool ban_context(const struct i915_gem_context *ctx)
2669
{
2670 2671
	return (i915_gem_context_is_bannable(ctx) &&
		ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2672 2673
}

2674
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2675
{
2676
	ctx->guilty_count++;
2677 2678 2679
	ctx->ban_score += CONTEXT_SCORE_GUILTY;
	if (ban_context(ctx))
		i915_gem_context_set_banned(ctx);
2680 2681

	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2682
			 ctx->name, ctx->ban_score,
2683
			 yesno(i915_gem_context_is_banned(ctx)));
2684

2685
	if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2686 2687
		return;

2688 2689 2690
	ctx->file_priv->context_bans++;
	DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
			 ctx->name, ctx->file_priv->context_bans);
2691 2692 2693 2694
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2695
	ctx->active_count++;
2696 2697
}

2698
struct drm_i915_gem_request *
2699
i915_gem_find_active_request(struct intel_engine_cs *engine)
2700
{
2701 2702
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2703

2704 2705 2706 2707 2708 2709 2710 2711
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2712
	spin_lock_irqsave(&engine->timeline->lock, flags);
2713
	list_for_each_entry(request, &engine->timeline->requests, link) {
2714 2715
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2716
			continue;
2717

2718
		GEM_BUG_ON(request->engine != engine);
2719 2720
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2721 2722 2723

		active = request;
		break;
2724
	}
2725
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2726

2727
	return active;
2728 2729
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2744
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2745 2746 2747
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
2748
	int err = 0;
2749 2750

	/* Ensure irq handler finishes, and not run again. */
2751 2752 2753
	for_each_engine(engine, dev_priv, id) {
		struct drm_i915_gem_request *request;

2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
		/* Prevent the signaler thread from updating the request
		 * state (by calling dma_fence_signal) as we are processing
		 * the reset. The write from the GPU of the seqno is
		 * asynchronous and the signaler thread may see a different
		 * value to us and declare the request complete, even though
		 * the reset routine have picked that request as the active
		 * (incomplete) request. This conflict is not handled
		 * gracefully!
		 */
		kthread_park(engine->breadcrumbs.signaler);

2765 2766 2767 2768 2769 2770 2771 2772
		/* Prevent request submission to the hardware until we have
		 * completed the reset in i915_gem_reset_finish(). If a request
		 * is completed by one engine, it may then queue a request
		 * to a second via its engine->irq_tasklet *just* as we are
		 * calling engine->init_hw() and also writing the ELSP.
		 * Turning off the engine->irq_tasklet until the reset is over
		 * prevents the race.
		 */
2773
		tasklet_kill(&engine->irq_tasklet);
2774
		tasklet_disable(&engine->irq_tasklet);
2775

2776 2777 2778
		if (engine->irq_seqno_barrier)
			engine->irq_seqno_barrier(engine);

2779 2780 2781 2782 2783 2784 2785
		if (engine_stalled(engine)) {
			request = i915_gem_find_active_request(engine);
			if (request && request->fence.error == -EIO)
				err = -EIO; /* Previous reset failed! */
		}
	}

2786
	i915_gem_revoke_fences(dev_priv);
2787 2788

	return err;
2789 2790
}

2791
static void skip_request(struct drm_i915_gem_request *request)
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2806 2807

	dma_fence_set_error(&request->fence, -EIO);
2808 2809
}

2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2833 2834 2835 2836 2837 2838
/* Returns true if the request was guilty of hang */
static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
{
	/* Read once and return the resolution */
	const bool guilty = engine_stalled(request->engine);

2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
	if (guilty) {
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
	} else {
		i915_gem_context_mark_innocent(request->ctx);
		dma_fence_set_error(&request->fence, -EAGAIN);
	}

	return guilty;
}

2871
static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2872 2873 2874
{
	struct drm_i915_gem_request *request;

2875
	request = i915_gem_find_active_request(engine);
2876 2877 2878
	if (request && i915_gem_reset_request(request)) {
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
2879

2880 2881 2882 2883
		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
	}
2884 2885 2886

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2887
}
2888

2889
void i915_gem_reset(struct drm_i915_private *dev_priv)
2890
{
2891
	struct intel_engine_cs *engine;
2892
	enum intel_engine_id id;
2893

2894 2895
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2896 2897
	i915_gem_retire_requests(dev_priv);

2898 2899 2900
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2901
		i915_gem_reset_engine(engine);
2902 2903 2904 2905
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2906

2907
	i915_gem_restore_fences(dev_priv);
2908 2909 2910 2911 2912 2913 2914

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2915 2916
}

2917 2918
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
2919 2920 2921
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

2922
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
2923

2924
	for_each_engine(engine, dev_priv, id) {
2925
		tasklet_enable(&engine->irq_tasklet);
2926 2927
		kthread_unpark(engine->breadcrumbs.signaler);
	}
2928 2929
}

2930 2931
static void nop_submit_request(struct drm_i915_gem_request *request)
{
2932
	dma_fence_set_error(&request->fence, -EIO);
2933 2934
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
2935 2936
}

2937
static void engine_set_wedged(struct intel_engine_cs *engine)
2938
{
2939 2940 2941
	struct drm_i915_gem_request *request;
	unsigned long flags;

2942 2943 2944 2945 2946 2947
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
2948
	engine->submit_request = nop_submit_request;
2949

2950 2951 2952 2953 2954 2955
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
		dma_fence_set_error(&request->fence, -EIO);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

2956 2957 2958 2959
	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
2960
	intel_engine_init_global_seqno(engine,
2961
				       intel_engine_last_submit(engine));
2962

2963 2964 2965 2966 2967 2968
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

2969
	if (i915.enable_execlists) {
2970 2971 2972 2973
		unsigned long flags;

		spin_lock_irqsave(&engine->timeline->lock, flags);

2974 2975 2976
		i915_gem_request_put(engine->execlist_port[0].request);
		i915_gem_request_put(engine->execlist_port[1].request);
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2977 2978
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
2979 2980

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
2981
	}
2982 2983
}

2984
static int __i915_gem_set_wedged_BKL(void *data)
2985
{
2986
	struct drm_i915_private *i915 = data;
2987
	struct intel_engine_cs *engine;
2988
	enum intel_engine_id id;
2989

2990
	for_each_engine(engine, i915, id)
2991
		engine_set_wedged(engine);
2992 2993 2994 2995 2996 2997

	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
2998 2999
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
	set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3000

3001
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3002

3003
	i915_gem_context_lost(dev_priv);
3004
	i915_gem_retire_requests(dev_priv);
3005 3006

	mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3007 3008
}

3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3068
static void
3069 3070
i915_gem_retire_work_handler(struct work_struct *work)
{
3071
	struct drm_i915_private *dev_priv =
3072
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3073
	struct drm_device *dev = &dev_priv->drm;
3074

3075
	/* Come back later if the device is busy... */
3076
	if (mutex_trylock(&dev->struct_mutex)) {
3077
		i915_gem_retire_requests(dev_priv);
3078
		mutex_unlock(&dev->struct_mutex);
3079
	}
3080 3081 3082 3083 3084

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3085 3086
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3087 3088
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3089
				   round_jiffies_up_relative(HZ));
3090
	}
3091
}
3092

3093 3094 3095 3096
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3097
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3098
	struct drm_device *dev = &dev_priv->drm;
3099
	struct intel_engine_cs *engine;
3100
	enum intel_engine_id id;
3101 3102 3103 3104 3105
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3106 3107 3108 3109 3110
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
	wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3111 3112
		 intel_engines_are_idle(dev_priv),
		 10);
3113
	if (READ_ONCE(dev_priv->gt.active_requests))
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3127 3128 3129 3130 3131 3132 3133
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3134
	if (dev_priv->gt.active_requests)
3135
		goto out_unlock;
3136

3137
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3138 3139
		DRM_ERROR("Timeout waiting for engines to idle\n");

3140 3141
	for_each_engine(engine, dev_priv, id) {
		intel_engine_disarm_breadcrumbs(engine);
3142
		i915_gem_batch_pool_fini(&engine->batch_pool);
3143
	}
3144

3145 3146 3147
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3148

3149 3150 3151 3152 3153
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3154

3155 3156 3157 3158
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3159
	}
3160 3161
}

3162 3163 3164 3165 3166 3167 3168 3169 3170 3171
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
	struct i915_vma *vma, *vn;

	mutex_lock(&obj->base.dev->struct_mutex);
	list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
		if (vma->vm->file == fpriv)
			i915_vma_close(vma);
3172 3173 3174 3175 3176 3177

	if (i915_gem_object_is_active(obj) &&
	    !i915_gem_object_has_active_reference(obj)) {
		i915_gem_object_set_active_reference(obj);
		i915_gem_object_get(obj);
	}
3178 3179 3180
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3192 3193
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3194 3195 3196
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
 *  -EAGAIN: GPU wedged
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3221 3222
	ktime_t start;
	long ret;
3223

3224 3225 3226
	if (args->flags != 0)
		return -EINVAL;

3227
	obj = i915_gem_object_lookup(file, args->bo_handle);
3228
	if (!obj)
3229 3230
		return -ENOENT;

3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3242 3243 3244 3245 3246 3247 3248 3249 3250 3251

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3252 3253
	}

C
Chris Wilson 已提交
3254
	i915_gem_object_put(obj);
3255
	return ret;
3256 3257
}

3258
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3259
{
3260
	int ret, i;
3261

3262 3263 3264 3265 3266
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3267

3268 3269 3270 3271 3272 3273 3274
	return 0;
}

int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3287 3288 3289
		if (ret)
			return ret;
	}
3290

3291
	return 0;
3292 3293
}

3294 3295
/** Flushes the GTT write domain for the object if it's dirty. */
static void
3296
i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3297
{
3298
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
C
Chris Wilson 已提交
3299

3300
	if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3301 3302
		return;

3303
	/* No actual flushing is required for the GTT write domain.  Writes
3304
	 * to it "immediately" go to main memory as far as we know, so there's
3305
	 * no chipset flush.  It also doesn't land in render cache.
3306 3307 3308 3309
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
3310 3311 3312 3313 3314 3315 3316
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
3317
	 */
3318
	wmb();
3319
	if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3320 3321 3322 3323 3324 3325
		if (intel_runtime_pm_get_if_in_use(dev_priv)) {
			spin_lock_irq(&dev_priv->uncore.lock);
			POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
		}
3326
	}
3327

3328
	intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3329

3330
	obj->base.write_domain = 0;
3331 3332 3333 3334
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
3335
i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3336
{
3337
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3338 3339
		return;

3340
	i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3341
	obj->base.write_domain = 0;
3342 3343
}

3344 3345 3346 3347 3348
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
	if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
		return;

3349
	i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3363 3364
/**
 * Moves a single object to the GTT read, and possibly write domain.
3365 3366
 * @obj: object to act on
 * @write: ask for write access or read only
3367 3368 3369 3370
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3371
int
3372
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3373
{
3374
	int ret;
3375

3376
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3377

3378 3379 3380 3381 3382 3383
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3384 3385 3386
	if (ret)
		return ret;

3387 3388 3389
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3390 3391 3392 3393 3394 3395 3396 3397
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3398
	ret = i915_gem_object_pin_pages(obj);
3399 3400 3401
	if (ret)
		return ret;

3402
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
3403

3404 3405 3406 3407 3408 3409 3410
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3411 3412 3413
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3414
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3415
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3416
	if (write) {
3417 3418
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3419
		obj->mm.dirty = true;
3420 3421
	}

C
Chris Wilson 已提交
3422
	i915_gem_object_unpin_pages(obj);
3423 3424 3425
	return 0;
}

3426 3427
/**
 * Changes the cache-level of an object across all VMA.
3428 3429
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3441 3442 3443
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3444
	struct i915_vma *vma;
3445
	int ret;
3446

3447 3448
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3449
	if (obj->cache_level == cache_level)
3450
		return 0;
3451

3452 3453 3454 3455 3456
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3457 3458
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3459 3460 3461
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3462
		if (i915_vma_is_pinned(vma)) {
3463 3464 3465 3466
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3479 3480
	}

3481 3482 3483 3484 3485 3486 3487
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3488
	if (obj->bind_count) {
3489 3490 3491 3492
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3493 3494 3495 3496 3497 3498
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3499 3500 3501
		if (ret)
			return ret;

3502 3503
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3520 3521 3522 3523 3524
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3525 3526 3527 3528 3529 3530 3531 3532
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3533 3534
		}

3535
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3536 3537 3538 3539 3540 3541 3542
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3543 3544
	}

3545
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3546
	    i915_gem_object_is_coherent(obj))
3547 3548
		obj->cache_dirty = true;

3549
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3550 3551 3552
		vma->node.color = cache_level;
	obj->cache_level = cache_level;

3553 3554 3555
	return 0;
}

B
Ben Widawsky 已提交
3556 3557
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3558
{
B
Ben Widawsky 已提交
3559
	struct drm_i915_gem_caching *args = data;
3560
	struct drm_i915_gem_object *obj;
3561
	int err = 0;
3562

3563 3564 3565 3566 3567 3568
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3569

3570 3571 3572 3573 3574 3575
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3576 3577 3578 3579
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3580 3581 3582 3583
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3584 3585 3586
out:
	rcu_read_unlock();
	return err;
3587 3588
}

B
Ben Widawsky 已提交
3589 3590
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3591
{
3592
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3593
	struct drm_i915_gem_caching *args = data;
3594 3595
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3596
	int ret = 0;
3597

B
Ben Widawsky 已提交
3598 3599
	switch (args->caching) {
	case I915_CACHING_NONE:
3600 3601
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3602
	case I915_CACHING_CACHED:
3603 3604 3605 3606 3607 3608
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3609
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3610 3611
			return -ENODEV;

3612 3613
		level = I915_CACHE_LLC;
		break;
3614
	case I915_CACHING_DISPLAY:
3615
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3616
		break;
3617 3618 3619 3620
	default:
		return -EINVAL;
	}

3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3632
	if (ret)
3633
		goto out;
B
Ben Widawsky 已提交
3634

3635 3636 3637
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3638 3639 3640

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3641 3642 3643

out:
	i915_gem_object_put(obj);
3644 3645 3646
	return ret;
}

3647
/*
3648 3649 3650
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3651
 */
C
Chris Wilson 已提交
3652
struct i915_vma *
3653 3654
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3655
				     const struct i915_ggtt_view *view)
3656
{
C
Chris Wilson 已提交
3657
	struct i915_vma *vma;
3658 3659
	int ret;

3660 3661
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3662 3663 3664
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3665
	obj->pin_display++;
3666

3667 3668 3669 3670 3671 3672 3673 3674 3675
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3676
	ret = i915_gem_object_set_cache_level(obj,
3677 3678
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3679 3680
	if (ret) {
		vma = ERR_PTR(ret);
3681
		goto err_unpin_display;
C
Chris Wilson 已提交
3682
	}
3683

3684 3685
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3686 3687 3688 3689
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3690
	 */
3691
	vma = ERR_PTR(-ENOSPC);
3692
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3693 3694
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3711
	if (IS_ERR(vma))
3712
		goto err_unpin_display;
3713

3714 3715
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3716
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3717
	__i915_gem_object_flush_for_display(obj);
3718
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3719

3720 3721 3722
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3723
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3724

C
Chris Wilson 已提交
3725
	return vma;
3726 3727

err_unpin_display:
3728
	obj->pin_display--;
C
Chris Wilson 已提交
3729
	return vma;
3730 3731 3732
}

void
C
Chris Wilson 已提交
3733
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3734
{
3735
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3736

C
Chris Wilson 已提交
3737
	if (WARN_ON(vma->obj->pin_display == 0))
3738 3739
		return;

3740
	if (--vma->obj->pin_display == 0)
3741
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3742

3743
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3744
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3745

C
Chris Wilson 已提交
3746
	i915_vma_unpin(vma);
3747 3748
}

3749 3750
/**
 * Moves a single object to the CPU read, and possibly write domain.
3751 3752
 * @obj: object to act on
 * @write: requesting write or read-only access
3753 3754 3755 3756
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3757
int
3758
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3759 3760 3761
{
	int ret;

3762
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3763

3764 3765 3766 3767 3768 3769
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3770 3771 3772
	if (ret)
		return ret;

3773 3774 3775
	if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
		return 0;

3776
	i915_gem_object_flush_gtt_write_domain(obj);
3777

3778
	/* Flush the CPU cache if it's still invalid. */
3779
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3780
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3781
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3782 3783 3784 3785 3786
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3787
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3788 3789 3790 3791 3792

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
3793 3794
		obj->base.read_domains = I915_GEM_DOMAIN_CPU;
		obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3795
	}
3796 3797 3798 3799

	return 0;
}

3800 3801 3802
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3803 3804 3805 3806
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3807 3808 3809
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3810
static int
3811
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3812
{
3813
	struct drm_i915_private *dev_priv = to_i915(dev);
3814
	struct drm_i915_file_private *file_priv = file->driver_priv;
3815
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3816
	struct drm_i915_gem_request *request, *target = NULL;
3817
	long ret;
3818

3819 3820 3821
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3822

3823
	spin_lock(&file_priv->mm.lock);
3824
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3825 3826
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3827

3828 3829 3830 3831
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3832

3833
		target = request;
3834
	}
3835
	if (target)
3836
		i915_gem_request_get(target);
3837
	spin_unlock(&file_priv->mm.lock);
3838

3839
	if (target == NULL)
3840
		return 0;
3841

3842 3843 3844
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3845
	i915_gem_request_put(target);
3846

3847
	return ret < 0 ? ret : 0;
3848 3849
}

C
Chris Wilson 已提交
3850
struct i915_vma *
3851 3852
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3853
			 u64 size,
3854 3855
			 u64 alignment,
			 u64 flags)
3856
{
3857 3858
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
3859 3860
	struct i915_vma *vma;
	int ret;
3861

3862 3863
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3864
	vma = i915_vma_instance(obj, vm, view);
3865
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
3866
		return vma;
3867 3868 3869 3870

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
3871
			return ERR_PTR(-ENOSPC);
3872

3873 3874 3875 3876 3877 3878 3879 3880
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
3881
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
3900
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3901 3902 3903
				return ERR_PTR(-ENOSPC);
		}

3904 3905
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
3906 3907 3908
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
3909
		     !!(flags & PIN_MAPPABLE),
3910
		     i915_vma_is_map_and_fenceable(vma));
3911 3912
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
3913
			return ERR_PTR(ret);
3914 3915
	}

C
Chris Wilson 已提交
3916 3917 3918
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
3919

C
Chris Wilson 已提交
3920
	return vma;
3921 3922
}

3923
static __always_inline unsigned int __busy_read_flag(unsigned int id)
3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
3938 3939 3940 3941 3942 3943 3944 3945 3946
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
3947 3948
}

3949
static __always_inline unsigned int
3950
__busy_set_if_active(const struct dma_fence *fence,
3951 3952
		     unsigned int (*flag)(unsigned int id))
{
3953
	struct drm_i915_gem_request *rq;
3954

3955 3956 3957 3958
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
3959
	 *
3960
	 * Note we only report on the status of native fences.
3961
	 */
3962 3963 3964 3965 3966 3967 3968 3969 3970
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

	return flag(rq->engine->exec_id);
3971 3972
}

3973
static __always_inline unsigned int
3974
busy_check_reader(const struct dma_fence *fence)
3975
{
3976
	return __busy_set_if_active(fence, __busy_read_flag);
3977 3978
}

3979
static __always_inline unsigned int
3980
busy_check_writer(const struct dma_fence *fence)
3981
{
3982 3983 3984 3985
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
3986 3987
}

3988 3989
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3990
		    struct drm_file *file)
3991 3992
{
	struct drm_i915_gem_busy *args = data;
3993
	struct drm_i915_gem_object *obj;
3994 3995
	struct reservation_object_list *list;
	unsigned int seq;
3996
	int err;
3997

3998
	err = -ENOENT;
3999 4000
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4001
	if (!obj)
4002
		goto out;
4003

4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4022

4023 4024
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4025

4026 4027 4028 4029
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4030

4031 4032 4033 4034 4035 4036
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4037
	}
4038

4039 4040 4041 4042
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4043 4044 4045
out:
	rcu_read_unlock();
	return err;
4046 4047 4048 4049 4050 4051
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4052
	return i915_gem_ring_throttle(dev, file_priv);
4053 4054
}

4055 4056 4057 4058
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4059
	struct drm_i915_private *dev_priv = to_i915(dev);
4060
	struct drm_i915_gem_madvise *args = data;
4061
	struct drm_i915_gem_object *obj;
4062
	int err;
4063 4064 4065 4066 4067 4068 4069 4070 4071

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4072
	obj = i915_gem_object_lookup(file_priv, args->handle);
4073 4074 4075 4076 4077 4078
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4079

C
Chris Wilson 已提交
4080
	if (obj->mm.pages &&
4081
	    i915_gem_object_is_tiled(obj) &&
4082
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4083 4084
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4085
			__i915_gem_object_unpin_pages(obj);
4086 4087 4088
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4089
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4090
			__i915_gem_object_pin_pages(obj);
4091 4092
			obj->mm.quirked = true;
		}
4093 4094
	}

C
Chris Wilson 已提交
4095 4096
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4097

C
Chris Wilson 已提交
4098
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4099
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4100 4101
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4102
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4103
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4104

4105
out:
4106
	i915_gem_object_put(obj);
4107
	return err;
4108 4109
}

4110 4111 4112 4113 4114 4115 4116
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4117
	intel_fb_obj_flush(obj, ORIGIN_CS);
4118 4119
}

4120 4121
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4122
{
4123 4124
	mutex_init(&obj->mm.lock);

4125
	INIT_LIST_HEAD(&obj->global_link);
4126
	INIT_LIST_HEAD(&obj->userfault_link);
4127
	INIT_LIST_HEAD(&obj->obj_exec_link);
B
Ben Widawsky 已提交
4128
	INIT_LIST_HEAD(&obj->vma_list);
4129
	INIT_LIST_HEAD(&obj->batch_pool_link);
4130

4131 4132
	obj->ops = ops;

4133 4134 4135
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4136
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4137
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4138 4139 4140 4141

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4142

4143
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4144 4145
}

4146
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4147 4148
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4149

4150 4151
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4152 4153

	.pwrite = i915_gem_object_pwrite_gtt,
4154 4155
};

4156
struct drm_i915_gem_object *
4157
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4158
{
4159
	struct drm_i915_gem_object *obj;
4160
	struct address_space *mapping;
D
Daniel Vetter 已提交
4161
	gfp_t mask;
4162
	int ret;
4163

4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
	if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4175
	obj = i915_gem_object_alloc(dev_priv);
4176
	if (obj == NULL)
4177
		return ERR_PTR(-ENOMEM);
4178

4179
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4180 4181
	if (ret)
		goto fail;
4182

4183
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4184
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4185 4186 4187 4188 4189
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4190
	mapping = obj->base.filp->f_mapping;
4191
	mapping_set_gfp_mask(mapping, mask);
4192

4193
	i915_gem_object_init(obj, &i915_gem_object_ops);
4194

4195 4196
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4197

4198
	if (HAS_LLC(dev_priv)) {
4199
		/* On some devices, we can have the GPU use the LLC (the CPU
4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
		obj->cache_level = I915_CACHE_LLC;
	} else
		obj->cache_level = I915_CACHE_NONE;

4215 4216
	trace_i915_gem_object_create(obj);

4217
	return obj;
4218 4219 4220 4221

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4222 4223
}

4224 4225 4226 4227 4228 4229 4230 4231
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4232
	if (obj->mm.madv != I915_MADV_WILLNEED)
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4248 4249
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4250
{
4251
	struct drm_i915_gem_object *obj, *on;
4252

4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(!i915_vma_is_ggtt(vma));
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4268 4269
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4270

4271
		list_del(&obj->global_link);
4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4282

4283 4284
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4285
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4286 4287 4288 4289 4290
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4291
		reservation_object_fini(&obj->__builtin_resv);
4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4314

4315 4316 4317 4318 4319 4320 4321
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4322

4323 4324 4325
	while ((freed = llist_del_all(&i915->mm.free_list)))
		__i915_gem_free_objects(i915, freed);
}
4326

4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4341

4342 4343 4344
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4345

4346 4347 4348
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4349
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4350
		obj->mm.madv = I915_MADV_DONTNEED;
4351

4352 4353 4354 4355 4356 4357
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4358 4359
}

4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

	GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
	if (i915_gem_object_is_active(obj))
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4371 4372 4373 4374 4375 4376
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4377 4378
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4379 4380
}

4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
	 * of the reset, so we only reset recent machines with logical
	 * context support (that must be reset to remove any stray contexts).
	 */
	if (HAS_HW_CONTEXTS(i915)) {
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4398
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4399
{
4400
	struct drm_device *dev = &dev_priv->drm;
4401
	int ret;
4402

4403
	intel_runtime_pm_get(dev_priv);
4404 4405
	intel_suspend_gt_powersave(dev_priv);

4406
	mutex_lock(&dev->struct_mutex);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4418
		goto err_unlock;
4419

4420 4421 4422
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4423
	if (ret)
4424
		goto err_unlock;
4425

4426
	i915_gem_retire_requests(dev_priv);
4427
	GEM_BUG_ON(dev_priv->gt.active_requests);
4428

4429
	assert_kernel_context_is_current(dev_priv);
4430
	i915_gem_context_lost(dev_priv);
4431 4432
	mutex_unlock(&dev->struct_mutex);

4433
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4434
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4435 4436 4437 4438 4439 4440 4441 4442

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

	i915_gem_drain_freed_objects(dev_priv);
4443

4444 4445 4446
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4447
	WARN_ON(dev_priv->gt.awake);
4448
	WARN_ON(!intel_engines_are_idle(dev_priv));
4449

4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4469
	i915_gem_sanitize(dev_priv);
4470
	goto out_rpm_put;
4471

4472
err_unlock:
4473
	mutex_unlock(&dev->struct_mutex);
4474 4475
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4476
	return ret;
4477 4478
}

4479
void i915_gem_resume(struct drm_i915_private *dev_priv)
4480
{
4481
	struct drm_device *dev = &dev_priv->drm;
4482

4483 4484
	WARN_ON(dev_priv->gt.awake);

4485
	mutex_lock(&dev->struct_mutex);
4486
	i915_gem_restore_gtt_mappings(dev_priv);
4487 4488 4489 4490 4491

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4492
	dev_priv->gt.resume(dev_priv);
4493 4494 4495 4496

	mutex_unlock(&dev->struct_mutex);
}

4497
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4498
{
4499
	if (INTEL_GEN(dev_priv) < 5 ||
4500 4501 4502 4503 4504 4505
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4506
	if (IS_GEN5(dev_priv))
4507 4508
		return;

4509
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4510
	if (IS_GEN6(dev_priv))
4511
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4512
	else if (IS_GEN7(dev_priv))
4513
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4514
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4515
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4516 4517
	else
		BUG();
4518
}
D
Daniel Vetter 已提交
4519

4520
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4521 4522 4523 4524 4525 4526 4527
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4528
static void init_unused_rings(struct drm_i915_private *dev_priv)
4529
{
4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4542 4543 4544
	}
}

4545
static int __i915_gem_restart_engines(void *data)
4546
{
4547
	struct drm_i915_private *i915 = data;
4548
	struct intel_engine_cs *engine;
4549
	enum intel_engine_id id;
4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4563
	int ret;
4564

4565 4566
	dev_priv->gt.last_init_time = ktime_get();

4567 4568 4569
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4570
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4571
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4572

4573
	if (IS_HASWELL(dev_priv))
4574
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4575
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4576

4577
	if (HAS_PCH_NOP(dev_priv)) {
4578
		if (IS_IVYBRIDGE(dev_priv)) {
4579 4580 4581
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4582
		} else if (INTEL_GEN(dev_priv) >= 7) {
4583 4584 4585 4586
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4587 4588
	}

4589
	i915_gem_init_swizzling(dev_priv);
4590

4591 4592 4593 4594 4595 4596
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4597
	init_unused_rings(dev_priv);
4598

4599
	BUG_ON(!dev_priv->kernel_context);
4600

4601
	ret = i915_ppgtt_init_hw(dev_priv);
4602 4603 4604 4605 4606 4607
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4608 4609 4610
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4611

4612
	intel_mocs_init_l3cc_table(dev_priv);
4613

4614 4615 4616 4617
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4618

4619 4620
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4621
	return ret;
4622 4623
}

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

#ifdef CONFIG_INTEL_IOMMU
	/* Enable semaphores on SNB when IO remapping is off */
	if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
		return false;
#endif

	return true;
}

4645
int i915_gem_init(struct drm_i915_private *dev_priv)
4646 4647 4648
{
	int ret;

4649
	mutex_lock(&dev_priv->drm.struct_mutex);
4650

4651 4652
	i915_gem_clflush_init(dev_priv);

4653
	if (!i915.enable_execlists) {
4654
		dev_priv->gt.resume = intel_legacy_submission_resume;
4655
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4656
	} else {
4657
		dev_priv->gt.resume = intel_lr_context_resume;
4658
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4659 4660
	}

4661 4662 4663 4664 4665 4666 4667 4668
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4669
	i915_gem_init_userptr(dev_priv);
4670 4671 4672 4673

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4674

4675
	ret = i915_gem_context_init(dev_priv);
4676 4677
	if (ret)
		goto out_unlock;
4678

4679
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4680
	if (ret)
4681
		goto out_unlock;
4682

4683
	ret = i915_gem_init_hw(dev_priv);
4684
	if (ret == -EIO) {
4685
		/* Allow engine initialisation to fail by marking the GPU as
4686 4687 4688 4689
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4690
		i915_gem_set_wedged(dev_priv);
4691
		ret = 0;
4692
	}
4693 4694

out_unlock:
4695
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4696
	mutex_unlock(&dev_priv->drm.struct_mutex);
4697

4698
	return ret;
4699 4700
}

4701 4702 4703 4704 4705
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4706
void
4707
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4708
{
4709
	struct intel_engine_cs *engine;
4710
	enum intel_engine_id id;
4711

4712
	for_each_engine(engine, dev_priv, id)
4713
		dev_priv->gt.cleanup_engine(engine);
4714 4715
}

4716 4717 4718
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4719
	int i;
4720 4721 4722 4723

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4724 4725 4726
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4727 4728 4729 4730
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4731
	if (intel_vgpu_active(dev_priv))
4732 4733 4734 4735
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4736 4737 4738 4739 4740 4741 4742
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4743
	i915_gem_restore_fences(dev_priv);
4744

4745
	i915_gem_detect_bit_6_swizzle(dev_priv);
4746 4747
}

4748
int
4749
i915_gem_load_init(struct drm_i915_private *dev_priv)
4750
{
4751
	int err = -ENOMEM;
4752

4753 4754
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4755 4756
		goto err_out;

4757 4758
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4759 4760
		goto err_objects;

4761 4762 4763 4764 4765
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
					SLAB_DESTROY_BY_RCU);
	if (!dev_priv->requests)
4766 4767
		goto err_vmas;

4768 4769 4770 4771 4772 4773
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4774 4775
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4776
	err = i915_gem_timeline_init__global(dev_priv);
4777 4778
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4779
		goto err_dependencies;
4780

4781
	INIT_LIST_HEAD(&dev_priv->context_list);
4782 4783
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4784 4785
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4786
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4787
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4788
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4789
			  i915_gem_retire_work_handler);
4790
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4791
			  i915_gem_idle_work_handler);
4792
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4793
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4794

4795
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4796

4797 4798
	dev_priv->mm.interruptible = true;

4799 4800
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4801
	spin_lock_init(&dev_priv->fb_tracking.lock);
4802 4803 4804

	return 0;

4805 4806
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4807 4808 4809 4810 4811 4812 4813 4814
err_requests:
	kmem_cache_destroy(dev_priv->requests);
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4815
}
4816

4817
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4818
{
4819
	i915_gem_drain_freed_objects(dev_priv);
4820
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4821
	WARN_ON(dev_priv->mm.object_count);
4822

4823 4824 4825 4826 4827
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4828
	kmem_cache_destroy(dev_priv->dependencies);
4829 4830 4831
	kmem_cache_destroy(dev_priv->requests);
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4832 4833 4834

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4835 4836
}

4837 4838 4839 4840 4841 4842 4843 4844 4845
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink_all(dev_priv);
	mutex_unlock(&dev_priv->drm.struct_mutex);

	return 0;
}

4846 4847 4848
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
4849 4850 4851 4852 4853
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
4854 4855 4856 4857 4858 4859 4860 4861 4862 4863

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
4864 4865 4866
	 *
	 * To try and reduce the hibernation image, we manually shrink
	 * the objects as well.
4867 4868
	 */

4869 4870
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4871

4872
	for (p = phases; *p; p++) {
4873
		list_for_each_entry(obj, *p, global_link) {
4874 4875 4876
			obj->base.read_domains = I915_GEM_DOMAIN_CPU;
			obj->base.write_domain = I915_GEM_DOMAIN_CPU;
		}
4877
	}
4878
	mutex_unlock(&dev_priv->drm.struct_mutex);
4879 4880 4881 4882

	return 0;
}

4883
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4884
{
4885
	struct drm_i915_file_private *file_priv = file->driver_priv;
4886
	struct drm_i915_gem_request *request;
4887 4888 4889 4890 4891

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4892
	spin_lock(&file_priv->mm.lock);
4893
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4894
		request->file_priv = NULL;
4895
	spin_unlock(&file_priv->mm.lock);
4896

4897
	if (!list_empty(&file_priv->rps.link)) {
4898
		spin_lock(&to_i915(dev)->rps.client_lock);
4899
		list_del(&file_priv->rps.link);
4900
		spin_unlock(&to_i915(dev)->rps.client_lock);
4901
	}
4902 4903 4904 4905 4906
}

int i915_gem_open(struct drm_device *dev, struct drm_file *file)
{
	struct drm_i915_file_private *file_priv;
4907
	int ret;
4908

4909
	DRM_DEBUG("\n");
4910 4911 4912 4913 4914 4915

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
4916
	file_priv->dev_priv = to_i915(dev);
4917
	file_priv->file = file;
4918
	INIT_LIST_HEAD(&file_priv->rps.link);
4919 4920 4921 4922

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

4923
	file_priv->bsd_engine = -1;
4924

4925 4926 4927
	ret = i915_gem_context_open(dev, file);
	if (ret)
		kfree(file_priv);
4928

4929
	return ret;
4930 4931
}

4932 4933
/**
 * i915_gem_track_fb - update frontbuffer tracking
4934 4935 4936
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
4937 4938 4939 4940
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
4941 4942 4943 4944
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
4945 4946 4947 4948 4949 4950 4951 4952 4953
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

4954
	if (old) {
4955 4956
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4957 4958 4959
	}

	if (new) {
4960 4961
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4962 4963 4964
	}
}

4965 4966
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
4967
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4968 4969 4970
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
4971 4972 4973
	struct file *file;
	size_t offset;
	int err;
4974

4975
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4976
	if (IS_ERR(obj))
4977 4978
		return obj;

4979
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
4980

4981 4982 4983 4984 4985 4986
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
4987

4988 4989 4990 4991 4992
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
4993

4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5008 5009 5010 5011

	return obj;

fail:
5012
	i915_gem_object_put(obj);
5013
	return ERR_PTR(err);
5014
}
5015 5016 5017 5018 5019 5020

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5021
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5022 5023 5024 5025 5026
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5027
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5152
	if (!obj->mm.dirty)
5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5168 5169 5170

#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5171
#include "selftests/mock_gem_device.c"
5172
#include "selftests/huge_gem_object.c"
5173
#include "selftests/i915_gem_object.c"
5174
#include "selftests/i915_gem_coherency.c"
5175
#endif