i915_gem.c 143.5 KB
Newer Older
1
/*
2
 * Copyright © 2008-2015 Intel Corporation
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

28
#include <drm/drmP.h>
29
#include <drm/drm_vma_manager.h>
30
#include <drm/i915_drm.h>
31
#include "i915_drv.h"
32
#include "i915_gem_clflush.h"
33
#include "i915_vgpu.h"
C
Chris Wilson 已提交
34
#include "i915_trace.h"
35
#include "intel_drv.h"
36
#include "intel_frontbuffer.h"
37
#include "intel_mocs.h"
38
#include <linux/dma-fence-array.h>
39
#include <linux/kthread.h>
40
#include <linux/reservation.h>
41
#include <linux/shmem_fs.h>
42
#include <linux/slab.h>
43
#include <linux/stop_machine.h>
44
#include <linux/swap.h>
J
Jesse Barnes 已提交
45
#include <linux/pci.h>
46
#include <linux/dma-buf.h>
47

48
static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49

50 51
static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
52
	if (obj->cache_dirty)
53 54
		return false;

55
	if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56 57 58 59 60
		return true;

	return obj->pin_display;
}

61
static int
62
insert_mappable_node(struct i915_ggtt *ggtt,
63 64 65
                     struct drm_mm_node *node, u32 size)
{
	memset(node, 0, sizeof(*node));
66 67 68 69
	return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
					   size, 0, I915_COLOR_UNEVICTABLE,
					   0, ggtt->mappable_end,
					   DRM_MM_INSERT_LOW);
70 71 72 73 74 75 76 77
}

static void
remove_mappable_node(struct drm_mm_node *node)
{
	drm_mm_remove_node(node);
}

78 79
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80
				  u64 size)
81
{
82
	spin_lock(&dev_priv->mm.object_stat_lock);
83 84
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
85
	spin_unlock(&dev_priv->mm.object_stat_lock);
86 87 88
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89
				     u64 size)
90
{
91
	spin_lock(&dev_priv->mm.object_stat_lock);
92 93
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
94
	spin_unlock(&dev_priv->mm.object_stat_lock);
95 96
}

97
static int
98
i915_gem_wait_for_error(struct i915_gpu_error *error)
99 100 101
{
	int ret;

102 103
	might_sleep();

104 105 106 107 108
	/*
	 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
	 * userspace. If it takes that long something really bad is going on and
	 * we should simply try to bail out and fail as gracefully as possible.
	 */
109
	ret = wait_event_interruptible_timeout(error->reset_queue,
110
					       !i915_reset_backoff(error),
111
					       I915_RESET_TIMEOUT);
112 113 114 115
	if (ret == 0) {
		DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
		return -EIO;
	} else if (ret < 0) {
116
		return ret;
117 118
	} else {
		return 0;
119
	}
120 121
}

122
int i915_mutex_lock_interruptible(struct drm_device *dev)
123
{
124
	struct drm_i915_private *dev_priv = to_i915(dev);
125 126
	int ret;

127
	ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128 129 130 131 132 133 134 135 136
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	return 0;
}
137

138 139
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140
			    struct drm_file *file)
141
{
142
	struct drm_i915_private *dev_priv = to_i915(dev);
143
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
144
	struct drm_i915_gem_get_aperture *args = data;
145
	struct i915_vma *vma;
146
	u64 pinned;
147

148
	pinned = ggtt->base.reserved;
149
	mutex_lock(&dev->struct_mutex);
150
	list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151
		if (i915_vma_is_pinned(vma))
152
			pinned += vma->node.size;
153
	list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154
		if (i915_vma_is_pinned(vma))
155
			pinned += vma->node.size;
156
	mutex_unlock(&dev->struct_mutex);
157

158
	args->aper_size = ggtt->base.total;
159
	args->aper_available_size = args->aper_size - pinned;
160

161 162 163
	return 0;
}

164
static struct sg_table *
165
i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166
{
167
	struct address_space *mapping = obj->base.filp->f_mapping;
168
	drm_dma_handle_t *phys;
169 170
	struct sg_table *st;
	struct scatterlist *sg;
171
	char *vaddr;
172
	int i;
173

174
	if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175
		return ERR_PTR(-EINVAL);
176

177 178 179 180 181 182 183 184 185 186 187
	/* Always aligning to the object size, allows a single allocation
	 * to handle all possible callers, and given typical object sizes,
	 * the alignment of the buddy allocation will naturally match.
	 */
	phys = drm_pci_alloc(obj->base.dev,
			     obj->base.size,
			     roundup_pow_of_two(obj->base.size));
	if (!phys)
		return ERR_PTR(-ENOMEM);

	vaddr = phys->vaddr;
188 189 190 191 192
	for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
		struct page *page;
		char *src;

		page = shmem_read_mapping_page(mapping, i);
193 194 195 196
		if (IS_ERR(page)) {
			st = ERR_CAST(page);
			goto err_phys;
		}
197 198 199 200 201 202

		src = kmap_atomic(page);
		memcpy(vaddr, src, PAGE_SIZE);
		drm_clflush_virt_range(vaddr, PAGE_SIZE);
		kunmap_atomic(src);

203
		put_page(page);
204 205 206
		vaddr += PAGE_SIZE;
	}

207
	i915_gem_chipset_flush(to_i915(obj->base.dev));
208 209

	st = kmalloc(sizeof(*st), GFP_KERNEL);
210 211 212 213
	if (!st) {
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
	}
214 215 216

	if (sg_alloc_table(st, 1, GFP_KERNEL)) {
		kfree(st);
217 218
		st = ERR_PTR(-ENOMEM);
		goto err_phys;
219 220 221 222 223
	}

	sg = st->sgl;
	sg->offset = 0;
	sg->length = obj->base.size;
224

225
	sg_dma_address(sg) = phys->busaddr;
226 227
	sg_dma_len(sg) = obj->base.size;

228 229 230 231 232
	obj->phys_handle = phys;
	return st;

err_phys:
	drm_pci_free(obj->base.dev, phys);
233
	return st;
234 235
}

236 237 238 239 240 241 242 243
static void __start_cpu_write(struct drm_i915_gem_object *obj)
{
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	if (cpu_write_needs_clflush(obj))
		obj->cache_dirty = true;
}

244
static void
245
__i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246 247
				struct sg_table *pages,
				bool needs_clflush)
248
{
C
Chris Wilson 已提交
249
	GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250

C
Chris Wilson 已提交
251 252
	if (obj->mm.madv == I915_MADV_DONTNEED)
		obj->mm.dirty = false;
253

254 255
	if (needs_clflush &&
	    (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256
	    !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257
		drm_clflush_sg(pages);
258

259
	__start_cpu_write(obj);
260 261 262 263 264 265
}

static void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
			       struct sg_table *pages)
{
266
	__i915_gem_object_release_shmem(obj, pages, false);
267

C
Chris Wilson 已提交
268
	if (obj->mm.dirty) {
269
		struct address_space *mapping = obj->base.filp->f_mapping;
270
		char *vaddr = obj->phys_handle->vaddr;
271 272 273
		int i;

		for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274 275 276 277 278 279 280 281 282 283 284 285 286
			struct page *page;
			char *dst;

			page = shmem_read_mapping_page(mapping, i);
			if (IS_ERR(page))
				continue;

			dst = kmap_atomic(page);
			drm_clflush_virt_range(vaddr, PAGE_SIZE);
			memcpy(dst, vaddr, PAGE_SIZE);
			kunmap_atomic(dst);

			set_page_dirty(page);
C
Chris Wilson 已提交
287
			if (obj->mm.madv == I915_MADV_WILLNEED)
288
				mark_page_accessed(page);
289
			put_page(page);
290 291
			vaddr += PAGE_SIZE;
		}
C
Chris Wilson 已提交
292
		obj->mm.dirty = false;
293 294
	}

295 296
	sg_free_table(pages);
	kfree(pages);
297 298

	drm_pci_free(obj->base.dev, obj->phys_handle);
299 300 301 302 303
}

static void
i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
{
C
Chris Wilson 已提交
304
	i915_gem_object_unpin_pages(obj);
305 306 307 308 309 310 311 312
}

static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
	.get_pages = i915_gem_object_get_pages_phys,
	.put_pages = i915_gem_object_put_pages_phys,
	.release = i915_gem_object_release_phys,
};

313 314
static const struct drm_i915_gem_object_ops i915_gem_object_ops;

315
int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 317 318
{
	struct i915_vma *vma;
	LIST_HEAD(still_in_list);
319 320 321
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);
322

323 324 325 326
	/* Closed vma are removed from the obj->vma_list - but they may
	 * still have an active binding on the object. To remove those we
	 * must wait for all rendering to complete to the object (as unbinding
	 * must anyway), and retire the requests.
327
	 */
328 329 330 331 332 333
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
334 335 336 337 338
	if (ret)
		return ret;

	i915_gem_retire_requests(to_i915(obj->base.dev));

339 340 341 342 343 344 345 346 347 348 349 350 351
	while ((vma = list_first_entry_or_null(&obj->vma_list,
					       struct i915_vma,
					       obj_link))) {
		list_move_tail(&vma->obj_link, &still_in_list);
		ret = i915_vma_unbind(vma);
		if (ret)
			break;
	}
	list_splice(&still_in_list, &obj->vma_list);

	return ret;
}

352 353 354 355 356
static long
i915_gem_object_wait_fence(struct dma_fence *fence,
			   unsigned int flags,
			   long timeout,
			   struct intel_rps_client *rps)
357
{
358
	struct drm_i915_gem_request *rq;
359

360
	BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
		return timeout;

	if (!dma_fence_is_i915(fence))
		return dma_fence_wait_timeout(fence,
					      flags & I915_WAIT_INTERRUPTIBLE,
					      timeout);

	rq = to_request(fence);
	if (i915_gem_request_completed(rq))
		goto out;

	/* This client is about to stall waiting for the GPU. In many cases
	 * this is undesirable and limits the throughput of the system, as
	 * many clients cannot continue processing user input/output whilst
	 * blocked. RPS autotuning may take tens of milliseconds to respond
	 * to the GPU load and thus incurs additional latency for the client.
	 * We can circumvent that by promoting the GPU frequency to maximum
	 * before we wait. This makes the GPU throttle up much more quickly
	 * (good for benchmarks and user experience, e.g. window animations),
	 * but at a cost of spending more power processing the workload
	 * (bad for battery). Not all clients even want their results
	 * immediately and for them we should just let the GPU select its own
	 * frequency to maximise efficiency. To prevent a single client from
	 * forcing the clocks too high for the whole system, we only allow
	 * each client to waitboost once in a busy period.
	 */
	if (rps) {
		if (INTEL_GEN(rq->i915) >= 6)
391
			gen6_rps_boost(rq, rps);
392 393
		else
			rps = NULL;
394 395
	}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
	timeout = i915_wait_request(rq, flags, timeout);

out:
	if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
		i915_gem_request_retire_upto(rq);

	return timeout;
}

static long
i915_gem_object_wait_reservation(struct reservation_object *resv,
				 unsigned int flags,
				 long timeout,
				 struct intel_rps_client *rps)
{
411
	unsigned int seq = __read_seqcount_begin(&resv->seq);
412
	struct dma_fence *excl;
413
	bool prune_fences = false;
414 415 416 417

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
418 419
		int ret;

420 421
		ret = reservation_object_get_fences_rcu(resv,
							&excl, &count, &shared);
422 423 424
		if (ret)
			return ret;

425 426 427 428
		for (i = 0; i < count; i++) {
			timeout = i915_gem_object_wait_fence(shared[i],
							     flags, timeout,
							     rps);
429
			if (timeout < 0)
430
				break;
431

432 433 434 435 436 437
			dma_fence_put(shared[i]);
		}

		for (; i < count; i++)
			dma_fence_put(shared[i]);
		kfree(shared);
438 439

		prune_fences = count && timeout >= 0;
440 441
	} else {
		excl = reservation_object_get_excl_rcu(resv);
442 443
	}

444
	if (excl && timeout >= 0) {
445
		timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446 447
		prune_fences = timeout >= 0;
	}
448 449 450

	dma_fence_put(excl);

451 452 453 454
	/* Oportunistically prune the fences iff we know they have *all* been
	 * signaled and that the reservation object has not been changed (i.e.
	 * no new fences have been added).
	 */
455
	if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456 457 458 459 460
		if (reservation_object_trylock(resv)) {
			if (!__read_seqcount_retry(&resv->seq, seq))
				reservation_object_add_excl_fence(resv, NULL);
			reservation_object_unlock(resv);
		}
461 462
	}

463
	return timeout;
464 465
}

466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
static void __fence_set_priority(struct dma_fence *fence, int prio)
{
	struct drm_i915_gem_request *rq;
	struct intel_engine_cs *engine;

	if (!dma_fence_is_i915(fence))
		return;

	rq = to_request(fence);
	engine = rq->engine;
	if (!engine->schedule)
		return;

	engine->schedule(rq, prio);
}

static void fence_set_priority(struct dma_fence *fence, int prio)
{
	/* Recurse once into a fence-array */
	if (dma_fence_is_array(fence)) {
		struct dma_fence_array *array = to_dma_fence_array(fence);
		int i;

		for (i = 0; i < array->num_fences; i++)
			__fence_set_priority(array->fences[i], prio);
	} else {
		__fence_set_priority(fence, prio);
	}
}

int
i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
			      unsigned int flags,
			      int prio)
{
	struct dma_fence *excl;

	if (flags & I915_WAIT_ALL) {
		struct dma_fence **shared;
		unsigned int count, i;
		int ret;

		ret = reservation_object_get_fences_rcu(obj->resv,
							&excl, &count, &shared);
		if (ret)
			return ret;

		for (i = 0; i < count; i++) {
			fence_set_priority(shared[i], prio);
			dma_fence_put(shared[i]);
		}

		kfree(shared);
	} else {
		excl = reservation_object_get_excl_rcu(obj->resv);
	}

	if (excl) {
		fence_set_priority(excl, prio);
		dma_fence_put(excl);
	}
	return 0;
}

530 531 532 533 534 535
/**
 * Waits for rendering to the object to be completed
 * @obj: i915 gem object
 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
 * @timeout: how long to wait
 * @rps: client (user process) to charge for any waitboosting
536
 */
537 538 539 540 541
int
i915_gem_object_wait(struct drm_i915_gem_object *obj,
		     unsigned int flags,
		     long timeout,
		     struct intel_rps_client *rps)
542
{
543 544 545 546 547 548 549
	might_sleep();
#if IS_ENABLED(CONFIG_LOCKDEP)
	GEM_BUG_ON(debug_locks &&
		   !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
		   !!(flags & I915_WAIT_LOCKED));
#endif
	GEM_BUG_ON(timeout < 0);
550

551 552 553
	timeout = i915_gem_object_wait_reservation(obj->resv,
						   flags, timeout,
						   rps);
554
	return timeout < 0 ? timeout : 0;
555 556 557 558 559 560 561 562 563
}

static struct intel_rps_client *to_rps_client(struct drm_file *file)
{
	struct drm_i915_file_private *fpriv = file->driver_priv;

	return &fpriv->rps;
}

564 565 566
static int
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
567
		     struct drm_file *file)
568 569
{
	void *vaddr = obj->phys_handle->vaddr + args->offset;
570
	char __user *user_data = u64_to_user_ptr(args->data_ptr);
571 572 573 574

	/* We manually control the domain here and pretend that it
	 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
	 */
575
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576 577
	if (copy_from_user(vaddr, user_data, args->size))
		return -EFAULT;
578

579
	drm_clflush_virt_range(vaddr, args->size);
580
	i915_gem_chipset_flush(to_i915(obj->base.dev));
581

582
	intel_fb_obj_flush(obj, ORIGIN_CPU);
583
	return 0;
584 585
}

586
void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587
{
588
	return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 590 591 592
}

void i915_gem_object_free(struct drm_i915_gem_object *obj)
{
593
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594
	kmem_cache_free(dev_priv->objects, obj);
595 596
}

597 598
static int
i915_gem_create(struct drm_file *file,
599
		struct drm_i915_private *dev_priv,
600 601
		uint64_t size,
		uint32_t *handle_p)
602
{
603
	struct drm_i915_gem_object *obj;
604 605
	int ret;
	u32 handle;
606

607
	size = roundup(size, PAGE_SIZE);
608 609
	if (size == 0)
		return -EINVAL;
610 611

	/* Allocate the new object */
612
	obj = i915_gem_object_create(dev_priv, size);
613 614
	if (IS_ERR(obj))
		return PTR_ERR(obj);
615

616
	ret = drm_gem_handle_create(file, &obj->base, &handle);
617
	/* drop reference from allocate - handle holds it now */
C
Chris Wilson 已提交
618
	i915_gem_object_put(obj);
619 620
	if (ret)
		return ret;
621

622
	*handle_p = handle;
623 624 625
	return 0;
}

626 627 628 629 630 631
int
i915_gem_dumb_create(struct drm_file *file,
		     struct drm_device *dev,
		     struct drm_mode_create_dumb *args)
{
	/* have to work out size/pitch and return them */
632
	args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633
	args->size = args->pitch * args->height;
634
	return i915_gem_create(file, to_i915(dev),
635
			       args->size, &args->handle);
636 637
}

638 639 640 641 642 643
static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
{
	return !(obj->cache_level == I915_CACHE_NONE ||
		 obj->cache_level == I915_CACHE_WT);
}

644 645
/**
 * Creates a new mm object and returns a handle to it.
646 647 648
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
649 650 651 652 653
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file)
{
654
	struct drm_i915_private *dev_priv = to_i915(dev);
655
	struct drm_i915_gem_create *args = data;
656

657
	i915_gem_flush_free_objects(dev_priv);
658

659
	return i915_gem_create(file, dev_priv,
660
			       args->size, &args->handle);
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
static inline enum fb_op_origin
fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
{
	return (domain == I915_GEM_DOMAIN_GTT ?
		obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
}

static void
flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
{
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);

	if (!(obj->base.write_domain & flush_domains))
		return;

	/* No actual flushing is required for the GTT write domain.  Writes
	 * to it "immediately" go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 *
	 * However, we do have to enforce the order so that all writes through
	 * the GTT land before any writes to the device, such as updates to
	 * the GATT itself.
	 *
	 * We also have to wait a bit for the writes to land from the GTT.
	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
	 * timing. This issue has only been observed when switching quickly
	 * between GTT writes and CPU reads from inside the kernel on recent hw,
	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
	 * system agents we cannot reproduce this behaviour).
	 */
	wmb();

	switch (obj->base.write_domain) {
	case I915_GEM_DOMAIN_GTT:
		if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698 699 700 701 702
			intel_runtime_pm_get(dev_priv);
			spin_lock_irq(&dev_priv->uncore.lock);
			POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
			spin_unlock_irq(&dev_priv->uncore.lock);
			intel_runtime_pm_put(dev_priv);
703 704 705 706 707 708 709 710 711
		}

		intel_fb_obj_flush(obj,
				   fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
		break;

	case I915_GEM_DOMAIN_CPU:
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
		break;
712 713 714 715 716

	case I915_GEM_DOMAIN_RENDER:
		if (gpu_write_needs_clflush(obj))
			obj->cache_dirty = true;
		break;
717 718 719 720 721
	}

	obj->base.write_domain = 0;
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
static inline int
__copy_to_user_swizzled(char __user *cpu_vaddr,
			const char *gpu_vaddr, int gpu_offset,
			int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_to_user(cpu_vaddr + cpu_offset,
				     gpu_vaddr + swizzled_gpu_offset,
				     this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

748
static inline int
749 750
__copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
			  const char __user *cpu_vaddr,
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
			  int length)
{
	int ret, cpu_offset = 0;

	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
				       cpu_vaddr + cpu_offset,
				       this_length);
		if (ret)
			return ret + length;

		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

	return 0;
}

774 775 776 777 778 779
/*
 * Pins the specified object's pages and synchronizes the object with
 * GPU accesses. Sets needs_clflush to non-zero if the caller should
 * flush the object from the CPU cache.
 */
int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780
				    unsigned int *needs_clflush)
781 782 783
{
	int ret;

784
	lockdep_assert_held(&obj->base.dev->struct_mutex);
785

786
	*needs_clflush = 0;
787 788
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;
789

790 791 792 793 794
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
795 796 797
	if (ret)
		return ret;

C
Chris Wilson 已提交
798
	ret = i915_gem_object_pin_pages(obj);
799 800 801
	if (ret)
		return ret;

802 803
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804 805 806 807 808 809 810
		ret = i915_gem_object_set_to_cpu_domain(obj, false);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

811
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812

813 814 815 816 817
	/* If we're not in the cpu read domain, set ourself into the gtt
	 * read domain and manually flush cachelines (if required). This
	 * optimizes for the case when the gpu will dirty the data
	 * anyway again before the next pread happens.
	 */
818 819
	if (!obj->cache_dirty &&
	    !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820
		*needs_clflush = CLFLUSH_BEFORE;
821

822
out:
823
	/* return with the pages pinned */
824
	return 0;
825 826 827 828

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
829 830 831 832 833 834 835
}

int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
				     unsigned int *needs_clflush)
{
	int ret;

836 837
	lockdep_assert_held(&obj->base.dev->struct_mutex);

838 839 840 841
	*needs_clflush = 0;
	if (!i915_gem_object_has_struct_page(obj))
		return -ENODEV;

842 843 844 845 846 847
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
848 849 850
	if (ret)
		return ret;

C
Chris Wilson 已提交
851
	ret = i915_gem_object_pin_pages(obj);
852 853 854
	if (ret)
		return ret;

855 856
	if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
	    !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857 858 859 860 861 862 863
		ret = i915_gem_object_set_to_cpu_domain(obj, true);
		if (ret)
			goto err_unpin;
		else
			goto out;
	}

864
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865

866 867 868 869 870
	/* If we're not in the cpu write domain, set ourself into the
	 * gtt write domain and manually flush cachelines (as required).
	 * This optimizes for the case when the gpu will use the data
	 * right away and we therefore have to clflush anyway.
	 */
871
	if (!obj->cache_dirty) {
872
		*needs_clflush |= CLFLUSH_AFTER;
873

874 875 876 877 878 879 880
		/*
		 * Same trick applies to invalidate partially written
		 * cachelines read before writing.
		 */
		if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
			*needs_clflush |= CLFLUSH_BEFORE;
	}
881

882
out:
883
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
C
Chris Wilson 已提交
884
	obj->mm.dirty = true;
885
	/* return with the pages pinned */
886
	return 0;
887 888 889 890

err_unpin:
	i915_gem_object_unpin_pages(obj);
	return ret;
891 892
}

893 894 895 896
static void
shmem_clflush_swizzled_range(char *addr, unsigned long length,
			     bool swizzled)
{
897
	if (unlikely(swizzled)) {
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
		unsigned long start = (unsigned long) addr;
		unsigned long end = (unsigned long) addr + length;

		/* For swizzling simply ensure that we always flush both
		 * channels. Lame, but simple and it works. Swizzled
		 * pwrite/pread is far from a hotpath - current userspace
		 * doesn't use it at all. */
		start = round_down(start, 128);
		end = round_up(end, 128);

		drm_clflush_virt_range((void *)start, end - start);
	} else {
		drm_clflush_virt_range(addr, length);
	}

}

915 916 917
/* Only difference to the fast-path function is that this can handle bit17
 * and uses non-atomic copy and kmap functions. */
static int
918
shmem_pread_slow(struct page *page, int offset, int length,
919 920 921 922 923 924 925 926
		 char __user *user_data,
		 bool page_do_bit17_swizzling, bool needs_clflush)
{
	char *vaddr;
	int ret;

	vaddr = kmap(page);
	if (needs_clflush)
927
		shmem_clflush_swizzled_range(vaddr + offset, length,
928
					     page_do_bit17_swizzling);
929 930

	if (page_do_bit17_swizzling)
931
		ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932
	else
933
		ret = __copy_to_user(user_data, vaddr + offset, length);
934 935
	kunmap(page);

936
	return ret ? - EFAULT : 0;
937 938
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
static int
shmem_pread(struct page *page, int offset, int length, char __user *user_data,
	    bool page_do_bit17_swizzling, bool needs_clflush)
{
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush)
			drm_clflush_virt_range(vaddr + offset, length);
		ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return 0;

	return shmem_pread_slow(page, offset, length, user_data,
				page_do_bit17_swizzling, needs_clflush);
}

static int
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
		     struct drm_i915_gem_pread *args)
{
	char __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int needs_clflush;
	unsigned int idx, offset;
	int ret;

	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);

	ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
	mutex_unlock(&obj->base.dev->struct_mutex);
	if (ret)
		return ret;

	remain = args->size;
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;

		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;

		ret = shmem_pread(page, offset, length, user_data,
				  page_to_phys(page) & obj_do_bit17_swizzling,
				  needs_clflush);
		if (ret)
			break;

		remain -= length;
		user_data += length;
		offset = 0;
	}

	i915_gem_obj_finish_shmem_access(obj);
	return ret;
}

static inline bool
gtt_user_read(struct io_mapping *mapping,
	      loff_t base, int offset,
	      char __user *user_data, int length)
1015 1016
{
	void *vaddr;
1017
	unsigned long unwritten;
1018 1019

	/* We can use the cpu mem copy function because this is X86. */
1020 1021 1022 1023 1024 1025 1026 1027 1028
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_to_user(user_data, vaddr + offset, length);
		io_mapping_unmap(vaddr);
	}
1029 1030 1031 1032
	return unwritten;
}

static int
1033 1034
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
		   const struct drm_i915_gem_pread *args)
1035
{
1036 1037
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	struct i915_ggtt *ggtt = &i915->ggtt;
1038
	struct drm_mm_node node;
1039 1040 1041
	struct i915_vma *vma;
	void __user *user_data;
	u64 remain, offset;
1042 1043
	int ret;

1044 1045 1046 1047 1048 1049 1050
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;

	intel_runtime_pm_get(i915);
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
				       PIN_MAPPABLE | PIN_NONBLOCK);
1051 1052 1053
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1054
		ret = i915_vma_put_fence(vma);
1055 1056 1057 1058 1059
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1060
	if (IS_ERR(vma)) {
1061
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1062
		if (ret)
1063 1064
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1065 1066 1067 1068 1069 1070
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, false);
	if (ret)
		goto out_unpin;

1071
	mutex_unlock(&i915->drm.struct_mutex);
1072

1073 1074 1075
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = args->offset;
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		u32 page_base = node.start;
		unsigned page_offset = offset_in_page(offset);
		unsigned page_length = PAGE_SIZE - page_offset;
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb();
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1092
					       node.start, I915_CACHE_NONE, 0);
1093 1094 1095 1096
			wmb();
		} else {
			page_base += offset & PAGE_MASK;
		}
1097 1098 1099

		if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
				  user_data, page_length)) {
1100 1101 1102 1103 1104 1105 1106 1107 1108
			ret = -EFAULT;
			break;
		}

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

1109
	mutex_lock(&i915->drm.struct_mutex);
1110 1111 1112 1113
out_unpin:
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1114
				       node.start, node.size);
1115 1116
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1117
		i915_vma_unpin(vma);
1118
	}
1119 1120 1121
out_unlock:
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);
1122

1123 1124 1125
	return ret;
}

1126 1127
/**
 * Reads data from the object referenced by handle.
1128 1129 1130
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
1131 1132 1133 1134 1135
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136
		     struct drm_file *file)
1137 1138
{
	struct drm_i915_gem_pread *args = data;
1139
	struct drm_i915_gem_object *obj;
1140
	int ret;
1141

1142 1143 1144 1145
	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_WRITE,
1146
		       u64_to_user_ptr(args->data_ptr),
1147 1148 1149
		       args->size))
		return -EFAULT;

1150
	obj = i915_gem_object_lookup(file, args->handle);
1151 1152
	if (!obj)
		return -ENOENT;
1153

1154
	/* Bounds check source.  */
1155
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1156
		ret = -EINVAL;
1157
		goto out;
C
Chris Wilson 已提交
1158 1159
	}

C
Chris Wilson 已提交
1160 1161
	trace_i915_gem_object_pread(obj, args->offset, args->size);

1162 1163 1164 1165
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1166
	if (ret)
1167
		goto out;
1168

1169
	ret = i915_gem_object_pin_pages(obj);
1170
	if (ret)
1171
		goto out;
1172

1173
	ret = i915_gem_shmem_pread(obj, args);
1174
	if (ret == -EFAULT || ret == -ENODEV)
1175
		ret = i915_gem_gtt_pread(obj, args);
1176

1177 1178
	i915_gem_object_unpin_pages(obj);
out:
C
Chris Wilson 已提交
1179
	i915_gem_object_put(obj);
1180
	return ret;
1181 1182
}

1183 1184
/* This is the fast write path which cannot handle
 * page faults in the source data
1185
 */
1186

1187 1188 1189 1190
static inline bool
ggtt_write(struct io_mapping *mapping,
	   loff_t base, int offset,
	   char __user *user_data, int length)
1191
{
1192
	void *vaddr;
1193
	unsigned long unwritten;
1194

1195
	/* We can use the cpu mem copy function because this is X86. */
1196 1197
	vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
	unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1198
						      user_data, length);
1199 1200 1201 1202 1203 1204 1205
	io_mapping_unmap_atomic(vaddr);
	if (unwritten) {
		vaddr = (void __force *)
			io_mapping_map_wc(mapping, base, PAGE_SIZE);
		unwritten = copy_from_user(vaddr + offset, user_data, length);
		io_mapping_unmap(vaddr);
	}
1206 1207 1208 1209

	return unwritten;
}

1210 1211 1212
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
1213
 * @obj: i915 GEM object
1214
 * @args: pwrite arguments structure
1215
 */
1216
static int
1217 1218
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
			 const struct drm_i915_gem_pwrite *args)
1219
{
1220
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1221 1222
	struct i915_ggtt *ggtt = &i915->ggtt;
	struct drm_mm_node node;
1223 1224 1225
	struct i915_vma *vma;
	u64 remain, offset;
	void __user *user_data;
1226
	int ret;
1227

1228 1229 1230
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
	if (ret)
		return ret;
D
Daniel Vetter 已提交
1231

1232
	intel_runtime_pm_get(i915);
C
Chris Wilson 已提交
1233
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1234
				       PIN_MAPPABLE | PIN_NONBLOCK);
1235 1236 1237
	if (!IS_ERR(vma)) {
		node.start = i915_ggtt_offset(vma);
		node.allocated = false;
1238
		ret = i915_vma_put_fence(vma);
1239 1240 1241 1242 1243
		if (ret) {
			i915_vma_unpin(vma);
			vma = ERR_PTR(ret);
		}
	}
C
Chris Wilson 已提交
1244
	if (IS_ERR(vma)) {
1245
		ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1246
		if (ret)
1247 1248
			goto out_unlock;
		GEM_BUG_ON(!node.allocated);
1249
	}
D
Daniel Vetter 已提交
1250 1251 1252 1253 1254

	ret = i915_gem_object_set_to_gtt_domain(obj, true);
	if (ret)
		goto out_unpin;

1255 1256
	mutex_unlock(&i915->drm.struct_mutex);

1257
	intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1258

1259 1260 1261 1262
	user_data = u64_to_user_ptr(args->data_ptr);
	offset = args->offset;
	remain = args->size;
	while (remain) {
1263 1264
		/* Operation in this page
		 *
1265 1266 1267
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
1268
		 */
1269
		u32 page_base = node.start;
1270 1271
		unsigned int page_offset = offset_in_page(offset);
		unsigned int page_length = PAGE_SIZE - page_offset;
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
		page_length = remain < page_length ? remain : page_length;
		if (node.allocated) {
			wmb(); /* flush the write before we modify the GGTT */
			ggtt->base.insert_page(&ggtt->base,
					       i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
					       node.start, I915_CACHE_NONE, 0);
			wmb(); /* flush modifications to the GGTT (insert_page) */
		} else {
			page_base += offset & PAGE_MASK;
		}
1282
		/* If we get a fault while copying data, then (presumably) our
1283 1284
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
1285 1286
		 * If the object is non-shmem backed, we retry again with the
		 * path that handles page fault.
1287
		 */
1288 1289 1290 1291
		if (ggtt_write(&ggtt->mappable, page_base, page_offset,
			       user_data, page_length)) {
			ret = -EFAULT;
			break;
D
Daniel Vetter 已提交
1292
		}
1293

1294 1295 1296
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
1297
	}
1298
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1299 1300

	mutex_lock(&i915->drm.struct_mutex);
D
Daniel Vetter 已提交
1301
out_unpin:
1302 1303 1304
	if (node.allocated) {
		wmb();
		ggtt->base.clear_range(&ggtt->base,
1305
				       node.start, node.size);
1306 1307
		remove_mappable_node(&node);
	} else {
C
Chris Wilson 已提交
1308
		i915_vma_unpin(vma);
1309
	}
1310
out_unlock:
1311
	intel_runtime_pm_put(i915);
1312
	mutex_unlock(&i915->drm.struct_mutex);
1313
	return ret;
1314 1315
}

1316
static int
1317
shmem_pwrite_slow(struct page *page, int offset, int length,
1318 1319 1320 1321
		  char __user *user_data,
		  bool page_do_bit17_swizzling,
		  bool needs_clflush_before,
		  bool needs_clflush_after)
1322
{
1323 1324
	char *vaddr;
	int ret;
1325

1326
	vaddr = kmap(page);
1327
	if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1328
		shmem_clflush_swizzled_range(vaddr + offset, length,
1329
					     page_do_bit17_swizzling);
1330
	if (page_do_bit17_swizzling)
1331 1332
		ret = __copy_from_user_swizzled(vaddr, offset, user_data,
						length);
1333
	else
1334
		ret = __copy_from_user(vaddr + offset, user_data, length);
1335
	if (needs_clflush_after)
1336
		shmem_clflush_swizzled_range(vaddr + offset, length,
1337
					     page_do_bit17_swizzling);
1338
	kunmap(page);
1339

1340
	return ret ? -EFAULT : 0;
1341 1342
}

1343 1344 1345 1346 1347
/* Per-page copy function for the shmem pwrite fastpath.
 * Flushes invalid cachelines before writing to the target if
 * needs_clflush_before is set and flushes out any written cachelines after
 * writing if needs_clflush is set.
 */
1348
static int
1349 1350 1351 1352
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
	     bool page_do_bit17_swizzling,
	     bool needs_clflush_before,
	     bool needs_clflush_after)
1353
{
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
	int ret;

	ret = -ENODEV;
	if (!page_do_bit17_swizzling) {
		char *vaddr = kmap_atomic(page);

		if (needs_clflush_before)
			drm_clflush_virt_range(vaddr + offset, len);
		ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
		if (needs_clflush_after)
			drm_clflush_virt_range(vaddr + offset, len);

		kunmap_atomic(vaddr);
	}
	if (ret == 0)
		return ret;

	return shmem_pwrite_slow(page, offset, len, user_data,
				 page_do_bit17_swizzling,
				 needs_clflush_before,
				 needs_clflush_after);
}

static int
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
		      const struct drm_i915_gem_pwrite *args)
{
	struct drm_i915_private *i915 = to_i915(obj->base.dev);
	void __user *user_data;
	u64 remain;
	unsigned int obj_do_bit17_swizzling;
	unsigned int partial_cacheline_write;
1386
	unsigned int needs_clflush;
1387 1388
	unsigned int offset, idx;
	int ret;
1389

1390
	ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1391 1392 1393
	if (ret)
		return ret;

1394 1395 1396 1397
	ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
	mutex_unlock(&i915->drm.struct_mutex);
	if (ret)
		return ret;
1398

1399 1400 1401
	obj_do_bit17_swizzling = 0;
	if (i915_gem_object_needs_bit17_swizzle(obj))
		obj_do_bit17_swizzling = BIT(17);
1402

1403 1404 1405 1406 1407 1408 1409
	/* If we don't overwrite a cacheline completely we need to be
	 * careful to have up-to-date data by first clflushing. Don't
	 * overcomplicate things and flush the entire patch.
	 */
	partial_cacheline_write = 0;
	if (needs_clflush & CLFLUSH_BEFORE)
		partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1410

1411 1412 1413 1414 1415 1416
	user_data = u64_to_user_ptr(args->data_ptr);
	remain = args->size;
	offset = offset_in_page(args->offset);
	for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
		struct page *page = i915_gem_object_get_page(obj, idx);
		int length;
1417

1418 1419 1420
		length = remain;
		if (offset + length > PAGE_SIZE)
			length = PAGE_SIZE - offset;
1421

1422 1423 1424 1425
		ret = shmem_pwrite(page, offset, length, user_data,
				   page_to_phys(page) & obj_do_bit17_swizzling,
				   (offset | length) & partial_cacheline_write,
				   needs_clflush & CLFLUSH_AFTER);
1426
		if (ret)
1427
			break;
1428

1429 1430 1431
		remain -= length;
		user_data += length;
		offset = 0;
1432
	}
1433

1434
	intel_fb_obj_flush(obj, ORIGIN_CPU);
1435
	i915_gem_obj_finish_shmem_access(obj);
1436
	return ret;
1437 1438 1439 1440
}

/**
 * Writes data to the object referenced by handle.
1441 1442 1443
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1444 1445 1446 1447 1448
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1449
		      struct drm_file *file)
1450 1451
{
	struct drm_i915_gem_pwrite *args = data;
1452
	struct drm_i915_gem_object *obj;
1453 1454 1455 1456 1457 1458
	int ret;

	if (args->size == 0)
		return 0;

	if (!access_ok(VERIFY_READ,
1459
		       u64_to_user_ptr(args->data_ptr),
1460 1461 1462
		       args->size))
		return -EFAULT;

1463
	obj = i915_gem_object_lookup(file, args->handle);
1464 1465
	if (!obj)
		return -ENOENT;
1466

1467
	/* Bounds check destination. */
1468
	if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
C
Chris Wilson 已提交
1469
		ret = -EINVAL;
1470
		goto err;
C
Chris Wilson 已提交
1471 1472
	}

C
Chris Wilson 已提交
1473 1474
	trace_i915_gem_object_pwrite(obj, args->offset, args->size);

1475 1476 1477 1478 1479 1480
	ret = -ENODEV;
	if (obj->ops->pwrite)
		ret = obj->ops->pwrite(obj, args);
	if (ret != -ENODEV)
		goto err;

1481 1482 1483 1484 1485
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_ALL,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1486 1487 1488
	if (ret)
		goto err;

1489
	ret = i915_gem_object_pin_pages(obj);
1490
	if (ret)
1491
		goto err;
1492

D
Daniel Vetter 已提交
1493
	ret = -EFAULT;
1494 1495 1496 1497 1498 1499
	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1500
	if (!i915_gem_object_has_struct_page(obj) ||
1501
	    cpu_write_needs_clflush(obj))
D
Daniel Vetter 已提交
1502 1503
		/* Note that the gtt paths might fail with non-page-backed user
		 * pointers (e.g. gtt mappings when moving data between
1504 1505
		 * textures). Fallback to the shmem path in that case.
		 */
1506
		ret = i915_gem_gtt_pwrite_fast(obj, args);
1507

1508
	if (ret == -EFAULT || ret == -ENOSPC) {
1509 1510
		if (obj->phys_handle)
			ret = i915_gem_phys_pwrite(obj, args, file);
1511
		else
1512
			ret = i915_gem_shmem_pwrite(obj, args);
1513
	}
1514

1515
	i915_gem_object_unpin_pages(obj);
1516
err:
C
Chris Wilson 已提交
1517
	i915_gem_object_put(obj);
1518
	return ret;
1519 1520
}

1521 1522 1523 1524 1525 1526 1527 1528
static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
{
	struct drm_i915_private *i915;
	struct list_head *list;
	struct i915_vma *vma;

	list_for_each_entry(vma, &obj->vma_list, obj_link) {
		if (!i915_vma_is_ggtt(vma))
1529
			break;
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541

		if (i915_vma_is_active(vma))
			continue;

		if (!drm_mm_node_allocated(&vma->node))
			continue;

		list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
	}

	i915 = to_i915(obj->base.dev);
	list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1542
	list_move_tail(&obj->global_link, list);
1543 1544
}

1545
/**
1546 1547
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1548 1549 1550
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1551 1552 1553
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1554
			  struct drm_file *file)
1555 1556
{
	struct drm_i915_gem_set_domain *args = data;
1557
	struct drm_i915_gem_object *obj;
1558 1559
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1560
	int err;
1561

1562
	/* Only handle setting domains to types used by the CPU. */
1563
	if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1564 1565 1566 1567 1568 1569 1570 1571
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1572
	obj = i915_gem_object_lookup(file, args->handle);
1573 1574
	if (!obj)
		return -ENOENT;
1575

1576 1577 1578 1579
	/* Try to flush the object off the GPU without holding the lock.
	 * We will repeat the flush holding the lock in the normal manner
	 * to catch cases where we are gazumped.
	 */
1580
	err = i915_gem_object_wait(obj,
1581 1582 1583 1584
				   I915_WAIT_INTERRUPTIBLE |
				   (write_domain ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
1585
	if (err)
C
Chris Wilson 已提交
1586
		goto out;
1587

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	err = i915_gem_object_pin_pages(obj);
	if (err)
C
Chris Wilson 已提交
1598
		goto out;
1599 1600 1601

	err = i915_mutex_lock_interruptible(dev);
	if (err)
C
Chris Wilson 已提交
1602
		goto out_unpin;
1603

1604 1605 1606 1607
	if (read_domains & I915_GEM_DOMAIN_WC)
		err = i915_gem_object_set_to_wc_domain(obj, write_domain);
	else if (read_domains & I915_GEM_DOMAIN_GTT)
		err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1608
	else
1609
		err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1610

1611 1612
	/* And bump the LRU for this access */
	i915_gem_object_bump_inactive_ggtt(obj);
1613

1614
	mutex_unlock(&dev->struct_mutex);
1615

1616
	if (write_domain != 0)
1617 1618
		intel_fb_obj_invalidate(obj,
					fb_write_origin(obj, write_domain));
1619

C
Chris Wilson 已提交
1620
out_unpin:
1621
	i915_gem_object_unpin_pages(obj);
C
Chris Wilson 已提交
1622 1623
out:
	i915_gem_object_put(obj);
1624
	return err;
1625 1626 1627 1628
}

/**
 * Called when user space has done writes to this buffer
1629 1630 1631
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1632 1633 1634
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635
			 struct drm_file *file)
1636 1637
{
	struct drm_i915_gem_sw_finish *args = data;
1638
	struct drm_i915_gem_object *obj;
1639

1640
	obj = i915_gem_object_lookup(file, args->handle);
1641 1642
	if (!obj)
		return -ENOENT;
1643 1644

	/* Pinned buffers may be scanout, so flush the cache */
1645
	i915_gem_object_flush_if_display(obj);
C
Chris Wilson 已提交
1646
	i915_gem_object_put(obj);
1647 1648

	return 0;
1649 1650 1651
}

/**
1652 1653 1654 1655 1656
 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
 *			 it is mapped to.
 * @dev: drm device
 * @data: ioctl data blob
 * @file: drm file
1657 1658 1659
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
 *
 * IMPORTANT:
 *
 * DRM driver writers who look a this function as an example for how to do GEM
 * mmap support, please don't implement mmap support like here. The modern way
 * to implement DRM mmap support is with an mmap offset ioctl (like
 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
 * That way debug tooling like valgrind will understand what's going on, hiding
 * the mmap call in a driver private ioctl will break that. The i915 driver only
 * does cpu mmaps this way because we didn't know better.
1670 1671 1672
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673
		    struct drm_file *file)
1674 1675
{
	struct drm_i915_gem_mmap *args = data;
1676
	struct drm_i915_gem_object *obj;
1677 1678
	unsigned long addr;

1679 1680 1681
	if (args->flags & ~(I915_MMAP_WC))
		return -EINVAL;

1682
	if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1683 1684
		return -ENODEV;

1685 1686
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
1687
		return -ENOENT;
1688

1689 1690 1691
	/* prime objects have no backing filp to GEM mmap
	 * pages from.
	 */
1692
	if (!obj->base.filp) {
C
Chris Wilson 已提交
1693
		i915_gem_object_put(obj);
1694 1695 1696
		return -EINVAL;
	}

1697
	addr = vm_mmap(obj->base.filp, 0, args->size,
1698 1699
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
1700 1701 1702 1703
	if (args->flags & I915_MMAP_WC) {
		struct mm_struct *mm = current->mm;
		struct vm_area_struct *vma;

1704
		if (down_write_killable(&mm->mmap_sem)) {
C
Chris Wilson 已提交
1705
			i915_gem_object_put(obj);
1706 1707
			return -EINTR;
		}
1708 1709 1710 1711 1712 1713 1714
		vma = find_vma(mm, addr);
		if (vma)
			vma->vm_page_prot =
				pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
		else
			addr = -ENOMEM;
		up_write(&mm->mmap_sem);
1715 1716

		/* This may race, but that's ok, it only gets set */
1717
		WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1718
	}
C
Chris Wilson 已提交
1719
	i915_gem_object_put(obj);
1720 1721 1722 1723 1724 1725 1726 1727
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1728 1729
static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
{
1730
	return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1731 1732
}

1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
/**
 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
 *
 * A history of the GTT mmap interface:
 *
 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
 *     aligned and suitable for fencing, and still fit into the available
 *     mappable space left by the pinned display objects. A classic problem
 *     we called the page-fault-of-doom where we would ping-pong between
 *     two objects that could not fit inside the GTT and so the memcpy
 *     would page one object in at the expense of the other between every
 *     single byte.
 *
 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
 *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
 *     object is too large for the available space (or simply too large
 *     for the mappable aperture!), a view is created instead and faulted
 *     into userspace. (This view is aligned and sized appropriately for
 *     fenced access.)
 *
1753 1754 1755
 * 2 - Recognise WC as a separate cache domain so that we can flush the
 *     delayed writes via GTT before performing direct access via WC.
 *
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782
 * Restrictions:
 *
 *  * snoopable objects cannot be accessed via the GTT. It can cause machine
 *    hangs on some architectures, corruption on others. An attempt to service
 *    a GTT page fault from a snoopable object will generate a SIGBUS.
 *
 *  * the object must be able to fit into RAM (physical memory, though no
 *    limited to the mappable aperture).
 *
 *
 * Caveats:
 *
 *  * a new GTT page fault will synchronize rendering from the GPU and flush
 *    all data to system memory. Subsequent access will not be synchronized.
 *
 *  * all mappings are revoked on runtime device suspend.
 *
 *  * there are only 8, 16 or 32 fence registers to share between all users
 *    (older machines require fence register for display and blitter access
 *    as well). Contention of the fence registers will cause the previous users
 *    to be unmapped and any new access will generate new page faults.
 *
 *  * running out of memory while servicing a fault may generate a SIGBUS,
 *    rather than the expected SIGSEGV.
 */
int i915_gem_mmap_gtt_version(void)
{
1783
	return 2;
1784 1785
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static inline struct i915_ggtt_view
compute_partial_view(struct drm_i915_gem_object *obj,
		     pgoff_t page_offset,
		     unsigned int chunk)
{
	struct i915_ggtt_view view;

	if (i915_gem_object_is_tiled(obj))
		chunk = roundup(chunk, tile_row_pages(obj));

	view.type = I915_GGTT_VIEW_PARTIAL;
1797 1798
	view.partial.offset = rounddown(page_offset, chunk);
	view.partial.size =
1799
		min_t(unsigned int, chunk,
1800
		      (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1801 1802 1803 1804 1805 1806 1807 1808

	/* If the partial covers the entire object, just create a normal VMA. */
	if (chunk >= obj->base.size >> PAGE_SHIFT)
		view.type = I915_GGTT_VIEW_NORMAL;

	return view;
}

1809 1810
/**
 * i915_gem_fault - fault a page into the GTT
1811
 * @vmf: fault info
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
1823 1824 1825
 *
 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1826
 */
1827
int i915_gem_fault(struct vm_fault *vmf)
1828
{
1829
#define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1830
	struct vm_area_struct *area = vmf->vma;
C
Chris Wilson 已提交
1831
	struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1832
	struct drm_device *dev = obj->base.dev;
1833 1834
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_ggtt *ggtt = &dev_priv->ggtt;
1835
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
C
Chris Wilson 已提交
1836
	struct i915_vma *vma;
1837
	pgoff_t page_offset;
1838
	unsigned int flags;
1839
	int ret;
1840

1841
	/* We don't use vmf->pgoff since that has the fake offset */
1842
	page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843

C
Chris Wilson 已提交
1844 1845
	trace_i915_gem_object_fault(obj, page_offset, true, write);

1846
	/* Try to flush the object off the GPU first without holding the lock.
1847
	 * Upon acquiring the lock, we will perform our sanity checks and then
1848 1849 1850
	 * repeat the flush holding the lock in the normal manner to catch cases
	 * where we are gazumped.
	 */
1851 1852 1853 1854
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
1855
	if (ret)
1856 1857
		goto err;

1858 1859 1860 1861
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		goto err;

1862 1863 1864 1865 1866
	intel_runtime_pm_get(dev_priv);

	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto err_rpm;
1867

1868
	/* Access to snoopable pages through the GTT is incoherent. */
1869
	if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870
		ret = -EFAULT;
1871
		goto err_unlock;
1872 1873
	}

1874 1875 1876 1877 1878 1879 1880 1881
	/* If the object is smaller than a couple of partial vma, it is
	 * not worth only creating a single partial vma - we may as well
	 * clear enough space for the full object.
	 */
	flags = PIN_MAPPABLE;
	if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
		flags |= PIN_NONBLOCK | PIN_NONFAULT;

1882
	/* Now pin it into the GTT as needed */
1883
	vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884 1885
	if (IS_ERR(vma)) {
		/* Use a partial view if it is bigger than available space */
1886
		struct i915_ggtt_view view =
1887
			compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888

1889 1890 1891 1892 1893
		/* Userspace is now writing through an untracked VMA, abandon
		 * all hope that the hardware is able to track future writes.
		 */
		obj->frontbuffer_ggtt_origin = ORIGIN_CPU;

1894 1895
		vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
	}
C
Chris Wilson 已提交
1896 1897
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
1898
		goto err_unlock;
C
Chris Wilson 已提交
1899
	}
1900

1901 1902
	ret = i915_gem_object_set_to_gtt_domain(obj, write);
	if (ret)
1903
		goto err_unpin;
1904

1905
	ret = i915_vma_get_fence(vma);
1906
	if (ret)
1907
		goto err_unpin;
1908

1909
	/* Mark as being mmapped into userspace for later revocation */
1910
	assert_rpm_wakelock_held(dev_priv);
1911 1912 1913
	if (list_empty(&obj->userfault_link))
		list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);

1914
	/* Finally, remap it using the new GTT offset */
1915
	ret = remap_io_mapping(area,
1916
			       area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917 1918 1919
			       (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
			       min_t(u64, vma->size, area->vm_end - area->vm_start),
			       &ggtt->mappable);
1920

1921
err_unpin:
C
Chris Wilson 已提交
1922
	__i915_vma_unpin(vma);
1923
err_unlock:
1924
	mutex_unlock(&dev->struct_mutex);
1925 1926
err_rpm:
	intel_runtime_pm_put(dev_priv);
1927
	i915_gem_object_unpin_pages(obj);
1928
err:
1929
	switch (ret) {
1930
	case -EIO:
1931 1932 1933 1934 1935 1936 1937
		/*
		 * We eat errors when the gpu is terminally wedged to avoid
		 * userspace unduly crashing (gl has no provisions for mmaps to
		 * fail). But any other -EIO isn't ours (e.g. swap in failure)
		 * and so needs to be reported.
		 */
		if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938 1939 1940
			ret = VM_FAULT_SIGBUS;
			break;
		}
1941
	case -EAGAIN:
D
Daniel Vetter 已提交
1942 1943 1944 1945
		/*
		 * EAGAIN means the gpu is hung and we'll wait for the error
		 * handler to reset everything when re-faulting in
		 * i915_mutex_lock_interruptible.
1946
		 */
1947 1948
	case 0:
	case -ERESTARTSYS:
1949
	case -EINTR:
1950 1951 1952 1953 1954
	case -EBUSY:
		/*
		 * EBUSY is ok: this just means that another thread
		 * already did the job.
		 */
1955 1956
		ret = VM_FAULT_NOPAGE;
		break;
1957
	case -ENOMEM:
1958 1959
		ret = VM_FAULT_OOM;
		break;
1960
	case -ENOSPC:
1961
	case -EFAULT:
1962 1963
		ret = VM_FAULT_SIGBUS;
		break;
1964
	default:
1965
		WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966 1967
		ret = VM_FAULT_SIGBUS;
		break;
1968
	}
1969
	return ret;
1970 1971
}

1972 1973 1974 1975
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1976
 * Preserve the reservation of the mmapping with the DRM core code, but
1977 1978 1979 1980 1981 1982 1983 1984 1985
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1986
void
1987
i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988
{
1989 1990
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

1991 1992 1993
	/* Serialisation between user GTT access and our code depends upon
	 * revoking the CPU's PTE whilst the mutex is held. The next user
	 * pagefault then has to wait until we release the mutex.
1994 1995 1996 1997
	 *
	 * Note that RPM complicates somewhat by adding an additional
	 * requirement that operations to the GGTT be made holding the RPM
	 * wakeref.
1998
	 */
1999
	lockdep_assert_held(&i915->drm.struct_mutex);
2000
	intel_runtime_pm_get(i915);
2001

2002
	if (list_empty(&obj->userfault_link))
2003
		goto out;
2004

2005
	list_del_init(&obj->userfault_link);
2006 2007
	drm_vma_node_unmap(&obj->base.vma_node,
			   obj->base.dev->anon_inode->i_mapping);
2008 2009 2010 2011 2012 2013 2014 2015 2016

	/* Ensure that the CPU's PTE are revoked and there are not outstanding
	 * memory transactions from userspace before we return. The TLB
	 * flushing implied above by changing the PTE above *should* be
	 * sufficient, an extra barrier here just provides us with a bit
	 * of paranoid documentation about our requirement to serialise
	 * memory writes before touching registers / GSM.
	 */
	wmb();
2017 2018 2019

out:
	intel_runtime_pm_put(i915);
2020 2021
}

2022
void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023
{
2024
	struct drm_i915_gem_object *obj, *on;
2025
	int i;
2026

2027 2028 2029 2030 2031 2032
	/*
	 * Only called during RPM suspend. All users of the userfault_list
	 * must be holding an RPM wakeref to ensure that this can not
	 * run concurrently with themselves (and use the struct_mutex for
	 * protection between themselves).
	 */
2033

2034 2035 2036
	list_for_each_entry_safe(obj, on,
				 &dev_priv->mm.userfault_list, userfault_link) {
		list_del_init(&obj->userfault_link);
2037 2038 2039
		drm_vma_node_unmap(&obj->base.vma_node,
				   obj->base.dev->anon_inode->i_mapping);
	}
2040 2041 2042 2043 2044 2045 2046 2047

	/* The fence will be lost when the device powers down. If any were
	 * in use by hardware (i.e. they are pinned), we should not be powering
	 * down! All other fences will be reacquired by the user upon waking.
	 */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
		/* Ideally we want to assert that the fence register is not
		 * live at this point (i.e. that no piece of code will be
		 * trying to write through fence + GTT, as that both violates
		 * our tracking of activity and associated locking/barriers,
		 * but also is illegal given that the hw is powered down).
		 *
		 * Previously we used reg->pin_count as a "liveness" indicator.
		 * That is not sufficient, and we need a more fine-grained
		 * tool if we want to have a sanity check here.
		 */
2058 2059 2060 2061 2062 2063 2064

		if (!reg->vma)
			continue;

		GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
		reg->dirty = true;
	}
2065 2066
}

2067 2068
static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
{
2069
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070
	int err;
2071

2072
	err = drm_gem_create_mmap_offset(&obj->base);
2073
	if (likely(!err))
2074
		return 0;
2075

2076 2077 2078 2079 2080
	/* Attempt to reap some mmap space from dead objects */
	do {
		err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
		if (err)
			break;
2081

2082
		i915_gem_drain_freed_objects(dev_priv);
2083
		err = drm_gem_create_mmap_offset(&obj->base);
2084 2085 2086 2087
		if (!err)
			break;

	} while (flush_delayed_work(&dev_priv->gt.retire_work));
2088

2089
	return err;
2090 2091 2092 2093 2094 2095 2096
}

static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
{
	drm_gem_free_mmap_offset(&obj->base);
}

2097
int
2098 2099
i915_gem_mmap_gtt(struct drm_file *file,
		  struct drm_device *dev,
2100
		  uint32_t handle,
2101
		  uint64_t *offset)
2102
{
2103
	struct drm_i915_gem_object *obj;
2104 2105
	int ret;

2106
	obj = i915_gem_object_lookup(file, handle);
2107 2108
	if (!obj)
		return -ENOENT;
2109

2110
	ret = i915_gem_object_create_mmap_offset(obj);
2111 2112
	if (ret == 0)
		*offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113

C
Chris Wilson 已提交
2114
	i915_gem_object_put(obj);
2115
	return ret;
2116 2117
}

2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file)
{
	struct drm_i915_gem_mmap_gtt *args = data;

2139
	return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 2141
}

D
Daniel Vetter 已提交
2142 2143 2144
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145
{
2146
	i915_gem_object_free_mmap_offset(obj);
2147

2148 2149
	if (obj->base.filp == NULL)
		return;
2150

D
Daniel Vetter 已提交
2151 2152 2153 2154 2155
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*.
	 */
2156
	shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
C
Chris Wilson 已提交
2157
	obj->mm.madv = __I915_MADV_PURGED;
2158
	obj->mm.pages = ERR_PTR(-EFAULT);
D
Daniel Vetter 已提交
2159
}
2160

2161
/* Try to discard unwanted pages */
2162
void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
D
Daniel Vetter 已提交
2163
{
2164 2165
	struct address_space *mapping;

2166 2167 2168
	lockdep_assert_held(&obj->mm.lock);
	GEM_BUG_ON(obj->mm.pages);

C
Chris Wilson 已提交
2169
	switch (obj->mm.madv) {
2170 2171 2172 2173 2174 2175 2176 2177 2178
	case I915_MADV_DONTNEED:
		i915_gem_object_truncate(obj);
	case __I915_MADV_PURGED:
		return;
	}

	if (obj->base.filp == NULL)
		return;

2179
	mapping = obj->base.filp->f_mapping,
2180
	invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 2182
}

2183
static void
2184 2185
i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
			      struct sg_table *pages)
2186
{
2187 2188
	struct sgt_iter sgt_iter;
	struct page *page;
2189

2190
	__i915_gem_object_release_shmem(obj, pages, true);
2191

2192
	i915_gem_gtt_finish_pages(obj, pages);
I
Imre Deak 已提交
2193

2194
	if (i915_gem_object_needs_bit17_swizzle(obj))
2195
		i915_gem_object_save_bit_17_swizzle(obj, pages);
2196

2197
	for_each_sgt_page(page, sgt_iter, pages) {
C
Chris Wilson 已提交
2198
		if (obj->mm.dirty)
2199
			set_page_dirty(page);
2200

C
Chris Wilson 已提交
2201
		if (obj->mm.madv == I915_MADV_WILLNEED)
2202
			mark_page_accessed(page);
2203

2204
		put_page(page);
2205
	}
C
Chris Wilson 已提交
2206
	obj->mm.dirty = false;
2207

2208 2209
	sg_free_table(pages);
	kfree(pages);
2210
}
C
Chris Wilson 已提交
2211

2212 2213 2214
static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
{
	struct radix_tree_iter iter;
2215
	void __rcu **slot;
2216

C
Chris Wilson 已提交
2217 2218
	radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
		radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2219 2220
}

2221 2222
void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
				 enum i915_mm_subclass subclass)
2223
{
2224
	struct sg_table *pages;
2225

C
Chris Wilson 已提交
2226
	if (i915_gem_object_has_pinned_pages(obj))
2227
		return;
2228

2229
	GEM_BUG_ON(obj->bind_count);
2230 2231 2232 2233
	if (!READ_ONCE(obj->mm.pages))
		return;

	/* May be called by shrinker from within get_pages() (on another bo) */
2234
	mutex_lock_nested(&obj->mm.lock, subclass);
2235 2236
	if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
		goto unlock;
B
Ben Widawsky 已提交
2237

2238 2239 2240
	/* ->put_pages might need to allocate memory for the bit17 swizzle
	 * array, hence protect them from being reaped by removing them from gtt
	 * lists early. */
2241 2242
	pages = fetch_and_zero(&obj->mm.pages);
	GEM_BUG_ON(!pages);
2243

C
Chris Wilson 已提交
2244
	if (obj->mm.mapping) {
2245 2246
		void *ptr;

2247
		ptr = page_mask_bits(obj->mm.mapping);
2248 2249
		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
2250
		else
2251 2252
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2253
		obj->mm.mapping = NULL;
2254 2255
	}

2256 2257
	__i915_gem_object_reset_page_iter(obj);

2258 2259 2260
	if (!IS_ERR(pages))
		obj->ops->put_pages(obj, pages);

2261 2262
unlock:
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
2263 2264
}

2265
static bool i915_sg_trim(struct sg_table *orig_st)
2266 2267 2268 2269 2270 2271
{
	struct sg_table new_st;
	struct scatterlist *sg, *new_sg;
	unsigned int i;

	if (orig_st->nents == orig_st->orig_nents)
2272
		return false;
2273

2274
	if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2275
		return false;
2276 2277 2278 2279 2280 2281 2282

	new_sg = new_st.sgl;
	for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
		sg_set_page(new_sg, sg_page(sg), sg->length, 0);
		/* called before being DMA mapped, no need to copy sg->dma_* */
		new_sg = sg_next(new_sg);
	}
2283
	GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2284 2285 2286 2287

	sg_free_table(orig_st);

	*orig_st = new_st;
2288
	return true;
2289 2290
}

2291
static struct sg_table *
C
Chris Wilson 已提交
2292
i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2293
{
2294
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2295 2296
	const unsigned long page_count = obj->base.size / PAGE_SIZE;
	unsigned long i;
2297
	struct address_space *mapping;
2298 2299
	struct sg_table *st;
	struct scatterlist *sg;
2300
	struct sgt_iter sgt_iter;
2301
	struct page *page;
2302
	unsigned long last_pfn = 0;	/* suppress gcc warning */
2303
	unsigned int max_segment;
2304
	gfp_t noreclaim;
I
Imre Deak 已提交
2305
	int ret;
2306

C
Chris Wilson 已提交
2307 2308 2309 2310
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2311 2312
	GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
	GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
C
Chris Wilson 已提交
2313

2314
	max_segment = swiotlb_max_segment();
2315
	if (!max_segment)
2316
		max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2317

2318 2319
	st = kmalloc(sizeof(*st), GFP_KERNEL);
	if (st == NULL)
2320
		return ERR_PTR(-ENOMEM);
2321

2322
rebuild_st:
2323 2324
	if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
		kfree(st);
2325
		return ERR_PTR(-ENOMEM);
2326
	}
2327

2328 2329 2330 2331 2332
	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 *
	 * Fail silently without starting the shrinker
	 */
2333
	mapping = obj->base.filp->f_mapping;
2334
	noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2335 2336
	noreclaim |= __GFP_NORETRY | __GFP_NOWARN;

2337 2338 2339
	sg = st->sgl;
	st->nents = 0;
	for (i = 0; i < page_count; i++) {
2340 2341 2342 2343 2344 2345 2346
		const unsigned int shrink[] = {
			I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
			0,
		}, *s = shrink;
		gfp_t gfp = noreclaim;

		do {
C
Chris Wilson 已提交
2347
			page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
			if (likely(!IS_ERR(page)))
				break;

			if (!*s) {
				ret = PTR_ERR(page);
				goto err_sg;
			}

			i915_gem_shrink(dev_priv, 2 * page_count, *s++);
			cond_resched();
2358

C
Chris Wilson 已提交
2359 2360 2361
			/* We've tried hard to allocate the memory by reaping
			 * our own buffer, now let the real VM do its job and
			 * go down in flames if truly OOM.
2362 2363 2364 2365
			 *
			 * However, since graphics tend to be disposable,
			 * defer the oom here by reporting the ENOMEM back
			 * to userspace.
C
Chris Wilson 已提交
2366
			 */
2367 2368 2369
			if (!*s) {
				/* reclaim and warn, but no oom */
				gfp = mapping_gfp_mask(mapping);
2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381

				/* Our bo are always dirty and so we require
				 * kswapd to reclaim our pages (direct reclaim
				 * does not effectively begin pageout of our
				 * buffers on its own). However, direct reclaim
				 * only waits for kswapd when under allocation
				 * congestion. So as a result __GFP_RECLAIM is
				 * unreliable and fails to actually reclaim our
				 * dirty pages -- unless you try over and over
				 * again with !__GFP_NORETRY. However, we still
				 * want to fail this allocation rather than
				 * trigger the out-of-memory killer and for
M
Michal Hocko 已提交
2382
				 * this we want __GFP_RETRY_MAYFAIL.
2383
				 */
M
Michal Hocko 已提交
2384
				gfp |= __GFP_RETRY_MAYFAIL;
I
Imre Deak 已提交
2385
			}
2386 2387
		} while (1);

2388 2389 2390
		if (!i ||
		    sg->length >= max_segment ||
		    page_to_pfn(page) != last_pfn + 1) {
2391 2392 2393 2394 2395 2396 2397 2398
			if (i)
				sg = sg_next(sg);
			st->nents++;
			sg_set_page(sg, page, PAGE_SIZE, 0);
		} else {
			sg->length += PAGE_SIZE;
		}
		last_pfn = page_to_pfn(page);
2399 2400 2401

		/* Check that the i965g/gm workaround works. */
		WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2402
	}
2403
	if (sg) /* loop terminated early; short sg table */
2404
		sg_mark_end(sg);
2405

2406 2407 2408
	/* Trim unused sg entries to avoid wasting memory. */
	i915_sg_trim(st);

2409
	ret = i915_gem_gtt_prepare_pages(obj, st);
2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
	if (ret) {
		/* DMA remapping failed? One possible cause is that
		 * it could not reserve enough large entries, asking
		 * for PAGE_SIZE chunks instead may be helpful.
		 */
		if (max_segment > PAGE_SIZE) {
			for_each_sgt_page(page, sgt_iter, st)
				put_page(page);
			sg_free_table(st);

			max_segment = PAGE_SIZE;
			goto rebuild_st;
		} else {
			dev_warn(&dev_priv->drm.pdev->dev,
				 "Failed to DMA remap %lu pages\n",
				 page_count);
			goto err_pages;
		}
	}
I
Imre Deak 已提交
2429

2430
	if (i915_gem_object_needs_bit17_swizzle(obj))
2431
		i915_gem_object_do_bit_17_swizzle(obj, st);
2432

2433
	return st;
2434

2435
err_sg:
2436
	sg_mark_end(sg);
2437
err_pages:
2438 2439
	for_each_sgt_page(page, sgt_iter, st)
		put_page(page);
2440 2441
	sg_free_table(st);
	kfree(st);
2442 2443 2444 2445 2446 2447 2448 2449 2450

	/* shmemfs first checks if there is enough memory to allocate the page
	 * and reports ENOSPC should there be insufficient, along with the usual
	 * ENOMEM for a genuine allocation failure.
	 *
	 * We use ENOSPC in our driver to mean that we have run out of aperture
	 * space and so want to translate the error from shmemfs back to our
	 * usual understanding of ENOMEM.
	 */
I
Imre Deak 已提交
2451 2452 2453
	if (ret == -ENOSPC)
		ret = -ENOMEM;

2454 2455 2456 2457 2458 2459
	return ERR_PTR(ret);
}

void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
				 struct sg_table *pages)
{
2460
	lockdep_assert_held(&obj->mm.lock);
2461 2462 2463 2464 2465

	obj->mm.get_page.sg_pos = pages->sgl;
	obj->mm.get_page.sg_idx = 0;

	obj->mm.pages = pages;
2466 2467 2468 2469 2470 2471 2472

	if (i915_gem_object_is_tiled(obj) &&
	    to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
		GEM_BUG_ON(obj->mm.quirked);
		__i915_gem_object_pin_pages(obj);
		obj->mm.quirked = true;
	}
2473 2474 2475 2476 2477 2478
}

static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
{
	struct sg_table *pages;

2479 2480
	GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));

2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
	if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
		DRM_DEBUG("Attempting to obtain a purgeable object\n");
		return -EFAULT;
	}

	pages = obj->ops->get_pages(obj);
	if (unlikely(IS_ERR(pages)))
		return PTR_ERR(pages);

	__i915_gem_object_set_pages(obj, pages);
	return 0;
2492 2493
}

2494
/* Ensure that the associated pages are gathered from the backing storage
2495
 * and pinned into our object. i915_gem_object_pin_pages() may be called
2496
 * multiple times before they are released by a single call to
2497
 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2498 2499 2500
 * either as a result of memory pressure (reaping pages under the shrinker)
 * or as the object is itself released.
 */
C
Chris Wilson 已提交
2501
int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2502
{
2503
	int err;
2504

2505 2506 2507
	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		return err;
2508

2509
	if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2510 2511 2512
		err = ____i915_gem_object_get_pages(obj);
		if (err)
			goto unlock;
2513

2514 2515 2516
		smp_mb__before_atomic();
	}
	atomic_inc(&obj->mm.pages_pin_count);
2517

2518 2519
unlock:
	mutex_unlock(&obj->mm.lock);
2520
	return err;
2521 2522
}

2523
/* The 'mapping' part of i915_gem_object_pin_map() below */
2524 2525
static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
				 enum i915_map_type type)
2526 2527
{
	unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
C
Chris Wilson 已提交
2528
	struct sg_table *sgt = obj->mm.pages;
2529 2530
	struct sgt_iter sgt_iter;
	struct page *page;
2531 2532
	struct page *stack_pages[32];
	struct page **pages = stack_pages;
2533
	unsigned long i = 0;
2534
	pgprot_t pgprot;
2535 2536 2537
	void *addr;

	/* A single page can always be kmapped */
2538
	if (n_pages == 1 && type == I915_MAP_WB)
2539 2540
		return kmap(sg_page(sgt->sgl));

2541 2542
	if (n_pages > ARRAY_SIZE(stack_pages)) {
		/* Too big for stack -- allocate temporary array instead */
M
Michal Hocko 已提交
2543
		pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2544 2545 2546
		if (!pages)
			return NULL;
	}
2547

2548 2549
	for_each_sgt_page(page, sgt_iter, sgt)
		pages[i++] = page;
2550 2551 2552 2553

	/* Check that we have the expected number of pages */
	GEM_BUG_ON(i != n_pages);

2554
	switch (type) {
2555 2556 2557
	default:
		MISSING_CASE(type);
		/* fallthrough to use PAGE_KERNEL anyway */
2558 2559 2560 2561 2562 2563 2564 2565
	case I915_MAP_WB:
		pgprot = PAGE_KERNEL;
		break;
	case I915_MAP_WC:
		pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
		break;
	}
	addr = vmap(pages, n_pages, 0, pgprot);
2566

2567
	if (pages != stack_pages)
M
Michal Hocko 已提交
2568
		kvfree(pages);
2569 2570 2571 2572 2573

	return addr;
}

/* get, pin, and map the pages of the object into kernel space */
2574 2575
void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
			      enum i915_map_type type)
2576
{
2577 2578 2579
	enum i915_map_type has_type;
	bool pinned;
	void *ptr;
2580 2581
	int ret;

2582
	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2583

2584
	ret = mutex_lock_interruptible(&obj->mm.lock);
2585 2586 2587
	if (ret)
		return ERR_PTR(ret);

2588 2589 2590
	pinned = !(type & I915_MAP_OVERRIDE);
	type &= ~I915_MAP_OVERRIDE;

2591
	if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2592
		if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2593 2594 2595
			ret = ____i915_gem_object_get_pages(obj);
			if (ret)
				goto err_unlock;
2596

2597 2598 2599
			smp_mb__before_atomic();
		}
		atomic_inc(&obj->mm.pages_pin_count);
2600 2601 2602
		pinned = false;
	}
	GEM_BUG_ON(!obj->mm.pages);
2603

2604
	ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2605 2606 2607
	if (ptr && has_type != type) {
		if (pinned) {
			ret = -EBUSY;
2608
			goto err_unpin;
2609
		}
2610 2611 2612 2613 2614 2615

		if (is_vmalloc_addr(ptr))
			vunmap(ptr);
		else
			kunmap(kmap_to_page(ptr));

C
Chris Wilson 已提交
2616
		ptr = obj->mm.mapping = NULL;
2617 2618
	}

2619 2620 2621 2622
	if (!ptr) {
		ptr = i915_gem_object_map(obj, type);
		if (!ptr) {
			ret = -ENOMEM;
2623
			goto err_unpin;
2624 2625
		}

2626
		obj->mm.mapping = page_pack_bits(ptr, type);
2627 2628
	}

2629 2630
out_unlock:
	mutex_unlock(&obj->mm.lock);
2631 2632
	return ptr;

2633 2634 2635 2636 2637
err_unpin:
	atomic_dec(&obj->mm.pages_pin_count);
err_unlock:
	ptr = ERR_PTR(ret);
	goto out_unlock;
2638 2639
}

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
static int
i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
			   const struct drm_i915_gem_pwrite *arg)
{
	struct address_space *mapping = obj->base.filp->f_mapping;
	char __user *user_data = u64_to_user_ptr(arg->data_ptr);
	u64 remain, offset;
	unsigned int pg;

	/* Before we instantiate/pin the backing store for our use, we
	 * can prepopulate the shmemfs filp efficiently using a write into
	 * the pagecache. We avoid the penalty of instantiating all the
	 * pages, important if the user is just writing to a few and never
	 * uses the object on the GPU, and using a direct write into shmemfs
	 * allows it to avoid the cost of retrieving a page (either swapin
	 * or clearing-before-use) before it is overwritten.
	 */
	if (READ_ONCE(obj->mm.pages))
		return -ENODEV;

	/* Before the pages are instantiated the object is treated as being
	 * in the CPU domain. The pages will be clflushed as required before
	 * use, and we can freely write into the pages directly. If userspace
	 * races pwrite with any other operation; corruption will ensue -
	 * that is userspace's prerogative!
	 */

	remain = arg->size;
	offset = arg->offset;
	pg = offset_in_page(offset);

	do {
		unsigned int len, unwritten;
		struct page *page;
		void *data, *vaddr;
		int err;

		len = PAGE_SIZE - pg;
		if (len > remain)
			len = remain;

		err = pagecache_write_begin(obj->base.filp, mapping,
					    offset, len, 0,
					    &page, &data);
		if (err < 0)
			return err;

		vaddr = kmap(page);
		unwritten = copy_from_user(vaddr + pg, user_data, len);
		kunmap(page);

		err = pagecache_write_end(obj->base.filp, mapping,
					  offset, len, len - unwritten,
					  page, data);
		if (err < 0)
			return err;

		if (unwritten)
			return -EFAULT;

		remain -= len;
		user_data += len;
		offset += len;
		pg = 0;
	} while (remain);

	return 0;
}

2709 2710
static bool ban_context(const struct i915_gem_context *ctx,
			unsigned int score)
2711
{
2712
	return (i915_gem_context_is_bannable(ctx) &&
2713
		score >= CONTEXT_SCORE_BAN_THRESHOLD);
2714 2715
}

2716
static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2717
{
2718 2719
	unsigned int score;
	bool banned;
2720

2721
	atomic_inc(&ctx->guilty_count);
2722

2723 2724 2725 2726 2727
	score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
	banned = ban_context(ctx, score);
	DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
			 ctx->name, score, yesno(banned));
	if (!banned)
2728 2729
		return;

2730 2731 2732 2733 2734 2735
	i915_gem_context_set_banned(ctx);
	if (!IS_ERR_OR_NULL(ctx->file_priv)) {
		atomic_inc(&ctx->file_priv->context_bans);
		DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
				 ctx->name, atomic_read(&ctx->file_priv->context_bans));
	}
2736 2737 2738 2739
}

static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
{
2740
	atomic_inc(&ctx->active_count);
2741 2742
}

2743
struct drm_i915_gem_request *
2744
i915_gem_find_active_request(struct intel_engine_cs *engine)
2745
{
2746 2747
	struct drm_i915_gem_request *request, *active = NULL;
	unsigned long flags;
2748

2749 2750 2751 2752 2753 2754 2755 2756
	/* We are called by the error capture and reset at a random
	 * point in time. In particular, note that neither is crucially
	 * ordered with an interrupt. After a hang, the GPU is dead and we
	 * assume that no more writes can happen (we waited long enough for
	 * all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 */
2757
	spin_lock_irqsave(&engine->timeline->lock, flags);
2758
	list_for_each_entry(request, &engine->timeline->requests, link) {
2759 2760
		if (__i915_gem_request_completed(request,
						 request->global_seqno))
2761
			continue;
2762

2763
		GEM_BUG_ON(request->engine != engine);
2764 2765
		GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
				    &request->fence.flags));
2766 2767 2768

		active = request;
		break;
2769
	}
2770
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
2771

2772
	return active;
2773 2774
}

2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788
static bool engine_stalled(struct intel_engine_cs *engine)
{
	if (!engine->hangcheck.stalled)
		return false;

	/* Check for possible seqno movement after hang declaration */
	if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
		DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
		return false;
	}

	return true;
}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
/*
 * Ensure irq handler finishes, and not run again.
 * Also return the active request so that we only search for it once.
 */
struct drm_i915_gem_request *
i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_request *request = NULL;

	/* Prevent the signaler thread from updating the request
	 * state (by calling dma_fence_signal) as we are processing
	 * the reset. The write from the GPU of the seqno is
	 * asynchronous and the signaler thread may see a different
	 * value to us and declare the request complete, even though
	 * the reset routine have picked that request as the active
	 * (incomplete) request. This conflict is not handled
	 * gracefully!
	 */
	kthread_park(engine->breadcrumbs.signaler);

	/* Prevent request submission to the hardware until we have
	 * completed the reset in i915_gem_reset_finish(). If a request
	 * is completed by one engine, it may then queue a request
	 * to a second via its engine->irq_tasklet *just* as we are
	 * calling engine->init_hw() and also writing the ELSP.
	 * Turning off the engine->irq_tasklet until the reset is over
	 * prevents the race.
	 */
	tasklet_kill(&engine->irq_tasklet);
	tasklet_disable(&engine->irq_tasklet);

	if (engine->irq_seqno_barrier)
		engine->irq_seqno_barrier(engine);

2823 2824 2825
	request = i915_gem_find_active_request(engine);
	if (request && request->fence.error == -EIO)
		request = ERR_PTR(-EIO); /* Previous reset failed! */
2826 2827 2828 2829

	return request;
}

2830
int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2831 2832
{
	struct intel_engine_cs *engine;
2833
	struct drm_i915_gem_request *request;
2834
	enum intel_engine_id id;
2835
	int err = 0;
2836

2837
	for_each_engine(engine, dev_priv, id) {
2838 2839 2840 2841
		request = i915_gem_reset_prepare_engine(engine);
		if (IS_ERR(request)) {
			err = PTR_ERR(request);
			continue;
2842
		}
2843 2844

		engine->hangcheck.active_request = request;
2845 2846
	}

2847
	i915_gem_revoke_fences(dev_priv);
2848 2849

	return err;
2850 2851
}

2852
static void skip_request(struct drm_i915_gem_request *request)
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
{
	void *vaddr = request->ring->vaddr;
	u32 head;

	/* As this request likely depends on state from the lost
	 * context, clear out all the user operations leaving the
	 * breadcrumb at the end (so we get the fence notifications).
	 */
	head = request->head;
	if (request->postfix < head) {
		memset(vaddr + head, 0, request->ring->size - head);
		head = 0;
	}
	memset(vaddr + head, 0, request->postfix - head);
2867 2868

	dma_fence_set_error(&request->fence, -EIO);
2869 2870
}

2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893
static void engine_skip_context(struct drm_i915_gem_request *request)
{
	struct intel_engine_cs *engine = request->engine;
	struct i915_gem_context *hung_ctx = request->ctx;
	struct intel_timeline *timeline;
	unsigned long flags;

	timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);

	spin_lock_irqsave(&engine->timeline->lock, flags);
	spin_lock(&timeline->lock);

	list_for_each_entry_continue(request, &engine->timeline->requests, link)
		if (request->ctx == hung_ctx)
			skip_request(request);

	list_for_each_entry(request, &timeline->requests, link)
		skip_request(request);

	spin_unlock(&timeline->lock);
	spin_unlock_irqrestore(&engine->timeline->lock, flags);
}

2894 2895 2896 2897
/* Returns the request if it was guilty of the hang */
static struct drm_i915_gem_request *
i915_gem_reset_request(struct intel_engine_cs *engine,
		       struct drm_i915_gem_request *request)
2898
{
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	/* The guilty request will get skipped on a hung engine.
	 *
	 * Users of client default contexts do not rely on logical
	 * state preserved between batches so it is safe to execute
	 * queued requests following the hang. Non default contexts
	 * rely on preserved state, so skipping a batch loses the
	 * evolution of the state and it needs to be considered corrupted.
	 * Executing more queued batches on top of corrupted state is
	 * risky. But we take the risk by trying to advance through
	 * the queued requests in order to make the client behaviour
	 * more predictable around resets, by not throwing away random
	 * amount of batches it has prepared for execution. Sophisticated
	 * clients can use gem_reset_stats_ioctl and dma fence status
	 * (exported via sync_file info ioctl on explicit fences) to observe
	 * when it loses the context state and should rebuild accordingly.
	 *
	 * The context ban, and ultimately the client ban, mechanism are safety
	 * valves if client submission ends up resulting in nothing more than
	 * subsequent hangs.
	 */

2920
	if (engine_stalled(engine)) {
2921 2922
		i915_gem_context_mark_guilty(request->ctx);
		skip_request(request);
2923 2924 2925 2926

		/* If this context is now banned, skip all pending requests. */
		if (i915_gem_context_is_banned(request->ctx))
			engine_skip_context(request);
2927
	} else {
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
		/*
		 * Since this is not the hung engine, it may have advanced
		 * since the hang declaration. Double check by refinding
		 * the active request at the time of the reset.
		 */
		request = i915_gem_find_active_request(engine);
		if (request) {
			i915_gem_context_mark_innocent(request->ctx);
			dma_fence_set_error(&request->fence, -EAGAIN);

			/* Rewind the engine to replay the incomplete rq */
			spin_lock_irq(&engine->timeline->lock);
			request = list_prev_entry(request, link);
			if (&request->link == &engine->timeline->requests)
				request = NULL;
			spin_unlock_irq(&engine->timeline->lock);
		}
2945 2946
	}

2947
	return request;
2948 2949
}

2950 2951
void i915_gem_reset_engine(struct intel_engine_cs *engine,
			   struct drm_i915_gem_request *request)
2952
{
2953 2954
	engine->irq_posted = 0;

2955 2956 2957 2958
	if (request)
		request = i915_gem_reset_request(engine, request);

	if (request) {
2959 2960 2961
		DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
				 engine->name, request->global_seqno);
	}
2962 2963 2964

	/* Setup the CS to resume from the breadcrumb of the hung request */
	engine->reset_hw(engine, request);
2965
}
2966

2967
void i915_gem_reset(struct drm_i915_private *dev_priv)
2968
{
2969
	struct intel_engine_cs *engine;
2970
	enum intel_engine_id id;
2971

2972 2973
	lockdep_assert_held(&dev_priv->drm.struct_mutex);

2974 2975
	i915_gem_retire_requests(dev_priv);

2976 2977 2978
	for_each_engine(engine, dev_priv, id) {
		struct i915_gem_context *ctx;

2979
		i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2980 2981 2982 2983
		ctx = fetch_and_zero(&engine->last_retired_context);
		if (ctx)
			engine->context_unpin(engine, ctx);
	}
2984

2985
	i915_gem_restore_fences(dev_priv);
2986 2987 2988 2989 2990 2991 2992

	if (dev_priv->gt.awake) {
		intel_sanitize_gt_powersave(dev_priv);
		intel_enable_gt_powersave(dev_priv);
		if (INTEL_GEN(dev_priv) >= 6)
			gen6_rps_busy(dev_priv);
	}
2993 2994
}

2995 2996 2997 2998 2999 3000
void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
{
	tasklet_enable(&engine->irq_tasklet);
	kthread_unpark(engine->breadcrumbs.signaler);
}

3001 3002
void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
{
3003 3004 3005
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

3006
	lockdep_assert_held(&dev_priv->drm.struct_mutex);
3007

3008
	for_each_engine(engine, dev_priv, id) {
3009
		engine->hangcheck.active_request = NULL;
3010
		i915_gem_reset_finish_engine(engine);
3011
	}
3012 3013
}

3014 3015
static void nop_submit_request(struct drm_i915_gem_request *request)
{
3016
	GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3017
	dma_fence_set_error(&request->fence, -EIO);
3018 3019
	i915_gem_request_submit(request);
	intel_engine_init_global_seqno(request->engine, request->global_seqno);
3020 3021
}

3022
static void engine_set_wedged(struct intel_engine_cs *engine)
3023
{
3024 3025 3026
	struct drm_i915_gem_request *request;
	unsigned long flags;

3027 3028 3029 3030 3031 3032
	/* We need to be sure that no thread is running the old callback as
	 * we install the nop handler (otherwise we would submit a request
	 * to hardware that will never complete). In order to prevent this
	 * race, we wait until the machine is idle before making the swap
	 * (using stop_machine()).
	 */
3033
	engine->submit_request = nop_submit_request;
3034

3035 3036 3037
	/* Mark all executing requests as skipped */
	spin_lock_irqsave(&engine->timeline->lock, flags);
	list_for_each_entry(request, &engine->timeline->requests, link)
3038 3039
		if (!i915_gem_request_completed(request))
			dma_fence_set_error(&request->fence, -EIO);
3040 3041
	spin_unlock_irqrestore(&engine->timeline->lock, flags);

3042 3043 3044 3045 3046 3047
	/*
	 * Clear the execlists queue up before freeing the requests, as those
	 * are the ones that keep the context and ringbuffer backing objects
	 * pinned in place.
	 */

3048
	if (i915.enable_execlists) {
3049
		struct execlist_port *port = engine->execlist_port;
3050
		unsigned long flags;
3051
		unsigned int n;
3052 3053 3054

		spin_lock_irqsave(&engine->timeline->lock, flags);

3055 3056
		for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
			i915_gem_request_put(port_request(&port[n]));
3057
		memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3058 3059
		engine->execlist_queue = RB_ROOT;
		engine->execlist_first = NULL;
3060 3061

		spin_unlock_irqrestore(&engine->timeline->lock, flags);
3062 3063 3064 3065 3066 3067 3068

		/* The port is checked prior to scheduling a tasklet, but
		 * just in case we have suspended the tasklet to do the
		 * wedging make sure that when it wakes, it decides there
		 * is no work to do by clearing the irq_posted bit.
		 */
		clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3069
	}
3070 3071 3072 3073 3074 3075 3076

	/* Mark all pending requests as complete so that any concurrent
	 * (lockless) lookup doesn't try and wait upon the request as we
	 * reset it.
	 */
	intel_engine_init_global_seqno(engine,
				       intel_engine_last_submit(engine));
3077 3078
}

3079
static int __i915_gem_set_wedged_BKL(void *data)
3080
{
3081
	struct drm_i915_private *i915 = data;
3082
	struct intel_engine_cs *engine;
3083
	enum intel_engine_id id;
3084

3085
	for_each_engine(engine, i915, id)
3086
		engine_set_wedged(engine);
3087

3088 3089 3090
	set_bit(I915_WEDGED, &i915->gpu_error.flags);
	wake_up_all(&i915->gpu_error.reset_queue);

3091 3092 3093 3094 3095 3096
	return 0;
}

void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
{
	stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3097 3098
}

3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
	struct i915_gem_timeline *tl;
	int i;

	lockdep_assert_held(&i915->drm.struct_mutex);
	if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
		return true;

	/* Before unwedging, make sure that all pending operations
	 * are flushed and errored out - we may have requests waiting upon
	 * third party fences. We marked all inflight requests as EIO, and
	 * every execbuf since returned EIO, for consistency we want all
	 * the currently pending requests to also be marked as EIO, which
	 * is done inside our nop_submit_request - and so we must wait.
	 *
	 * No more can be submitted until we reset the wedged bit.
	 */
	list_for_each_entry(tl, &i915->gt.timelines, link) {
		for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
			struct drm_i915_gem_request *rq;

			rq = i915_gem_active_peek(&tl->engine[i].last_request,
						  &i915->drm.struct_mutex);
			if (!rq)
				continue;

			/* We can't use our normal waiter as we want to
			 * avoid recursively trying to handle the current
			 * reset. The basic dma_fence_default_wait() installs
			 * a callback for dma_fence_signal(), which is
			 * triggered by our nop handler (indirectly, the
			 * callback enables the signaler thread which is
			 * woken by the nop_submit_request() advancing the seqno
			 * and when the seqno passes the fence, the signaler
			 * then signals the fence waking us up).
			 */
			if (dma_fence_default_wait(&rq->fence, true,
						   MAX_SCHEDULE_TIMEOUT) < 0)
				return false;
		}
	}

	/* Undo nop_submit_request. We prevent all new i915 requests from
	 * being queued (by disallowing execbuf whilst wedged) so having
	 * waited for all active requests above, we know the system is idle
	 * and do not have to worry about a thread being inside
	 * engine->submit_request() as we swap over. So unlike installing
	 * the nop_submit_request on reset, we can do this from normal
	 * context and do not require stop_machine().
	 */
	intel_engines_reset_default_submission(i915);
3151
	i915_gem_contexts_lost(i915);
3152 3153 3154 3155 3156 3157 3158

	smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
	clear_bit(I915_WEDGED, &i915->gpu_error.flags);

	return true;
}

3159
static void
3160 3161
i915_gem_retire_work_handler(struct work_struct *work)
{
3162
	struct drm_i915_private *dev_priv =
3163
		container_of(work, typeof(*dev_priv), gt.retire_work.work);
3164
	struct drm_device *dev = &dev_priv->drm;
3165

3166
	/* Come back later if the device is busy... */
3167
	if (mutex_trylock(&dev->struct_mutex)) {
3168
		i915_gem_retire_requests(dev_priv);
3169
		mutex_unlock(&dev->struct_mutex);
3170
	}
3171 3172 3173 3174 3175

	/* Keep the retire handler running until we are finally idle.
	 * We do not need to do this test under locking as in the worst-case
	 * we queue the retire worker once too often.
	 */
3176 3177
	if (READ_ONCE(dev_priv->gt.awake)) {
		i915_queue_hangcheck(dev_priv);
3178 3179
		queue_delayed_work(dev_priv->wq,
				   &dev_priv->gt.retire_work,
3180
				   round_jiffies_up_relative(HZ));
3181
	}
3182
}
3183

3184 3185 3186 3187
static void
i915_gem_idle_work_handler(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
3188
		container_of(work, typeof(*dev_priv), gt.idle_work.work);
3189
	struct drm_device *dev = &dev_priv->drm;
3190 3191 3192 3193 3194
	bool rearm_hangcheck;

	if (!READ_ONCE(dev_priv->gt.awake))
		return;

3195 3196 3197 3198
	/*
	 * Wait for last execlists context complete, but bail out in case a
	 * new request is submitted.
	 */
3199
	wait_for(intel_engines_are_idle(dev_priv), 10);
3200
	if (READ_ONCE(dev_priv->gt.active_requests))
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
		return;

	rearm_hangcheck =
		cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);

	if (!mutex_trylock(&dev->struct_mutex)) {
		/* Currently busy, come back later */
		mod_delayed_work(dev_priv->wq,
				 &dev_priv->gt.idle_work,
				 msecs_to_jiffies(50));
		goto out_rearm;
	}

3214 3215 3216 3217 3218 3219 3220
	/*
	 * New request retired after this work handler started, extend active
	 * period until next instance of the work.
	 */
	if (work_pending(work))
		goto out_unlock;

3221
	if (dev_priv->gt.active_requests)
3222
		goto out_unlock;
3223

3224
	if (wait_for(intel_engines_are_idle(dev_priv), 10))
3225 3226
		DRM_ERROR("Timeout waiting for engines to idle\n");

3227
	intel_engines_mark_idle(dev_priv);
3228
	i915_gem_timelines_mark_idle(dev_priv);
3229

3230 3231 3232
	GEM_BUG_ON(!dev_priv->gt.awake);
	dev_priv->gt.awake = false;
	rearm_hangcheck = false;
3233

3234 3235 3236 3237 3238
	if (INTEL_GEN(dev_priv) >= 6)
		gen6_rps_idle(dev_priv);
	intel_runtime_pm_put(dev_priv);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
3239

3240 3241 3242 3243
out_rearm:
	if (rearm_hangcheck) {
		GEM_BUG_ON(!dev_priv->gt.awake);
		i915_queue_hangcheck(dev_priv);
3244
	}
3245 3246
}

3247 3248
void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
{
3249
	struct drm_i915_private *i915 = to_i915(gem->dev);
3250 3251
	struct drm_i915_gem_object *obj = to_intel_bo(gem);
	struct drm_i915_file_private *fpriv = file->driver_priv;
3252
	struct i915_lut_handle *lut, *ln;
3253

3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	mutex_lock(&i915->drm.struct_mutex);

	list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
		struct i915_gem_context *ctx = lut->ctx;
		struct i915_vma *vma;

		if (ctx->file_priv != fpriv)
			continue;

		vma = radix_tree_delete(&ctx->handles_vma, lut->handle);

3265 3266 3267 3268 3269 3270 3271
		GEM_BUG_ON(vma->obj != obj);

		/* We allow the process to have multiple handles to the same
		 * vma, in the same fd namespace, by virtue of flink/open.
		 */
		GEM_BUG_ON(!vma->open_count);
		if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3272
			i915_vma_close(vma);
3273

3274 3275
		list_del(&lut->obj_link);
		list_del(&lut->ctx_link);
3276

3277 3278
		kmem_cache_free(i915->luts, lut);
		__i915_gem_object_release_unless_active(obj);
3279
	}
3280 3281

	mutex_unlock(&i915->drm.struct_mutex);
3282 3283
}

3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
static unsigned long to_wait_timeout(s64 timeout_ns)
{
	if (timeout_ns < 0)
		return MAX_SCHEDULE_TIMEOUT;

	if (timeout_ns == 0)
		return 0;

	return nsecs_to_jiffies_timeout(timeout_ns);
}

3295 3296
/**
 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3297 3298 3299
 * @dev: drm device pointer
 * @data: ioctl data blob
 * @file: drm file pointer
3300 3301 3302 3303 3304 3305 3306
 *
 * Returns 0 if successful, else an error is returned with the remaining time in
 * the timeout parameter.
 *  -ETIME: object is still busy after timeout
 *  -ERESTARTSYS: signal interrupted the wait
 *  -ENONENT: object doesn't exist
 * Also possible, but rare:
3307
 *  -EAGAIN: incomplete, restart syscall
3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
 *  -ENOMEM: damn
 *  -ENODEV: Internal IRQ fail
 *  -E?: The add request failed
 *
 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
 * non-zero timeout parameter the wait ioctl will wait for the given number of
 * nanoseconds on an object becoming unbusy. Since the wait itself does so
 * without holding struct_mutex the object may become re-busied before this
 * function completes. A similar but shorter * race condition exists in the busy
 * ioctl
 */
int
i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_gem_wait *args = data;
	struct drm_i915_gem_object *obj;
3324 3325
	ktime_t start;
	long ret;
3326

3327 3328 3329
	if (args->flags != 0)
		return -EINVAL;

3330
	obj = i915_gem_object_lookup(file, args->bo_handle);
3331
	if (!obj)
3332 3333
		return -ENOENT;

3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
	start = ktime_get();

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
				   to_wait_timeout(args->timeout_ns),
				   to_rps_client(file));

	if (args->timeout_ns > 0) {
		args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
		if (args->timeout_ns < 0)
			args->timeout_ns = 0;
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354

		/*
		 * Apparently ktime isn't accurate enough and occasionally has a
		 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
		 * things up to make the test happy. We allow up to 1 jiffy.
		 *
		 * This is a regression from the timespec->ktime conversion.
		 */
		if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
			args->timeout_ns = 0;
3355 3356 3357 3358

		/* Asked to wait beyond the jiffie/scheduler precision? */
		if (ret == -ETIME && args->timeout_ns)
			ret = -EAGAIN;
3359 3360
	}

C
Chris Wilson 已提交
3361
	i915_gem_object_put(obj);
3362
	return ret;
3363 3364
}

3365
static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3366
{
3367
	int ret, i;
3368

3369 3370 3371 3372 3373
	for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
		ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
		if (ret)
			return ret;
	}
3374

3375 3376 3377
	return 0;
}

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
{
	return wait_for(intel_engine_is_idle(engine), timeout_ms);
}

static int wait_for_engines(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
			i915_gem_set_wedged(i915);
			return -EIO;
		}

		GEM_BUG_ON(intel_engine_get_seqno(engine) !=
			   intel_engine_last_submit(engine));
	}

	return 0;
}

3401 3402 3403 3404
int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
{
	int ret;

3405 3406 3407 3408
	/* If the device is asleep, we have no requests outstanding */
	if (!READ_ONCE(i915->gt.awake))
		return 0;

3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
	if (flags & I915_WAIT_LOCKED) {
		struct i915_gem_timeline *tl;

		lockdep_assert_held(&i915->drm.struct_mutex);

		list_for_each_entry(tl, &i915->gt.timelines, link) {
			ret = wait_for_timeline(tl, flags);
			if (ret)
				return ret;
		}
3419 3420 3421

		i915_gem_retire_requests(i915);
		GEM_BUG_ON(i915->gt.active_requests);
3422 3423

		ret = wait_for_engines(i915);
3424 3425
	} else {
		ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3426
	}
3427

3428
	return ret;
3429 3430
}

3431 3432
static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
{
3433 3434 3435 3436 3437 3438 3439
	/*
	 * We manually flush the CPU domain so that we can override and
	 * force the flush for the display, and perform it asyncrhonously.
	 */
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
	if (obj->cache_dirty)
		i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
	obj->base.write_domain = 0;
}

void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
{
	if (!READ_ONCE(obj->pin_display))
		return;

	mutex_lock(&obj->base.dev->struct_mutex);
	__i915_gem_object_flush_for_display(obj);
	mutex_unlock(&obj->base.dev->struct_mutex);
}

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
/**
 * Moves a single object to the WC read, and possibly write domain.
 * @obj: object to act on
 * @write: ask for write access or read only
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
int
i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
{
	int ret;

	lockdep_assert_held(&obj->base.dev->struct_mutex);

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
	if (ret)
		return ret;

	if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
		return 0;

	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
	ret = i915_gem_object_pin_pages(obj);
	if (ret)
		return ret;

	flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);

	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * WC domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
		mb();

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
	obj->base.read_domains |= I915_GEM_DOMAIN_WC;
	if (write) {
		obj->base.read_domains = I915_GEM_DOMAIN_WC;
		obj->base.write_domain = I915_GEM_DOMAIN_WC;
		obj->mm.dirty = true;
	}

	i915_gem_object_unpin_pages(obj);
	return 0;
}

3516 3517
/**
 * Moves a single object to the GTT read, and possibly write domain.
3518 3519
 * @obj: object to act on
 * @write: ask for write access or read only
3520 3521 3522 3523
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
3524
int
3525
i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3526
{
3527
	int ret;
3528

3529
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3530

3531 3532 3533 3534 3535 3536
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3537 3538 3539
	if (ret)
		return ret;

3540 3541 3542
	if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
		return 0;

3543 3544 3545 3546 3547 3548 3549 3550
	/* Flush and acquire obj->pages so that we are coherent through
	 * direct access in memory with previous cached writes through
	 * shmemfs and that our cache domain tracking remains valid.
	 * For example, if the obj->filp was moved to swap without us
	 * being notified and releasing the pages, we would mistakenly
	 * continue to assume that the obj remained out of the CPU cached
	 * domain.
	 */
C
Chris Wilson 已提交
3551
	ret = i915_gem_object_pin_pages(obj);
3552 3553 3554
	if (ret)
		return ret;

3555
	flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
C
Chris Wilson 已提交
3556

3557 3558 3559 3560 3561 3562 3563
	/* Serialise direct access to this object with the barriers for
	 * coherent writes from the GPU, by effectively invalidating the
	 * GTT domain upon first access.
	 */
	if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
		mb();

3564 3565 3566
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3567
	GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3568
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3569
	if (write) {
3570 3571
		obj->base.read_domains = I915_GEM_DOMAIN_GTT;
		obj->base.write_domain = I915_GEM_DOMAIN_GTT;
C
Chris Wilson 已提交
3572
		obj->mm.dirty = true;
3573 3574
	}

C
Chris Wilson 已提交
3575
	i915_gem_object_unpin_pages(obj);
3576 3577 3578
	return 0;
}

3579 3580
/**
 * Changes the cache-level of an object across all VMA.
3581 3582
 * @obj: object to act on
 * @cache_level: new cache level to set for the object
3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
 *
 * After this function returns, the object will be in the new cache-level
 * across all GTT and the contents of the backing storage will be coherent,
 * with respect to the new cache-level. In order to keep the backing storage
 * coherent for all users, we only allow a single cache level to be set
 * globally on the object and prevent it from being changed whilst the
 * hardware is reading from the object. That is if the object is currently
 * on the scanout it will be set to uncached (or equivalent display
 * cache coherency) and all non-MOCS GPU access will also be uncached so
 * that all direct access to the scanout remains coherent.
 */
3594 3595 3596
int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
				    enum i915_cache_level cache_level)
{
3597
	struct i915_vma *vma;
3598
	int ret;
3599

3600 3601
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3602
	if (obj->cache_level == cache_level)
3603
		return 0;
3604

3605 3606 3607 3608 3609
	/* Inspect the list of currently bound VMA and unbind any that would
	 * be invalid given the new cache-level. This is principally to
	 * catch the issue of the CS prefetch crossing page boundaries and
	 * reading an invalid PTE on older architectures.
	 */
3610 3611
restart:
	list_for_each_entry(vma, &obj->vma_list, obj_link) {
3612 3613 3614
		if (!drm_mm_node_allocated(&vma->node))
			continue;

3615
		if (i915_vma_is_pinned(vma)) {
3616 3617 3618 3619
			DRM_DEBUG("can not change the cache level of pinned objects\n");
			return -EBUSY;
		}

3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
		if (i915_gem_valid_gtt_space(vma, cache_level))
			continue;

		ret = i915_vma_unbind(vma);
		if (ret)
			return ret;

		/* As unbinding may affect other elements in the
		 * obj->vma_list (due to side-effects from retiring
		 * an active vma), play safe and restart the iterator.
		 */
		goto restart;
3632 3633
	}

3634 3635 3636 3637 3638 3639 3640
	/* We can reuse the existing drm_mm nodes but need to change the
	 * cache-level on the PTE. We could simply unbind them all and
	 * rebind with the correct cache-level on next use. However since
	 * we already have a valid slot, dma mapping, pages etc, we may as
	 * rewrite the PTE in the belief that doing so tramples upon less
	 * state and so involves less work.
	 */
3641
	if (obj->bind_count) {
3642 3643 3644 3645
		/* Before we change the PTE, the GPU must not be accessing it.
		 * If we wait upon the object, we know that all the bound
		 * VMA are no longer active.
		 */
3646 3647 3648 3649 3650 3651
		ret = i915_gem_object_wait(obj,
					   I915_WAIT_INTERRUPTIBLE |
					   I915_WAIT_LOCKED |
					   I915_WAIT_ALL,
					   MAX_SCHEDULE_TIMEOUT,
					   NULL);
3652 3653 3654
		if (ret)
			return ret;

3655 3656
		if (!HAS_LLC(to_i915(obj->base.dev)) &&
		    cache_level != I915_CACHE_NONE) {
3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672
			/* Access to snoopable pages through the GTT is
			 * incoherent and on some machines causes a hard
			 * lockup. Relinquish the CPU mmaping to force
			 * userspace to refault in the pages and we can
			 * then double check if the GTT mapping is still
			 * valid for that pointer access.
			 */
			i915_gem_release_mmap(obj);

			/* As we no longer need a fence for GTT access,
			 * we can relinquish it now (and so prevent having
			 * to steal a fence from someone else on the next
			 * fence request). Note GPU activity would have
			 * dropped the fence as all snoopable access is
			 * supposed to be linear.
			 */
3673 3674 3675 3676 3677
			list_for_each_entry(vma, &obj->vma_list, obj_link) {
				ret = i915_vma_put_fence(vma);
				if (ret)
					return ret;
			}
3678 3679 3680 3681 3682 3683 3684 3685
		} else {
			/* We either have incoherent backing store and
			 * so no GTT access or the architecture is fully
			 * coherent. In such cases, existing GTT mmaps
			 * ignore the cache bit in the PTE and we can
			 * rewrite it without confusing the GPU or having
			 * to force userspace to fault back in its mmaps.
			 */
3686 3687
		}

3688
		list_for_each_entry(vma, &obj->vma_list, obj_link) {
3689 3690 3691 3692 3693 3694 3695
			if (!drm_mm_node_allocated(&vma->node))
				continue;

			ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
			if (ret)
				return ret;
		}
3696 3697
	}

3698
	list_for_each_entry(vma, &obj->vma_list, obj_link)
3699
		vma->node.color = cache_level;
3700
	i915_gem_object_set_cache_coherency(obj, cache_level);
3701
	obj->cache_dirty = true; /* Always invalidate stale cachelines */
3702

3703 3704 3705
	return 0;
}

B
Ben Widawsky 已提交
3706 3707
int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3708
{
B
Ben Widawsky 已提交
3709
	struct drm_i915_gem_caching *args = data;
3710
	struct drm_i915_gem_object *obj;
3711
	int err = 0;
3712

3713 3714 3715 3716 3717 3718
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
	if (!obj) {
		err = -ENOENT;
		goto out;
	}
3719

3720 3721 3722 3723 3724 3725
	switch (obj->cache_level) {
	case I915_CACHE_LLC:
	case I915_CACHE_L3_LLC:
		args->caching = I915_CACHING_CACHED;
		break;

3726 3727 3728 3729
	case I915_CACHE_WT:
		args->caching = I915_CACHING_DISPLAY;
		break;

3730 3731 3732 3733
	default:
		args->caching = I915_CACHING_NONE;
		break;
	}
3734 3735 3736
out:
	rcu_read_unlock();
	return err;
3737 3738
}

B
Ben Widawsky 已提交
3739 3740
int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
			       struct drm_file *file)
3741
{
3742
	struct drm_i915_private *i915 = to_i915(dev);
B
Ben Widawsky 已提交
3743
	struct drm_i915_gem_caching *args = data;
3744 3745
	struct drm_i915_gem_object *obj;
	enum i915_cache_level level;
3746
	int ret = 0;
3747

B
Ben Widawsky 已提交
3748 3749
	switch (args->caching) {
	case I915_CACHING_NONE:
3750 3751
		level = I915_CACHE_NONE;
		break;
B
Ben Widawsky 已提交
3752
	case I915_CACHING_CACHED:
3753 3754 3755 3756 3757 3758
		/*
		 * Due to a HW issue on BXT A stepping, GPU stores via a
		 * snooped mapping may leave stale data in a corresponding CPU
		 * cacheline, whereas normally such cachelines would get
		 * invalidated.
		 */
3759
		if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3760 3761
			return -ENODEV;

3762 3763
		level = I915_CACHE_LLC;
		break;
3764
	case I915_CACHING_DISPLAY:
3765
		level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3766
		break;
3767 3768 3769 3770
	default:
		return -EINVAL;
	}

3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781
	obj = i915_gem_object_lookup(file, args->handle);
	if (!obj)
		return -ENOENT;

	if (obj->cache_level == level)
		goto out;

	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT,
				   to_rps_client(file));
B
Ben Widawsky 已提交
3782
	if (ret)
3783
		goto out;
B
Ben Widawsky 已提交
3784

3785 3786 3787
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out;
3788 3789 3790

	ret = i915_gem_object_set_cache_level(obj, level);
	mutex_unlock(&dev->struct_mutex);
3791 3792 3793

out:
	i915_gem_object_put(obj);
3794 3795 3796
	return ret;
}

3797
/*
3798 3799 3800
 * Prepare buffer for display plane (scanout, cursors, etc).
 * Can be called from an uninterruptible phase (modesetting) and allows
 * any flushes to be pipelined (for pageflips).
3801
 */
C
Chris Wilson 已提交
3802
struct i915_vma *
3803 3804
i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
				     u32 alignment,
3805
				     const struct i915_ggtt_view *view)
3806
{
C
Chris Wilson 已提交
3807
	struct i915_vma *vma;
3808 3809
	int ret;

3810 3811
	lockdep_assert_held(&obj->base.dev->struct_mutex);

3812 3813 3814
	/* Mark the pin_display early so that we account for the
	 * display coherency whilst setting up the cache domains.
	 */
3815
	obj->pin_display++;
3816

3817 3818 3819 3820 3821 3822 3823 3824 3825
	/* The display engine is not coherent with the LLC cache on gen6.  As
	 * a result, we make sure that the pinning that is about to occur is
	 * done with uncached PTEs. This is lowest common denominator for all
	 * chipsets.
	 *
	 * However for gen6+, we could do better by using the GFDT bit instead
	 * of uncaching, which would allow us to flush all the LLC-cached data
	 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
	 */
3826
	ret = i915_gem_object_set_cache_level(obj,
3827 3828
					      HAS_WT(to_i915(obj->base.dev)) ?
					      I915_CACHE_WT : I915_CACHE_NONE);
C
Chris Wilson 已提交
3829 3830
	if (ret) {
		vma = ERR_PTR(ret);
3831
		goto err_unpin_display;
C
Chris Wilson 已提交
3832
	}
3833

3834 3835
	/* As the user may map the buffer once pinned in the display plane
	 * (e.g. libkms for the bootup splash), we have to ensure that we
3836 3837 3838 3839
	 * always use map_and_fenceable for all scanout buffers. However,
	 * it may simply be too big to fit into mappable, in which case
	 * put it anyway and hope that userspace can cope (but always first
	 * try to preserve the existing ABI).
3840
	 */
3841
	vma = ERR_PTR(-ENOSPC);
3842
	if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3843 3844
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
					       PIN_MAPPABLE | PIN_NONBLOCK);
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860
	if (IS_ERR(vma)) {
		struct drm_i915_private *i915 = to_i915(obj->base.dev);
		unsigned int flags;

		/* Valleyview is definitely limited to scanning out the first
		 * 512MiB. Lets presume this behaviour was inherited from the
		 * g4x display engine and that all earlier gen are similarly
		 * limited. Testing suggests that it is a little more
		 * complicated than this. For example, Cherryview appears quite
		 * happy to scanout from anywhere within its global aperture.
		 */
		flags = 0;
		if (HAS_GMCH_DISPLAY(i915))
			flags = PIN_MAPPABLE;
		vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
	}
C
Chris Wilson 已提交
3861
	if (IS_ERR(vma))
3862
		goto err_unpin_display;
3863

3864 3865
	vma->display_alignment = max_t(u64, vma->display_alignment, alignment);

3866
	/* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3867
	__i915_gem_object_flush_for_display(obj);
3868
	intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3869

3870 3871 3872
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3873
	obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3874

C
Chris Wilson 已提交
3875
	return vma;
3876 3877

err_unpin_display:
3878
	obj->pin_display--;
C
Chris Wilson 已提交
3879
	return vma;
3880 3881 3882
}

void
C
Chris Wilson 已提交
3883
i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3884
{
3885
	lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3886

C
Chris Wilson 已提交
3887
	if (WARN_ON(vma->obj->pin_display == 0))
3888 3889
		return;

3890
	if (--vma->obj->pin_display == 0)
3891
		vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3892

3893
	/* Bump the LRU to try and avoid premature eviction whilst flipping  */
3894
	i915_gem_object_bump_inactive_ggtt(vma->obj);
3895

C
Chris Wilson 已提交
3896
	i915_vma_unpin(vma);
3897 3898
}

3899 3900
/**
 * Moves a single object to the CPU read, and possibly write domain.
3901 3902
 * @obj: object to act on
 * @write: requesting write or read-only access
3903 3904 3905 3906
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
3907
int
3908
i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3909 3910 3911
{
	int ret;

3912
	lockdep_assert_held(&obj->base.dev->struct_mutex);
3913

3914 3915 3916 3917 3918 3919
	ret = i915_gem_object_wait(obj,
				   I915_WAIT_INTERRUPTIBLE |
				   I915_WAIT_LOCKED |
				   (write ? I915_WAIT_ALL : 0),
				   MAX_SCHEDULE_TIMEOUT,
				   NULL);
3920 3921 3922
	if (ret)
		return ret;

3923
	flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3924

3925
	/* Flush the CPU cache if it's still invalid. */
3926
	if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3927
		i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3928
		obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3929 3930 3931 3932 3933
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
3934
	GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3935 3936 3937 3938

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
3939 3940
	if (write)
		__start_cpu_write(obj);
3941 3942 3943 3944

	return 0;
}

3945 3946 3947
/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3948 3949 3950 3951
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3952 3953 3954
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
3955
static int
3956
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3957
{
3958
	struct drm_i915_private *dev_priv = to_i915(dev);
3959
	struct drm_i915_file_private *file_priv = file->driver_priv;
3960
	unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3961
	struct drm_i915_gem_request *request, *target = NULL;
3962
	long ret;
3963

3964 3965 3966
	/* ABI: return -EIO if already wedged */
	if (i915_terminally_wedged(&dev_priv->gpu_error))
		return -EIO;
3967

3968
	spin_lock(&file_priv->mm.lock);
3969
	list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3970 3971
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;
3972

3973 3974 3975 3976
		if (target) {
			list_del(&target->client_link);
			target->file_priv = NULL;
		}
3977

3978
		target = request;
3979
	}
3980
	if (target)
3981
		i915_gem_request_get(target);
3982
	spin_unlock(&file_priv->mm.lock);
3983

3984
	if (target == NULL)
3985
		return 0;
3986

3987 3988 3989
	ret = i915_wait_request(target,
				I915_WAIT_INTERRUPTIBLE,
				MAX_SCHEDULE_TIMEOUT);
3990
	i915_gem_request_put(target);
3991

3992
	return ret < 0 ? ret : 0;
3993 3994
}

C
Chris Wilson 已提交
3995
struct i915_vma *
3996 3997
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
			 const struct i915_ggtt_view *view,
3998
			 u64 size,
3999 4000
			 u64 alignment,
			 u64 flags)
4001
{
4002 4003
	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
	struct i915_address_space *vm = &dev_priv->ggtt.base;
4004 4005
	struct i915_vma *vma;
	int ret;
4006

4007 4008
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4009
	vma = i915_vma_instance(obj, vm, view);
4010
	if (unlikely(IS_ERR(vma)))
C
Chris Wilson 已提交
4011
		return vma;
4012 4013 4014 4015

	if (i915_vma_misplaced(vma, size, alignment, flags)) {
		if (flags & PIN_NONBLOCK &&
		    (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
C
Chris Wilson 已提交
4016
			return ERR_PTR(-ENOSPC);
4017

4018 4019 4020 4021 4022 4023 4024 4025
		if (flags & PIN_MAPPABLE) {
			/* If the required space is larger than the available
			 * aperture, we will not able to find a slot for the
			 * object and unbinding the object now will be in
			 * vain. Worse, doing so may cause us to ping-pong
			 * the object in and out of the Global GTT and
			 * waste a lot of cycles under the mutex.
			 */
4026
			if (vma->fence_size > dev_priv->ggtt.mappable_end)
4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044
				return ERR_PTR(-E2BIG);

			/* If NONBLOCK is set the caller is optimistically
			 * trying to cache the full object within the mappable
			 * aperture, and *must* have a fallback in place for
			 * situations where we cannot bind the object. We
			 * can be a little more lax here and use the fallback
			 * more often to avoid costly migrations of ourselves
			 * and other objects within the aperture.
			 *
			 * Half-the-aperture is used as a simple heuristic.
			 * More interesting would to do search for a free
			 * block prior to making the commitment to unbind.
			 * That caters for the self-harm case, and with a
			 * little more heuristics (e.g. NOFAULT, NOEVICT)
			 * we could try to minimise harm to others.
			 */
			if (flags & PIN_NONBLOCK &&
4045
			    vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4046 4047 4048
				return ERR_PTR(-ENOSPC);
		}

4049 4050
		WARN(i915_vma_is_pinned(vma),
		     "bo is already pinned in ggtt with incorrect alignment:"
4051 4052 4053
		     " offset=%08x, req.alignment=%llx,"
		     " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
		     i915_ggtt_offset(vma), alignment,
4054
		     !!(flags & PIN_MAPPABLE),
4055
		     i915_vma_is_map_and_fenceable(vma));
4056 4057
		ret = i915_vma_unbind(vma);
		if (ret)
C
Chris Wilson 已提交
4058
			return ERR_PTR(ret);
4059 4060
	}

C
Chris Wilson 已提交
4061 4062 4063
	ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
	if (ret)
		return ERR_PTR(ret);
4064

C
Chris Wilson 已提交
4065
	return vma;
4066 4067
}

4068
static __always_inline unsigned int __busy_read_flag(unsigned int id)
4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082
{
	/* Note that we could alias engines in the execbuf API, but
	 * that would be very unwise as it prevents userspace from
	 * fine control over engine selection. Ahem.
	 *
	 * This should be something like EXEC_MAX_ENGINE instead of
	 * I915_NUM_ENGINES.
	 */
	BUILD_BUG_ON(I915_NUM_ENGINES > 16);
	return 0x10000 << id;
}

static __always_inline unsigned int __busy_write_id(unsigned int id)
{
4083 4084 4085 4086 4087 4088 4089 4090 4091
	/* The uABI guarantees an active writer is also amongst the read
	 * engines. This would be true if we accessed the activity tracking
	 * under the lock, but as we perform the lookup of the object and
	 * its activity locklessly we can not guarantee that the last_write
	 * being active implies that we have set the same engine flag from
	 * last_read - hence we always set both read and write busy for
	 * last_write.
	 */
	return id | __busy_read_flag(id);
4092 4093
}

4094
static __always_inline unsigned int
4095
__busy_set_if_active(const struct dma_fence *fence,
4096 4097
		     unsigned int (*flag)(unsigned int id))
{
4098
	struct drm_i915_gem_request *rq;
4099

4100 4101 4102 4103
	/* We have to check the current hw status of the fence as the uABI
	 * guarantees forward progress. We could rely on the idle worker
	 * to eventually flush us, but to minimise latency just ask the
	 * hardware.
4104
	 *
4105
	 * Note we only report on the status of native fences.
4106
	 */
4107 4108 4109 4110 4111 4112 4113 4114
	if (!dma_fence_is_i915(fence))
		return 0;

	/* opencode to_request() in order to avoid const warnings */
	rq = container_of(fence, struct drm_i915_gem_request, fence);
	if (i915_gem_request_completed(rq))
		return 0;

4115
	return flag(rq->engine->uabi_id);
4116 4117
}

4118
static __always_inline unsigned int
4119
busy_check_reader(const struct dma_fence *fence)
4120
{
4121
	return __busy_set_if_active(fence, __busy_read_flag);
4122 4123
}

4124
static __always_inline unsigned int
4125
busy_check_writer(const struct dma_fence *fence)
4126
{
4127 4128 4129 4130
	if (!fence)
		return 0;

	return __busy_set_if_active(fence, __busy_write_id);
4131 4132
}

4133 4134
int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4135
		    struct drm_file *file)
4136 4137
{
	struct drm_i915_gem_busy *args = data;
4138
	struct drm_i915_gem_object *obj;
4139 4140
	struct reservation_object_list *list;
	unsigned int seq;
4141
	int err;
4142

4143
	err = -ENOENT;
4144 4145
	rcu_read_lock();
	obj = i915_gem_object_lookup_rcu(file, args->handle);
4146
	if (!obj)
4147
		goto out;
4148

4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
	/* A discrepancy here is that we do not report the status of
	 * non-i915 fences, i.e. even though we may report the object as idle,
	 * a call to set-domain may still stall waiting for foreign rendering.
	 * This also means that wait-ioctl may report an object as busy,
	 * where busy-ioctl considers it idle.
	 *
	 * We trade the ability to warn of foreign fences to report on which
	 * i915 engines are active for the object.
	 *
	 * Alternatively, we can trade that extra information on read/write
	 * activity with
	 *	args->busy =
	 *		!reservation_object_test_signaled_rcu(obj->resv, true);
	 * to report the overall busyness. This is what the wait-ioctl does.
	 *
	 */
retry:
	seq = raw_read_seqcount(&obj->resv->seq);
4167

4168 4169
	/* Translate the exclusive fence to the READ *and* WRITE engine */
	args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4170

4171 4172 4173 4174
	/* Translate shared fences to READ set of engines */
	list = rcu_dereference(obj->resv->fence);
	if (list) {
		unsigned int shared_count = list->shared_count, i;
4175

4176 4177 4178 4179 4180 4181
		for (i = 0; i < shared_count; ++i) {
			struct dma_fence *fence =
				rcu_dereference(list->shared[i]);

			args->busy |= busy_check_reader(fence);
		}
4182
	}
4183

4184 4185 4186 4187
	if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
		goto retry;

	err = 0;
4188 4189 4190
out:
	rcu_read_unlock();
	return err;
4191 4192 4193 4194 4195 4196
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
4197
	return i915_gem_ring_throttle(dev, file_priv);
4198 4199
}

4200 4201 4202 4203
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
4204
	struct drm_i915_private *dev_priv = to_i915(dev);
4205
	struct drm_i915_gem_madvise *args = data;
4206
	struct drm_i915_gem_object *obj;
4207
	int err;
4208 4209 4210 4211 4212 4213 4214 4215 4216

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

4217
	obj = i915_gem_object_lookup(file_priv, args->handle);
4218 4219 4220 4221 4222 4223
	if (!obj)
		return -ENOENT;

	err = mutex_lock_interruptible(&obj->mm.lock);
	if (err)
		goto out;
4224

C
Chris Wilson 已提交
4225
	if (obj->mm.pages &&
4226
	    i915_gem_object_is_tiled(obj) &&
4227
	    dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4228 4229
		if (obj->mm.madv == I915_MADV_WILLNEED) {
			GEM_BUG_ON(!obj->mm.quirked);
C
Chris Wilson 已提交
4230
			__i915_gem_object_unpin_pages(obj);
4231 4232 4233
			obj->mm.quirked = false;
		}
		if (args->madv == I915_MADV_WILLNEED) {
4234
			GEM_BUG_ON(obj->mm.quirked);
C
Chris Wilson 已提交
4235
			__i915_gem_object_pin_pages(obj);
4236 4237
			obj->mm.quirked = true;
		}
4238 4239
	}

C
Chris Wilson 已提交
4240 4241
	if (obj->mm.madv != __I915_MADV_PURGED)
		obj->mm.madv = args->madv;
4242

C
Chris Wilson 已提交
4243
	/* if the object is no longer attached, discard its backing storage */
C
Chris Wilson 已提交
4244
	if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4245 4246
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4247
	args->retained = obj->mm.madv != __I915_MADV_PURGED;
4248
	mutex_unlock(&obj->mm.lock);
C
Chris Wilson 已提交
4249

4250
out:
4251
	i915_gem_object_put(obj);
4252
	return err;
4253 4254
}

4255 4256 4257 4258 4259 4260 4261
static void
frontbuffer_retire(struct i915_gem_active *active,
		   struct drm_i915_gem_request *request)
{
	struct drm_i915_gem_object *obj =
		container_of(active, typeof(*obj), frontbuffer_write);

4262
	intel_fb_obj_flush(obj, ORIGIN_CS);
4263 4264
}

4265 4266
void i915_gem_object_init(struct drm_i915_gem_object *obj,
			  const struct drm_i915_gem_object_ops *ops)
4267
{
4268 4269
	mutex_init(&obj->mm.lock);

4270
	INIT_LIST_HEAD(&obj->global_link);
4271
	INIT_LIST_HEAD(&obj->userfault_link);
B
Ben Widawsky 已提交
4272
	INIT_LIST_HEAD(&obj->vma_list);
4273
	INIT_LIST_HEAD(&obj->lut_list);
4274
	INIT_LIST_HEAD(&obj->batch_pool_link);
4275

4276 4277
	obj->ops = ops;

4278 4279 4280
	reservation_object_init(&obj->__builtin_resv);
	obj->resv = &obj->__builtin_resv;

4281
	obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4282
	init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
C
Chris Wilson 已提交
4283 4284 4285 4286

	obj->mm.madv = I915_MADV_WILLNEED;
	INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
	mutex_init(&obj->mm.get_page.lock);
4287

4288
	i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4289 4290
}

4291
static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4292 4293
	.flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
		 I915_GEM_OBJECT_IS_SHRINKABLE,
4294

4295 4296
	.get_pages = i915_gem_object_get_pages_gtt,
	.put_pages = i915_gem_object_put_pages_gtt,
4297 4298

	.pwrite = i915_gem_object_pwrite_gtt,
4299 4300
};

4301
struct drm_i915_gem_object *
4302
i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4303
{
4304
	struct drm_i915_gem_object *obj;
4305
	struct address_space *mapping;
4306
	unsigned int cache_level;
D
Daniel Vetter 已提交
4307
	gfp_t mask;
4308
	int ret;
4309

4310 4311 4312 4313 4314
	/* There is a prevalence of the assumption that we fit the object's
	 * page count inside a 32bit _signed_ variable. Let's document this and
	 * catch if we ever need to fix it. In the meantime, if you do spot
	 * such a local variable, please consider fixing!
	 */
4315
	if (size >> PAGE_SHIFT > INT_MAX)
4316 4317 4318 4319 4320
		return ERR_PTR(-E2BIG);

	if (overflows_type(size, obj->base.size))
		return ERR_PTR(-E2BIG);

4321
	obj = i915_gem_object_alloc(dev_priv);
4322
	if (obj == NULL)
4323
		return ERR_PTR(-ENOMEM);
4324

4325
	ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4326 4327
	if (ret)
		goto fail;
4328

4329
	mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4330
	if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4331 4332 4333 4334 4335
		/* 965gm cannot relocate objects above 4GiB. */
		mask &= ~__GFP_HIGHMEM;
		mask |= __GFP_DMA32;
	}

4336
	mapping = obj->base.filp->f_mapping;
4337
	mapping_set_gfp_mask(mapping, mask);
4338
	GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4339

4340
	i915_gem_object_init(obj, &i915_gem_object_ops);
4341

4342 4343
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4344

4345
	if (HAS_LLC(dev_priv))
4346
		/* On some devices, we can have the GPU use the LLC (the CPU
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
		 * cache) for about a 10% performance improvement
		 * compared to uncached.  Graphics requests other than
		 * display scanout are coherent with the CPU in
		 * accessing this cache.  This means in this mode we
		 * don't need to clflush on the CPU side, and on the
		 * GPU side we only need to flush internal caches to
		 * get data visible to the CPU.
		 *
		 * However, we maintain the display planes as UC, and so
		 * need to rebind when first used as such.
		 */
4358 4359 4360
		cache_level = I915_CACHE_LLC;
	else
		cache_level = I915_CACHE_NONE;
4361

4362
	i915_gem_object_set_cache_coherency(obj, cache_level);
4363

4364 4365
	trace_i915_gem_object_create(obj);

4366
	return obj;
4367 4368 4369 4370

fail:
	i915_gem_object_free(obj);
	return ERR_PTR(ret);
4371 4372
}

4373 4374 4375 4376 4377 4378 4379 4380
static bool discard_backing_storage(struct drm_i915_gem_object *obj)
{
	/* If we are the last user of the backing storage (be it shmemfs
	 * pages or stolen etc), we know that the pages are going to be
	 * immediately released. In this case, we can then skip copying
	 * back the contents from the GPU.
	 */

C
Chris Wilson 已提交
4381
	if (obj->mm.madv != I915_MADV_WILLNEED)
4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
		return false;

	if (obj->base.filp == NULL)
		return true;

	/* At first glance, this looks racy, but then again so would be
	 * userspace racing mmap against close. However, the first external
	 * reference to the filp can only be obtained through the
	 * i915_gem_mmap_ioctl() which safeguards us against the user
	 * acquiring such a reference whilst we are in the middle of
	 * freeing the object.
	 */
	return atomic_long_read(&obj->base.filp->f_count) == 1;
}

4397 4398
static void __i915_gem_free_objects(struct drm_i915_private *i915,
				    struct llist_node *freed)
4399
{
4400
	struct drm_i915_gem_object *obj, *on;
4401

4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415
	mutex_lock(&i915->drm.struct_mutex);
	intel_runtime_pm_get(i915);
	llist_for_each_entry(obj, freed, freed) {
		struct i915_vma *vma, *vn;

		trace_i915_gem_object_destroy(obj);

		GEM_BUG_ON(i915_gem_object_is_active(obj));
		list_for_each_entry_safe(vma, vn,
					 &obj->vma_list, obj_link) {
			GEM_BUG_ON(i915_vma_is_active(vma));
			vma->flags &= ~I915_VMA_PIN_MASK;
			i915_vma_close(vma);
		}
4416 4417
		GEM_BUG_ON(!list_empty(&obj->vma_list));
		GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4418

4419
		list_del(&obj->global_link);
4420 4421 4422 4423
	}
	intel_runtime_pm_put(i915);
	mutex_unlock(&i915->drm.struct_mutex);

4424 4425
	cond_resched();

4426 4427 4428 4429 4430 4431
	llist_for_each_entry_safe(obj, on, freed, freed) {
		GEM_BUG_ON(obj->bind_count);
		GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));

		if (obj->ops->release)
			obj->ops->release(obj);
4432

4433 4434
		if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
			atomic_set(&obj->mm.pages_pin_count, 0);
4435
		__i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4436 4437 4438 4439 4440
		GEM_BUG_ON(obj->mm.pages);

		if (obj->base.import_attach)
			drm_prime_gem_destroy(&obj->base, NULL);

4441
		reservation_object_fini(&obj->__builtin_resv);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
		drm_gem_object_release(&obj->base);
		i915_gem_info_remove_obj(i915, obj->base.size);

		kfree(obj->bit_17);
		i915_gem_object_free(obj);
	}
}

static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
{
	struct llist_node *freed;

	freed = llist_del_all(&i915->mm.free_list);
	if (unlikely(freed))
		__i915_gem_free_objects(i915, freed);
}

static void __i915_gem_free_work(struct work_struct *work)
{
	struct drm_i915_private *i915 =
		container_of(work, struct drm_i915_private, mm.free_work);
	struct llist_node *freed;
4464

4465 4466 4467 4468 4469 4470 4471
	/* All file-owned VMA should have been released by this point through
	 * i915_gem_close_object(), or earlier by i915_gem_context_close().
	 * However, the object may also be bound into the global GTT (e.g.
	 * older GPUs without per-process support, or for direct access through
	 * the GTT either for the user or for scanout). Those VMA still need to
	 * unbound now.
	 */
4472

4473
	while ((freed = llist_del_all(&i915->mm.free_list))) {
4474
		__i915_gem_free_objects(i915, freed);
4475 4476 4477
		if (need_resched())
			break;
	}
4478
}
4479

4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
static void __i915_gem_free_object_rcu(struct rcu_head *head)
{
	struct drm_i915_gem_object *obj =
		container_of(head, typeof(*obj), rcu);
	struct drm_i915_private *i915 = to_i915(obj->base.dev);

	/* We can't simply use call_rcu() from i915_gem_free_object()
	 * as we need to block whilst unbinding, and the call_rcu
	 * task may be called from softirq context. So we take a
	 * detour through a worker.
	 */
	if (llist_add(&obj->freed, &i915->mm.free_list))
		schedule_work(&i915->mm.free_work);
}
4494

4495 4496 4497
void i915_gem_free_object(struct drm_gem_object *gem_obj)
{
	struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
C
Chris Wilson 已提交
4498

4499 4500 4501
	if (obj->mm.quirked)
		__i915_gem_object_unpin_pages(obj);

4502
	if (discard_backing_storage(obj))
C
Chris Wilson 已提交
4503
		obj->mm.madv = I915_MADV_DONTNEED;
4504

4505 4506 4507 4508 4509 4510
	/* Before we free the object, make sure any pure RCU-only
	 * read-side critical sections are complete, e.g.
	 * i915_gem_busy_ioctl(). For the corresponding synchronized
	 * lookup see i915_gem_object_lookup_rcu().
	 */
	call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4511 4512
}

4513 4514 4515 4516
void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
{
	lockdep_assert_held(&obj->base.dev->struct_mutex);

4517 4518
	if (!i915_gem_object_has_active_reference(obj) &&
	    i915_gem_object_is_active(obj))
4519 4520 4521 4522 4523
		i915_gem_object_set_active_reference(obj);
	else
		i915_gem_object_put(obj);
}

4524 4525 4526 4527 4528 4529
static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, dev_priv, id)
4530 4531
		GEM_BUG_ON(engine->last_retired_context &&
			   !i915_gem_context_is_kernel(engine->last_retired_context));
4532 4533
}

4534 4535 4536 4537 4538 4539 4540 4541
void i915_gem_sanitize(struct drm_i915_private *i915)
{
	/*
	 * If we inherit context state from the BIOS or earlier occupants
	 * of the GPU, the GPU may be in an inconsistent state when we
	 * try to take over. The only way to remove the earlier state
	 * is by resetting. However, resetting on earlier gen is tricky as
	 * it may impact the display and we are uncertain about the stability
4542
	 * of the reset, so this could be applied to even earlier gen.
4543
	 */
4544
	if (INTEL_GEN(i915) >= 5) {
4545 4546 4547 4548 4549
		int reset = intel_gpu_reset(i915, ALL_ENGINES);
		WARN_ON(reset && reset != -ENODEV);
	}
}

4550
int i915_gem_suspend(struct drm_i915_private *dev_priv)
4551
{
4552
	struct drm_device *dev = &dev_priv->drm;
4553
	int ret;
4554

4555
	intel_runtime_pm_get(dev_priv);
4556 4557
	intel_suspend_gt_powersave(dev_priv);

4558
	mutex_lock(&dev->struct_mutex);
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569

	/* We have to flush all the executing contexts to main memory so
	 * that they can saved in the hibernation image. To ensure the last
	 * context image is coherent, we have to switch away from it. That
	 * leaves the dev_priv->kernel_context still active when
	 * we actually suspend, and its image in memory may not match the GPU
	 * state. Fortunately, the kernel_context is disposable and we do
	 * not rely on its state.
	 */
	ret = i915_gem_switch_to_kernel_context(dev_priv);
	if (ret)
4570
		goto err_unlock;
4571

4572 4573 4574
	ret = i915_gem_wait_for_idle(dev_priv,
				     I915_WAIT_INTERRUPTIBLE |
				     I915_WAIT_LOCKED);
4575
	if (ret)
4576
		goto err_unlock;
4577

4578
	assert_kernel_context_is_current(dev_priv);
4579
	i915_gem_contexts_lost(dev_priv);
4580 4581
	mutex_unlock(&dev->struct_mutex);

4582 4583
	intel_guc_suspend(dev_priv);

4584
	cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4585
	cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4586 4587 4588 4589 4590 4591 4592

	/* As the idle_work is rearming if it detects a race, play safe and
	 * repeat the flush until it is definitely idle.
	 */
	while (flush_delayed_work(&dev_priv->gt.idle_work))
		;

4593 4594 4595
	/* Assert that we sucessfully flushed all the work and
	 * reset the GPU back to its idle, low power state.
	 */
4596
	WARN_ON(dev_priv->gt.awake);
4597
	WARN_ON(!intel_engines_are_idle(dev_priv));
4598

4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
	/*
	 * Neither the BIOS, ourselves or any other kernel
	 * expects the system to be in execlists mode on startup,
	 * so we need to reset the GPU back to legacy mode. And the only
	 * known way to disable logical contexts is through a GPU reset.
	 *
	 * So in order to leave the system in a known default configuration,
	 * always reset the GPU upon unload and suspend. Afterwards we then
	 * clean up the GEM state tracking, flushing off the requests and
	 * leaving the system in a known idle state.
	 *
	 * Note that is of the upmost importance that the GPU is idle and
	 * all stray writes are flushed *before* we dismantle the backing
	 * storage for the pinned objects.
	 *
	 * However, since we are uncertain that resetting the GPU on older
	 * machines is a good idea, we don't - just in case it leaves the
	 * machine in an unusable condition.
	 */
4618
	i915_gem_sanitize(dev_priv);
4619
	goto out_rpm_put;
4620

4621
err_unlock:
4622
	mutex_unlock(&dev->struct_mutex);
4623 4624
out_rpm_put:
	intel_runtime_pm_put(dev_priv);
4625
	return ret;
4626 4627
}

4628
void i915_gem_resume(struct drm_i915_private *dev_priv)
4629
{
4630
	struct drm_device *dev = &dev_priv->drm;
4631

4632 4633
	WARN_ON(dev_priv->gt.awake);

4634
	mutex_lock(&dev->struct_mutex);
4635
	i915_gem_restore_gtt_mappings(dev_priv);
4636 4637 4638 4639 4640

	/* As we didn't flush the kernel context before suspend, we cannot
	 * guarantee that the context image is complete. So let's just reset
	 * it and start again.
	 */
4641
	dev_priv->gt.resume(dev_priv);
4642 4643 4644 4645

	mutex_unlock(&dev->struct_mutex);
}

4646
void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4647
{
4648
	if (INTEL_GEN(dev_priv) < 5 ||
4649 4650 4651 4652 4653 4654
	    dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
		return;

	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
				 DISP_TILE_SURFACE_SWIZZLING);

4655
	if (IS_GEN5(dev_priv))
4656 4657
		return;

4658
	I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4659
	if (IS_GEN6(dev_priv))
4660
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4661
	else if (IS_GEN7(dev_priv))
4662
		I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4663
	else if (IS_GEN8(dev_priv))
B
Ben Widawsky 已提交
4664
		I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4665 4666
	else
		BUG();
4667
}
D
Daniel Vetter 已提交
4668

4669
static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4670 4671 4672 4673 4674 4675 4676
{
	I915_WRITE(RING_CTL(base), 0);
	I915_WRITE(RING_HEAD(base), 0);
	I915_WRITE(RING_TAIL(base), 0);
	I915_WRITE(RING_START(base), 0);
}

4677
static void init_unused_rings(struct drm_i915_private *dev_priv)
4678
{
4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
	if (IS_I830(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
		init_unused_ring(dev_priv, SRB2_BASE);
		init_unused_ring(dev_priv, SRB3_BASE);
	} else if (IS_GEN2(dev_priv)) {
		init_unused_ring(dev_priv, SRB0_BASE);
		init_unused_ring(dev_priv, SRB1_BASE);
	} else if (IS_GEN3(dev_priv)) {
		init_unused_ring(dev_priv, PRB1_BASE);
		init_unused_ring(dev_priv, PRB2_BASE);
4691 4692 4693
	}
}

4694
static int __i915_gem_restart_engines(void *data)
4695
{
4696
	struct drm_i915_private *i915 = data;
4697
	struct intel_engine_cs *engine;
4698
	enum intel_engine_id id;
4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711
	int err;

	for_each_engine(engine, i915, id) {
		err = engine->init_hw(engine);
		if (err)
			return err;
	}

	return 0;
}

int i915_gem_init_hw(struct drm_i915_private *dev_priv)
{
C
Chris Wilson 已提交
4712
	int ret;
4713

4714 4715
	dev_priv->gt.last_init_time = ktime_get();

4716 4717 4718
	/* Double layer security blanket, see i915_gem_init() */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4719
	if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4720
		I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4721

4722
	if (IS_HASWELL(dev_priv))
4723
		I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4724
			   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4725

4726
	if (HAS_PCH_NOP(dev_priv)) {
4727
		if (IS_IVYBRIDGE(dev_priv)) {
4728 4729 4730
			u32 temp = I915_READ(GEN7_MSG_CTL);
			temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
			I915_WRITE(GEN7_MSG_CTL, temp);
4731
		} else if (INTEL_GEN(dev_priv) >= 7) {
4732 4733 4734 4735
			u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
			temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
			I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
		}
4736 4737
	}

4738
	i915_gem_init_swizzling(dev_priv);
4739

4740 4741 4742 4743 4744 4745
	/*
	 * At least 830 can leave some of the unused rings
	 * "active" (ie. head != tail) after resume which
	 * will prevent c3 entry. Makes sure all unused rings
	 * are totally idle.
	 */
4746
	init_unused_rings(dev_priv);
4747

4748
	BUG_ON(!dev_priv->kernel_context);
4749

4750
	ret = i915_ppgtt_init_hw(dev_priv);
4751 4752 4753 4754 4755 4756
	if (ret) {
		DRM_ERROR("PPGTT enable HW failed %d\n", ret);
		goto out;
	}

	/* Need to do basic initialisation of all rings first: */
4757 4758 4759
	ret = __i915_gem_restart_engines(dev_priv);
	if (ret)
		goto out;
4760

4761
	intel_mocs_init_l3cc_table(dev_priv);
4762

4763 4764 4765 4766
	/* We can't enable contexts until all firmware is loaded */
	ret = intel_uc_init_hw(dev_priv);
	if (ret)
		goto out;
4767

4768 4769
out:
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4770
	return ret;
4771 4772
}

4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
{
	if (INTEL_INFO(dev_priv)->gen < 6)
		return false;

	/* TODO: make semaphores and Execlists play nicely together */
	if (i915.enable_execlists)
		return false;

	if (value >= 0)
		return value;

	/* Enable semaphores on SNB when IO remapping is off */
4786
	if (IS_GEN6(dev_priv) && intel_vtd_active())
4787 4788 4789 4790 4791
		return false;

	return true;
}

4792
int i915_gem_init(struct drm_i915_private *dev_priv)
4793 4794 4795
{
	int ret;

4796
	mutex_lock(&dev_priv->drm.struct_mutex);
4797

4798
	dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4799

4800
	if (!i915.enable_execlists) {
4801
		dev_priv->gt.resume = intel_legacy_submission_resume;
4802
		dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4803
	} else {
4804
		dev_priv->gt.resume = intel_lr_context_resume;
4805
		dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4806 4807
	}

4808 4809 4810 4811 4812 4813 4814 4815
	/* This is just a security blanket to placate dragons.
	 * On some systems, we very sporadically observe that the first TLBs
	 * used by the CS may be stale, despite us poking the TLB reset. If
	 * we hold the forcewake during initialisation these problems
	 * just magically go away.
	 */
	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);

4816 4817 4818
	ret = i915_gem_init_userptr(dev_priv);
	if (ret)
		goto out_unlock;
4819 4820 4821 4822

	ret = i915_gem_init_ggtt(dev_priv);
	if (ret)
		goto out_unlock;
4823

4824
	ret = i915_gem_contexts_init(dev_priv);
4825 4826
	if (ret)
		goto out_unlock;
4827

4828
	ret = intel_engines_init(dev_priv);
D
Daniel Vetter 已提交
4829
	if (ret)
4830
		goto out_unlock;
4831

4832
	ret = i915_gem_init_hw(dev_priv);
4833
	if (ret == -EIO) {
4834
		/* Allow engine initialisation to fail by marking the GPU as
4835 4836 4837 4838
		 * wedged. But we only want to do this where the GPU is angry,
		 * for all other failure, such as an allocation failure, bail.
		 */
		DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4839
		i915_gem_set_wedged(dev_priv);
4840
		ret = 0;
4841
	}
4842 4843

out_unlock:
4844
	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4845
	mutex_unlock(&dev_priv->drm.struct_mutex);
4846

4847
	return ret;
4848 4849
}

4850 4851 4852 4853 4854
void i915_gem_init_mmio(struct drm_i915_private *i915)
{
	i915_gem_sanitize(i915);
}

4855
void
4856
i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4857
{
4858
	struct intel_engine_cs *engine;
4859
	enum intel_engine_id id;
4860

4861
	for_each_engine(engine, dev_priv, id)
4862
		dev_priv->gt.cleanup_engine(engine);
4863 4864
}

4865 4866 4867
void
i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
{
4868
	int i;
4869 4870 4871 4872

	if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
	    !IS_CHERRYVIEW(dev_priv))
		dev_priv->num_fence_regs = 32;
4873 4874 4875
	else if (INTEL_INFO(dev_priv)->gen >= 4 ||
		 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
		 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4876 4877 4878 4879
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4880
	if (intel_vgpu_active(dev_priv))
4881 4882 4883 4884
		dev_priv->num_fence_regs =
				I915_READ(vgtif_reg(avail_rs.fence_num));

	/* Initialize fence registers to zero */
4885 4886 4887 4888 4889 4890 4891
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];

		fence->i915 = dev_priv;
		fence->id = i;
		list_add_tail(&fence->link, &dev_priv->mm.fence_list);
	}
4892
	i915_gem_restore_fences(dev_priv);
4893

4894
	i915_gem_detect_bit_6_swizzle(dev_priv);
4895 4896
}

4897
int
4898
i915_gem_load_init(struct drm_i915_private *dev_priv)
4899
{
4900
	int err = -ENOMEM;
4901

4902 4903
	dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->objects)
4904 4905
		goto err_out;

4906 4907
	dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->vmas)
4908 4909
		goto err_objects;

4910 4911 4912 4913
	dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
	if (!dev_priv->luts)
		goto err_vmas;

4914 4915 4916
	dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
					SLAB_HWCACHE_ALIGN |
					SLAB_RECLAIM_ACCOUNT |
4917
					SLAB_TYPESAFE_BY_RCU);
4918
	if (!dev_priv->requests)
4919
		goto err_luts;
4920

4921 4922 4923 4924 4925 4926
	dev_priv->dependencies = KMEM_CACHE(i915_dependency,
					    SLAB_HWCACHE_ALIGN |
					    SLAB_RECLAIM_ACCOUNT);
	if (!dev_priv->dependencies)
		goto err_requests;

4927 4928 4929 4930
	dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
	if (!dev_priv->priorities)
		goto err_dependencies;

4931 4932
	mutex_lock(&dev_priv->drm.struct_mutex);
	INIT_LIST_HEAD(&dev_priv->gt.timelines);
4933
	err = i915_gem_timeline_init__global(dev_priv);
4934 4935
	mutex_unlock(&dev_priv->drm.struct_mutex);
	if (err)
4936
		goto err_priorities;
4937

4938 4939
	INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
	init_llist_head(&dev_priv->mm.free_list);
C
Chris Wilson 已提交
4940 4941
	INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
	INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4942
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4943
	INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4944
	INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4945
			  i915_gem_retire_work_handler);
4946
	INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4947
			  i915_gem_idle_work_handler);
4948
	init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4949
	init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4950

4951 4952
	atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);

4953
	spin_lock_init(&dev_priv->fb_tracking.lock);
4954 4955 4956

	return 0;

4957 4958
err_priorities:
	kmem_cache_destroy(dev_priv->priorities);
4959 4960
err_dependencies:
	kmem_cache_destroy(dev_priv->dependencies);
4961 4962
err_requests:
	kmem_cache_destroy(dev_priv->requests);
4963 4964
err_luts:
	kmem_cache_destroy(dev_priv->luts);
4965 4966 4967 4968 4969 4970
err_vmas:
	kmem_cache_destroy(dev_priv->vmas);
err_objects:
	kmem_cache_destroy(dev_priv->objects);
err_out:
	return err;
4971
}
4972

4973
void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4974
{
4975
	i915_gem_drain_freed_objects(dev_priv);
4976
	WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4977
	WARN_ON(dev_priv->mm.object_count);
4978

4979 4980 4981 4982 4983
	mutex_lock(&dev_priv->drm.struct_mutex);
	i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
	WARN_ON(!list_empty(&dev_priv->gt.timelines));
	mutex_unlock(&dev_priv->drm.struct_mutex);

4984
	kmem_cache_destroy(dev_priv->priorities);
4985
	kmem_cache_destroy(dev_priv->dependencies);
4986
	kmem_cache_destroy(dev_priv->requests);
4987
	kmem_cache_destroy(dev_priv->luts);
4988 4989
	kmem_cache_destroy(dev_priv->vmas);
	kmem_cache_destroy(dev_priv->objects);
4990 4991 4992

	/* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
	rcu_barrier();
4993 4994
}

4995 4996
int i915_gem_freeze(struct drm_i915_private *dev_priv)
{
4997 4998 4999
	/* Discard all purgeable objects, let userspace recover those as
	 * required after resuming.
	 */
5000 5001 5002 5003 5004
	i915_gem_shrink_all(dev_priv);

	return 0;
}

5005 5006 5007
int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
{
	struct drm_i915_gem_object *obj;
5008 5009 5010 5011 5012
	struct list_head *phases[] = {
		&dev_priv->mm.unbound_list,
		&dev_priv->mm.bound_list,
		NULL
	}, **p;
5013 5014 5015 5016 5017 5018 5019 5020 5021 5022

	/* Called just before we write the hibernation image.
	 *
	 * We need to update the domain tracking to reflect that the CPU
	 * will be accessing all the pages to create and restore from the
	 * hibernation, and so upon restoration those pages will be in the
	 * CPU domain.
	 *
	 * To make sure the hibernation image contains the latest state,
	 * we update that state just before writing out the image.
5023 5024
	 *
	 * To try and reduce the hibernation image, we manually shrink
5025
	 * the objects as well, see i915_gem_freeze()
5026 5027
	 */

5028
	i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5029
	i915_gem_drain_freed_objects(dev_priv);
5030

5031
	mutex_lock(&dev_priv->drm.struct_mutex);
5032
	for (p = phases; *p; p++) {
5033 5034
		list_for_each_entry(obj, *p, global_link)
			__start_cpu_write(obj);
5035
	}
5036
	mutex_unlock(&dev_priv->drm.struct_mutex);
5037 5038 5039 5040

	return 0;
}

5041
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5042
{
5043
	struct drm_i915_file_private *file_priv = file->driver_priv;
5044
	struct drm_i915_gem_request *request;
5045 5046 5047 5048 5049

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
5050
	spin_lock(&file_priv->mm.lock);
5051
	list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5052
		request->file_priv = NULL;
5053
	spin_unlock(&file_priv->mm.lock);
5054 5055
}

5056
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5057 5058
{
	struct drm_i915_file_private *file_priv;
5059
	int ret;
5060

5061
	DRM_DEBUG("\n");
5062 5063 5064 5065 5066 5067

	file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
	if (!file_priv)
		return -ENOMEM;

	file->driver_priv = file_priv;
5068
	file_priv->dev_priv = i915;
5069
	file_priv->file = file;
5070 5071 5072 5073

	spin_lock_init(&file_priv->mm.lock);
	INIT_LIST_HEAD(&file_priv->mm.request_list);

5074
	file_priv->bsd_engine = -1;
5075

5076
	ret = i915_gem_context_open(i915, file);
5077 5078
	if (ret)
		kfree(file_priv);
5079

5080
	return ret;
5081 5082
}

5083 5084
/**
 * i915_gem_track_fb - update frontbuffer tracking
5085 5086 5087
 * @old: current GEM buffer for the frontbuffer slots
 * @new: new GEM buffer for the frontbuffer slots
 * @frontbuffer_bits: bitmask of frontbuffer slots
5088 5089 5090 5091
 *
 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
 * from @old and setting them in @new. Both @old and @new can be NULL.
 */
5092 5093 5094 5095
void i915_gem_track_fb(struct drm_i915_gem_object *old,
		       struct drm_i915_gem_object *new,
		       unsigned frontbuffer_bits)
{
5096 5097 5098 5099 5100 5101 5102 5103 5104
	/* Control of individual bits within the mask are guarded by
	 * the owning plane->mutex, i.e. we can never see concurrent
	 * manipulation of individual bits. But since the bitfield as a whole
	 * is updated using RMW, we need to use atomics in order to update
	 * the bits.
	 */
	BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
		     sizeof(atomic_t) * BITS_PER_BYTE);

5105
	if (old) {
5106 5107
		WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
		atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5108 5109 5110
	}

	if (new) {
5111 5112
		WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
		atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5113 5114 5115
	}
}

5116 5117
/* Allocate a new GEM object and fill it with the supplied data */
struct drm_i915_gem_object *
5118
i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5119 5120 5121
			         const void *data, size_t size)
{
	struct drm_i915_gem_object *obj;
5122 5123 5124
	struct file *file;
	size_t offset;
	int err;
5125

5126
	obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5127
	if (IS_ERR(obj))
5128 5129
		return obj;

5130
	GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5131

5132 5133 5134 5135 5136 5137
	file = obj->base.filp;
	offset = 0;
	do {
		unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
		struct page *page;
		void *pgdata, *vaddr;
5138

5139 5140 5141 5142 5143
		err = pagecache_write_begin(file, file->f_mapping,
					    offset, len, 0,
					    &page, &pgdata);
		if (err < 0)
			goto fail;
5144

5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
		vaddr = kmap(page);
		memcpy(vaddr, data, len);
		kunmap(page);

		err = pagecache_write_end(file, file->f_mapping,
					  offset, len, len,
					  page, pgdata);
		if (err < 0)
			goto fail;

		size -= len;
		data += len;
		offset += len;
	} while (size);
5159 5160 5161 5162

	return obj;

fail:
5163
	i915_gem_object_put(obj);
5164
	return ERR_PTR(err);
5165
}
5166 5167 5168 5169 5170 5171

struct scatterlist *
i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
		       unsigned int n,
		       unsigned int *offset)
{
C
Chris Wilson 已提交
5172
	struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5173 5174 5175 5176 5177
	struct scatterlist *sg;
	unsigned int idx, count;

	might_sleep();
	GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
C
Chris Wilson 已提交
5178
	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302

	/* As we iterate forward through the sg, we record each entry in a
	 * radixtree for quick repeated (backwards) lookups. If we have seen
	 * this index previously, we will have an entry for it.
	 *
	 * Initial lookup is O(N), but this is amortized to O(1) for
	 * sequential page access (where each new request is consecutive
	 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
	 * i.e. O(1) with a large constant!
	 */
	if (n < READ_ONCE(iter->sg_idx))
		goto lookup;

	mutex_lock(&iter->lock);

	/* We prefer to reuse the last sg so that repeated lookup of this
	 * (or the subsequent) sg are fast - comparing against the last
	 * sg is faster than going through the radixtree.
	 */

	sg = iter->sg_pos;
	idx = iter->sg_idx;
	count = __sg_page_count(sg);

	while (idx + count <= n) {
		unsigned long exception, i;
		int ret;

		/* If we cannot allocate and insert this entry, or the
		 * individual pages from this range, cancel updating the
		 * sg_idx so that on this lookup we are forced to linearly
		 * scan onwards, but on future lookups we will try the
		 * insertion again (in which case we need to be careful of
		 * the error return reporting that we have already inserted
		 * this index).
		 */
		ret = radix_tree_insert(&iter->radix, idx, sg);
		if (ret && ret != -EEXIST)
			goto scan;

		exception =
			RADIX_TREE_EXCEPTIONAL_ENTRY |
			idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
		for (i = 1; i < count; i++) {
			ret = radix_tree_insert(&iter->radix, idx + i,
						(void *)exception);
			if (ret && ret != -EEXIST)
				goto scan;
		}

		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

scan:
	iter->sg_pos = sg;
	iter->sg_idx = idx;

	mutex_unlock(&iter->lock);

	if (unlikely(n < idx)) /* insertion completed by another thread */
		goto lookup;

	/* In case we failed to insert the entry into the radixtree, we need
	 * to look beyond the current sg.
	 */
	while (idx + count <= n) {
		idx += count;
		sg = ____sg_next(sg);
		count = __sg_page_count(sg);
	}

	*offset = n - idx;
	return sg;

lookup:
	rcu_read_lock();

	sg = radix_tree_lookup(&iter->radix, n);
	GEM_BUG_ON(!sg);

	/* If this index is in the middle of multi-page sg entry,
	 * the radixtree will contain an exceptional entry that points
	 * to the start of that range. We will return the pointer to
	 * the base page and the offset of this page within the
	 * sg entry's range.
	 */
	*offset = 0;
	if (unlikely(radix_tree_exception(sg))) {
		unsigned long base =
			(unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;

		sg = radix_tree_lookup(&iter->radix, base);
		GEM_BUG_ON(!sg);

		*offset = n - base;
	}

	rcu_read_unlock();

	return sg;
}

struct page *
i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
{
	struct scatterlist *sg;
	unsigned int offset;

	GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return nth_page(sg_page(sg), offset);
}

/* Like i915_gem_object_get_page(), but mark the returned page dirty */
struct page *
i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
			       unsigned int n)
{
	struct page *page;

	page = i915_gem_object_get_page(obj, n);
C
Chris Wilson 已提交
5303
	if (!obj->mm.dirty)
5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318
		set_page_dirty(page);

	return page;
}

dma_addr_t
i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
				unsigned long n)
{
	struct scatterlist *sg;
	unsigned int offset;

	sg = i915_gem_object_get_sg(obj, n, &offset);
	return sg_dma_address(sg) + (offset << PAGE_SHIFT);
}
5319

5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
	struct sg_table *pages;
	int err;

	if (align > obj->base.size)
		return -EINVAL;

	if (obj->ops == &i915_gem_phys_ops)
		return 0;

	if (obj->ops != &i915_gem_object_ops)
		return -EINVAL;

	err = i915_gem_object_unbind(obj);
	if (err)
		return err;

	mutex_lock(&obj->mm.lock);

	if (obj->mm.madv != I915_MADV_WILLNEED) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.quirked) {
		err = -EFAULT;
		goto err_unlock;
	}

	if (obj->mm.mapping) {
		err = -EBUSY;
		goto err_unlock;
	}

	pages = obj->mm.pages;
	obj->ops = &i915_gem_phys_ops;

5358
	err = ____i915_gem_object_get_pages(obj);
5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
	if (err)
		goto err_xfer;

	/* Perma-pin (until release) the physical set of pages */
	__i915_gem_object_pin_pages(obj);

	if (!IS_ERR_OR_NULL(pages))
		i915_gem_object_ops.put_pages(obj, pages);
	mutex_unlock(&obj->mm.lock);
	return 0;

err_xfer:
	obj->ops = &i915_gem_object_ops;
	obj->mm.pages = pages;
err_unlock:
	mutex_unlock(&obj->mm.lock);
	return err;
}

5378 5379
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/scatterlist.c"
5380
#include "selftests/mock_gem_device.c"
5381
#include "selftests/huge_gem_object.c"
5382
#include "selftests/i915_gem_object.c"
5383
#include "selftests/i915_gem_coherency.c"
5384
#endif