intel_engine_cs.c 56.4 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8
#include "gem/i915_gem_context.h"
9
#include "gem/i915_gem_internal.h"
10
#include "gt/intel_gt_regs.h"
11

12
#include "i915_cmd_parser.h"
13
#include "i915_drv.h"
14
#include "intel_breadcrumbs.h"
15
#include "intel_context.h"
16
#include "intel_engine.h"
17
#include "intel_engine_pm.h"
18
#include "intel_engine_regs.h"
19
#include "intel_engine_user.h"
20
#include "intel_execlists_submission.h"
21 22
#include "intel_gt.h"
#include "intel_gt_requests.h"
23
#include "intel_gt_pm.h"
24
#include "intel_lrc.h"
25
#include "intel_lrc_reg.h"
26
#include "intel_reset.h"
27
#include "intel_ring.h"
28
#include "uc/intel_guc_submission.h"
29

30 31 32 33 34 35 36 37 38
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

39
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
40 41
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
42
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
43 44 45

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

46
#define MAX_MMIO_BASES 3
47
struct engine_info {
48 49
	u8 class;
	u8 instance;
50
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
51
	struct engine_mmio_base {
52
		u32 graphics_ver : 8;
53 54
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
55 56 57
};

static const struct engine_info intel_engines[] = {
58
	[RCS0] = {
59 60
		.class = RENDER_CLASS,
		.instance = 0,
61
		.mmio_bases = {
62
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
63
		},
64
	},
65
	[BCS0] = {
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72
	[VCS0] = {
73 74
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
75
		.mmio_bases = {
76 77 78
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
79
		},
80
	},
81
	[VCS1] = {
82 83
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
84
		.mmio_bases = {
85 86
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
87
		},
88
	},
89
	[VCS2] = {
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
92
		.mmio_bases = {
93
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
94
		},
95
	},
96
	[VCS3] = {
97 98
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
99
		.mmio_bases = {
100
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
101
		},
102
	},
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
131
	[VECS0] = {
132 133
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
134
		.mmio_bases = {
135 136
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
137
		},
138
	},
139
	[VECS1] = {
140 141
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
142
		.mmio_bases = {
143
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
144
		},
145
	},
146 147 148 149 150 151 152 153 154 155 156 157 158 159
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	[CCS0] = {
		.class = COMPUTE_CLASS,
		.instance = 0,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
		}
	},
	[CCS1] = {
		.class = COMPUTE_CLASS,
		.instance = 1,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
		}
	},
	[CCS2] = {
		.class = COMPUTE_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
		}
	},
	[CCS3] = {
		.class = COMPUTE_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
		}
	},
188 189
};

190
/**
191
 * intel_engine_context_size() - return the size of the context for an engine
192
 * @gt: the gt
193 194 195 196 197 198 199 200 201 202 203
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
204
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
205
{
206
	struct intel_uncore *uncore = gt->uncore;
207 208 209 210 211
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
212 213
	case COMPUTE_CLASS:
		fallthrough;
214
	case RENDER_CLASS:
215
		switch (GRAPHICS_VER(gt->i915)) {
216
		default:
217
			MISSING_CASE(GRAPHICS_VER(gt->i915));
218
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
219
		case 12:
220 221
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
222 223 224
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
225
			return GEN8_LR_CONTEXT_RENDER_SIZE;
226
		case 7:
227
			if (IS_HASWELL(gt->i915))
228 229
				return HSW_CXT_TOTAL_SIZE;

230
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
231 232 233
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
234
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
235 236 237
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
238
		case 4:
239 240 241 242 243 244 245 246 247 248
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
249
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
250
			drm_dbg(&gt->i915->drm,
251 252
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
253
				cxt_size - 1);
254
			return round_up(cxt_size * 64, PAGE_SIZE);
255 256 257 258 259 260 261 262 263
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
264
		fallthrough;
265 266 267
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
268
		if (GRAPHICS_VER(gt->i915) < 8)
269 270 271 272 273
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

274 275 276 277 278 279
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
280
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
281 282 283 284 285 286 287 288
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

289
static void __sprint_engine_name(struct intel_engine_cs *engine)
290
{
291 292 293 294 295 296 297 298
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
299 300
}

301 302 303 304 305 306
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
307
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
308 309
		return;

310
	if (GRAPHICS_VER(engine->i915) >= 3)
311
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
312
	else
313
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
314 315 316 317 318 319 320 321
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

322 323 324 325 326
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
{
	u32 reset_domain;

	if (ver >= 11) {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN11_GRDOM_RENDER,
			[BCS0]  = GEN11_GRDOM_BLT,
			[VCS0]  = GEN11_GRDOM_MEDIA,
			[VCS1]  = GEN11_GRDOM_MEDIA2,
			[VCS2]  = GEN11_GRDOM_MEDIA3,
			[VCS3]  = GEN11_GRDOM_MEDIA4,
			[VCS4]  = GEN11_GRDOM_MEDIA5,
			[VCS5]  = GEN11_GRDOM_MEDIA6,
			[VCS6]  = GEN11_GRDOM_MEDIA7,
			[VCS7]  = GEN11_GRDOM_MEDIA8,
			[VECS0] = GEN11_GRDOM_VECS,
			[VECS1] = GEN11_GRDOM_VECS2,
			[VECS2] = GEN11_GRDOM_VECS3,
			[VECS3] = GEN11_GRDOM_VECS4,
347 348 349 350
			[CCS0]  = GEN11_GRDOM_RENDER,
			[CCS1]  = GEN11_GRDOM_RENDER,
			[CCS2]  = GEN11_GRDOM_RENDER,
			[CCS3]  = GEN11_GRDOM_RENDER,
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		reset_domain = engine_reset_domains[id];
	} else {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN6_GRDOM_RENDER,
			[BCS0]  = GEN6_GRDOM_BLT,
			[VCS0]  = GEN6_GRDOM_MEDIA,
			[VCS1]  = GEN8_GRDOM_MEDIA2,
			[VECS0] = GEN6_GRDOM_VECS,
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		reset_domain = engine_reset_domains[id];
	}

	return reset_domain;
}

371 372
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
			      u8 logical_instance)
373 374
{
	const struct engine_info *info = &intel_engines[id];
375
	struct drm_i915_private *i915 = gt->i915;
376
	struct intel_engine_cs *engine;
377
	u8 guc_class;
378

379 380
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
381 382
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
383

384 385 386
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

387
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
388 389
		return -EINVAL;

390
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
391 392
		return -EINVAL;

393
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
394 395
		return -EINVAL;

396 397 398
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
399

400 401
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

402
	INIT_LIST_HEAD(&engine->pinned_contexts_list);
403
	engine->id = id;
404
	engine->legacy_idx = INVALID_ENGINE;
405
	engine->mask = BIT(id);
406 407
	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
						id);
408
	engine->i915 = i915;
409 410
	engine->gt = gt;
	engine->uncore = gt->uncore;
411 412 413
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
414

415 416
	engine->irq_handler = nop_irq_handler;

417 418
	engine->class = info->class;
	engine->instance = info->instance;
419
	engine->logical_mask = BIT(logical_instance);
420
	__sprint_engine_name(engine);
421

422 423
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
424 425
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
426 427
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
428 429
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
430 431
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
432

433
	/* Override to uninterruptible for OpenCL workloads. */
434
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
435 436
		engine->props.preempt_timeout_ms = 0;

437
	/* features common between engines sharing EUs */
438
	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
439
		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
440 441
		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
	}
442

443 444
	engine->defaults = engine->props; /* never to change again */

445
	engine->context_size = intel_engine_context_size(gt, engine->class);
446 447
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
448
	if (engine->context_size)
449
		DRIVER_CAPS(i915)->has_logical_contexts = true;
450

451
	ewma__engine_latency_init(&engine->latency);
452
	seqcount_init(&engine->stats.execlists.lock);
453

454 455
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

456 457 458
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

459
	gt->engine_class[info->class][info->instance] = engine;
460
	gt->engine[id] = engine;
461

462
	return 0;
463 464
}

465 466 467 468 469 470 471 472 473
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
474 475
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
476 477 478 479 480 481 482
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
483
		if ((GRAPHICS_VER(i915) >= 11 &&
484 485
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
486
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
487 488 489
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
490 491
		if (GRAPHICS_VER(i915) >= 9 &&
		    engine->gt->info.sfc_mask & BIT(engine->instance))
492 493 494 495 496
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

497
static void intel_setup_engine_capabilities(struct intel_gt *gt)
498 499 500 501
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

502
	for_each_engine(engine, gt, id)
503 504 505
		__setup_engine_capabilities(engine);
}

506
/**
507
 * intel_engines_release() - free the resources allocated for Command Streamers
508
 * @gt: pointer to struct intel_gt
509
 */
510
void intel_engines_release(struct intel_gt *gt)
511 512 513 514
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

515 516 517 518 519 520 521 522 523 524 525 526 527
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

528
	/* Decouple the backend; but keep the layout for late GPU resets */
529
	for_each_engine(engine, gt, id) {
530 531 532
		if (!engine->release)
			continue;

533 534 535
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

536 537 538 539
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
540 541 542
	}
}

543 544 545 546 547 548 549 550
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

551 552 553 554 555
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

556 557 558
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

559
	for_each_engine(engine, gt, id) {
560
		intel_engine_free_request_pool(engine);
561 562 563 564 565
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

566
static
567
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
568 569 570
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
571 572
	struct drm_i915_private *i915 = gt->i915;

573 574 575 576 577 578
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
579 580 581
	 *
	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
	 * in the fuse register that tells us whether a specific SFC is present.
582
	 */
583 584 585
	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
		return false;
	else if (GRAPHICS_VER(i915) == 12)
586 587 588 589 590 591 592 593 594
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617
static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
	struct intel_gt_info *info = &gt->info;
	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
	unsigned long ccs_mask;
	unsigned int i;

	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		return;

	ccs_mask = intel_slicemask_from_dssmask(intel_sseu_get_compute_subslices(&info->sseu),
						ss_per_ccs);
	/*
	 * If all DSS in a quadrant are fused off, the corresponding CCS
	 * engine is not available for use.
	 */
	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
		info->engine_mask &= ~BIT(_CCS(i));
		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
	}
}

618 619 620 621 622 623 624 625 626 627 628 629 630
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
631
	struct intel_gt_info *info = &gt->info;
632 633 634
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
635
	u32 media_fuse, fuse1;
636 637 638
	u16 vdbox_mask;
	u16 vebox_mask;

639 640
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

641
	if (GRAPHICS_VER(i915) < 11)
642 643
		return info->engine_mask;

644 645 646 647 648 649 650 651
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
652 653 654 655 656

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

657 658 659 660 661 662 663
	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
	} else {
		gt->info.sfc_mask = ~0;
	}

664 665 666 667 668 669 670 671 672 673 674 675
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

676
		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
677
			gt->info.vdbox_sfc_access |= BIT(i);
678
		logical_vdbox++;
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

699 700
	engine_mask_apply_compute_fuses(gt);

701 702 703
	return info->engine_mask;
}

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
				 u8 class, const u8 *map, u8 num_instances)
{
	int i, j;
	u8 current_logical_id = 0;

	for (j = 0; j < num_instances; ++j) {
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			if (!HAS_ENGINE(gt, i) ||
			    intel_engines[i].class != class)
				continue;

			if (intel_engines[i].instance == map[j]) {
				logical_ids[intel_engines[i].instance] =
					current_logical_id++;
				break;
			}
		}
	}
}

static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
{
	int i;
	u8 map[MAX_ENGINE_INSTANCE + 1];

	for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
		map[i] = i;
	populate_logical_ids(gt, logical_ids, class, map, ARRAY_SIZE(map));
}

735
/**
736
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
737
 * @gt: pointer to struct intel_gt
738 739 740
 *
 * Return: non-zero if the initialization failed.
 */
741
int intel_engines_init_mmio(struct intel_gt *gt)
742
{
743
	struct drm_i915_private *i915 = gt->i915;
744
	const unsigned int engine_mask = init_engine_mask(gt);
745
	unsigned int mask = 0;
746 747
	unsigned int i, class;
	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
748
	int err;
749

750 751 752
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
753

754
	if (i915_inject_probe_failure(i915))
755 756
		return -ENODEV;

757 758
	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
		setup_logical_ids(gt, logical_ids, class);
759

760 761
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			u8 instance = intel_engines[i].instance;
762

763 764 765 766 767 768 769 770 771 772 773
			if (intel_engines[i].class != class ||
			    !HAS_ENGINE(gt, i))
				continue;

			err = intel_engine_setup(gt, i,
						 logical_ids[instance]);
			if (err)
				goto cleanup;

			mask |= BIT(i);
		}
774 775 776 777 778 779 780
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
781
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
782
		gt->info.engine_mask = mask;
783

784
	gt->info.num_engines = hweight32(mask);
785

786
	intel_gt_check_and_clear_faults(gt);
787

788
	intel_setup_engine_capabilities(gt);
789

790 791
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

792 793 794
	return 0;

cleanup:
795
	intel_engines_free(gt);
796 797 798
	return err;
}

799
void intel_engine_init_execlists(struct intel_engine_cs *engine)
800 801 802
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

803
	execlists->port_mask = 1;
804
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
805 806
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

807 808 809
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
810 811
}

812
static void cleanup_status_page(struct intel_engine_cs *engine)
813
{
814 815
	struct i915_vma *vma;

816 817 818
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

819 820 821
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
822

823 824 825 826
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
827
	i915_gem_object_put(vma->obj);
828 829 830
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
831
				struct i915_gem_ww_ctx *ww,
832 833 834 835
				struct i915_vma *vma)
{
	unsigned int flags;

836
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
837 838 839 840 841 842 843 844 845 846 847
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
848
		flags = PIN_MAPPABLE;
849
	else
850
		flags = PIN_HIGH;
851

852
	return i915_ggtt_pin(vma, ww, 0, flags);
853 854 855 856 857
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
858
	struct i915_gem_ww_ctx ww;
859 860 861 862
	struct i915_vma *vma;
	void *vaddr;
	int ret;

863 864
	INIT_LIST_HEAD(&engine->status_page.timelines);

865 866 867 868 869 870 871
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
872 873
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
874 875
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
876 877 878
		return PTR_ERR(obj);
	}

879
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
880

881
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
882 883
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
884
		goto err_put;
885 886
	}

887 888 889 890 891 892 893 894
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

895 896 897
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
898
		goto err_unpin;
899 900
	}

901
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
902
	engine->status_page.vma = vma;
903

904
err_unpin:
905 906
	if (ret)
		i915_vma_unpin(vma);
907
err:
908 909 910 911 912 913 914 915 916
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
917 918 919
	return ret;
}

920
static int engine_setup_common(struct intel_engine_cs *engine)
921 922 923
{
	int err;

924 925
	init_llist_head(&engine->barrier_tasks);

926 927 928 929
	err = init_status_page(engine);
	if (err)
		return err;

930 931 932 933 934 935
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

936 937 938 939 940
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
941
	engine->sched_engine->private_data = engine;
942

943 944 945 946
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

947 948
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
949
	intel_engine_init_retire(engine);
950

951 952
	/* Use the whole device by default */
	engine->sseu =
953
		intel_sseu_from_device_info(&engine->gt->info.sseu);
954

955 956 957 958
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

959
	if (GRAPHICS_VER(engine->i915) >= 12)
960 961
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

962
	return 0;
963

964
err_cmd_parser:
965 966
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
967
	intel_breadcrumbs_put(engine->breadcrumbs);
968 969 970
err_status:
	cleanup_status_page(engine);
	return err;
971 972
}

973 974 975
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
976
	u32 cs[2048];
977 978
};

979
static int measure_breadcrumb_dw(struct intel_context *ce)
980
{
981
	struct intel_engine_cs *engine = ce->engine;
982
	struct measure_breadcrumb *frame;
983
	int dw;
984

985
	GEM_BUG_ON(!engine->gt->scratch);
986 987 988 989 990

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

991 992 993
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
994
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
995

996 997
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
998 999
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1000 1001 1002
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
1003

1004
	mutex_lock(&ce->timeline->mutex);
1005
	spin_lock_irq(&engine->sched_engine->lock);
1006

1007
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1008

1009
	spin_unlock_irq(&engine->sched_engine->lock);
1010
	mutex_unlock(&ce->timeline->mutex);
1011

1012
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1013

1014
	kfree(frame);
1015 1016 1017
	return dw;
}

1018 1019 1020 1021 1022 1023 1024
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
1025 1026 1027 1028
{
	struct intel_context *ce;
	int err;

1029
	ce = intel_context_create(engine);
1030 1031 1032
	if (IS_ERR(ce))
		return ce;

1033
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1034
	ce->timeline = page_pack_bits(NULL, hwsp);
1035 1036
	ce->ring = NULL;
	ce->ring_size = ring_size;
1037 1038 1039

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
1040

1041
	err = intel_context_pin(ce); /* perma-pin so it is always available */
1042 1043 1044 1045 1046
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

1047 1048
	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);

1049 1050 1051 1052 1053 1054
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
1055
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1056

1057 1058 1059
	return ce;
}

1060
void intel_engine_destroy_pinned_context(struct intel_context *ce)
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

1071
	list_del(&ce->pinned_contexts_link);
1072 1073 1074 1075
	intel_context_unpin(ce);
	intel_context_put(ce);
}

1076 1077 1078 1079 1080
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

1081 1082 1083
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
1084 1085
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
1097
static int engine_init_common(struct intel_engine_cs *engine)
1098
{
1099
	struct intel_context *ce;
1100 1101
	int ret;

1102 1103
	engine->set_default_submission(engine);

1104 1105
	/*
	 * We may need to do things with the shrinker which
1106 1107 1108 1109 1110 1111
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
1112 1113 1114 1115
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

1116 1117 1118 1119 1120
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
1121
	engine->kernel_context = ce;
1122

1123
	return 0;
1124 1125

err_context:
1126
	intel_engine_destroy_pinned_context(ce);
1127
	return ret;
1128
}
1129

1130 1131 1132 1133 1134 1135 1136
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

1137 1138
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
1139
		setup = intel_guc_submission_setup;
1140 1141
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
1142
		setup = intel_execlists_submission_setup;
1143 1144
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
1145
		setup = intel_ring_submission_setup;
1146
	}
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

1167 1168 1169 1170 1171 1172 1173 1174 1175
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1176
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1177

1178
	i915_sched_engine_put(engine->sched_engine);
1179
	intel_breadcrumbs_put(engine->breadcrumbs);
1180

1181
	intel_engine_fini_retire(engine);
1182
	intel_engine_cleanup_cmd_parser(engine);
1183

1184
	if (engine->default_state)
1185
		fput(engine->default_state);
1186

1187
	if (engine->kernel_context)
1188
		intel_engine_destroy_pinned_context(engine->kernel_context);
1189

1190
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1191
	cleanup_status_page(engine);
1192

1193
	intel_wa_list_free(&engine->ctx_wa_list);
1194
	intel_wa_list_free(&engine->wa_list);
1195
	intel_wa_list_free(&engine->whitelist);
1196
}
1197

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1212
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1213
{
1214 1215
	struct drm_i915_private *i915 = engine->i915;

1216 1217
	u64 acthd;

1218
	if (GRAPHICS_VER(i915) >= 8)
1219
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1220
	else if (GRAPHICS_VER(i915) >= 4)
1221
		acthd = ENGINE_READ(engine, RING_ACTHD);
1222
	else
1223
		acthd = ENGINE_READ(engine, ACTHD);
1224 1225 1226 1227

	return acthd;
}

1228
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1229 1230 1231
{
	u64 bbaddr;

1232
	if (GRAPHICS_VER(engine->i915) >= 8)
1233
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1234
	else
1235
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1236 1237 1238

	return bbaddr;
}
1239

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1255 1256 1257
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1258
{
1259
	struct intel_uncore *uncore = engine->uncore;
1260
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1261 1262
	int err;

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1279
	if (GRAPHICS_VER(engine->i915) < 3)
1280 1281
		return -ENODEV;

1282
	ENGINE_TRACE(engine, "\n");
1283
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1297 1298 1299 1300 1301
	}

	return err;
}

1302 1303
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1304
	ENGINE_TRACE(engine, "\n");
1305

1306
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1307 1308
}

1309
static u32
1310 1311
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1312
{
1313 1314
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1315 1316 1317
}

/* NB: please notice the memset */
1318
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1319 1320
			       struct intel_instdone *instdone)
{
1321
	struct drm_i915_private *i915 = engine->i915;
1322
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1323
	struct intel_uncore *uncore = engine->uncore;
1324 1325 1326
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1327
	int iter;
1328 1329 1330

	memset(instdone, 0, sizeof(*instdone));

1331
	if (GRAPHICS_VER(i915) >= 8) {
1332 1333
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1334

1335
		if (engine->id != RCS0)
1336
			return;
1337

1338 1339
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1340
		if (GRAPHICS_VER(i915) >= 12) {
1341 1342 1343 1344 1345
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1365
		}
1366 1367 1368 1369 1370 1371 1372

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1373
	} else if (GRAPHICS_VER(i915) >= 7) {
1374 1375
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1376

1377
		if (engine->id != RCS0)
1378
			return;
1379

1380 1381 1382 1383 1384 1385
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1386
	} else if (GRAPHICS_VER(i915) >= 4) {
1387 1388
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1389
		if (engine->id == RCS0)
1390
			/* HACK: Using the wrong struct member */
1391 1392
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1393
	} else {
1394
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1395 1396
	}
}
1397

1398 1399 1400 1401
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1402 1403 1404
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1405
	if (!intel_engine_pm_get_if_awake(engine))
1406
		return true;
1407

1408
	/* First check that no commands are left in the ring */
1409 1410
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1411
		idle = false;
1412

1413
	/* No bit for gen2, so assume the CS parser is idle */
1414
	if (GRAPHICS_VER(engine->i915) > 2 &&
1415
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1416 1417
		idle = false;

1418
	intel_engine_pm_put(engine);
1419 1420 1421 1422

	return idle;
}

1423
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1424
{
1425
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1426

1427
	if (!t->callback)
1428 1429
		return;

1430 1431 1432 1433
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1434
			t->callback(t);
1435
		tasklet_unlock(t);
1436
	}
1437
	local_bh_enable();
1438 1439 1440 1441

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1442 1443
}

1444 1445 1446 1447 1448 1449 1450 1451 1452
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1453
	/* More white lies, if wedged, hw state is inconsistent */
1454
	if (intel_gt_is_wedged(engine->gt))
1455 1456
		return true;

1457
	if (!intel_engine_pm_is_awake(engine))
1458 1459
		return true;

1460
	/* Waiting to drain ELSP? */
1461
	intel_synchronize_hardirq(engine->i915);
1462
	intel_engine_flush_submission(engine);
1463

1464
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1465
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1466 1467
		return false;

1468
	/* Ring stopped? */
1469
	return ring_is_idle(engine);
1470 1471
}

1472
bool intel_engines_are_idle(struct intel_gt *gt)
1473 1474 1475 1476
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1477 1478
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1479 1480
	 * report that it is still busy, even though we have stopped using it.
	 */
1481
	if (intel_gt_is_wedged(gt))
1482 1483
		return true;

1484
	/* Already parked (and passed an idleness test); must still be idle */
1485
	if (!READ_ONCE(gt->awake))
1486 1487
		return true;

1488
	for_each_engine(engine, gt, id) {
1489 1490 1491 1492 1493 1494 1495
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1520
void intel_engines_reset_default_submission(struct intel_gt *gt)
1521 1522 1523 1524
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1525 1526 1527 1528
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1529
		engine->set_default_submission(engine);
1530
	}
1531 1532
}

1533 1534
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1535
	switch (GRAPHICS_VER(engine->i915)) {
1536 1537 1538 1539 1540
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1541 1542
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1543 1544 1545 1546 1547 1548 1549
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1550 1551 1552 1553 1554
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1555
	 * Even though we are holding the engine->sched_engine->lock here, there
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1615
		drm_printf(m, "[%04zx] %s\n", pos, line);
1616 1617 1618 1619 1620 1621

		prev = buf + pos;
		skip = false;
	}
}

1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1633
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1634
					 struct drm_printer *m)
1635 1636
{
	struct drm_i915_private *dev_priv = engine->i915;
1637
	struct intel_engine_execlists * const execlists = &engine->execlists;
1638 1639
	u64 addr;

1640
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1641
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1642 1643 1644 1645 1646 1647
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1648
	drm_printf(m, "\tRING_START: 0x%08x\n",
1649
		   ENGINE_READ(engine, RING_START));
1650
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1651
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1652
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1653
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1654
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1655 1656
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1657
	if (GRAPHICS_VER(engine->i915) > 2) {
1658
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1659 1660
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1661
	}
1662

1663
	if (GRAPHICS_VER(dev_priv) >= 6) {
1664
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1665
			   ENGINE_READ(engine, RING_IMR));
1666 1667 1668 1669 1670 1671
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1672 1673
	}

1674 1675 1676 1677 1678 1679
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1680
	if (GRAPHICS_VER(dev_priv) >= 8)
1681
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1682
	else if (GRAPHICS_VER(dev_priv) >= 4)
1683
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1684
	else
1685
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1686 1687
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1688
	if (GRAPHICS_VER(dev_priv) >= 4) {
1689
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1690
			   ENGINE_READ(engine, RING_IPEIR));
1691
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1692
			   ENGINE_READ(engine, RING_IPEHR));
1693
	} else {
1694 1695
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1696
	}
1697

1698
	if (intel_engine_uses_guc(engine)) {
1699 1700
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1701
		struct i915_request * const *port, *rq;
1702 1703
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1704
		const u8 num_entries = execlists->csb_size;
1705
		unsigned int idx;
1706
		u8 read, write;
1707

1708
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1709
			   yesno(test_bit(TASKLET_STATE_SCHED,
1710 1711
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1712
			   repr_timer(&engine->execlists.preempt),
1713
			   repr_timer(&engine->execlists.timer));
1714

1715 1716 1717
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1718 1719 1720 1721 1722
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1723
		if (read >= num_entries)
1724
			read = 0;
1725
		if (write >= num_entries)
1726 1727
			write = 0;
		if (read > write)
1728
			write += num_entries;
1729
		while (read < write) {
1730 1731 1732
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1733 1734
		}

1735
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1736
		rcu_read_lock();
1737
		for (port = execlists->active; (rq = *port); port++) {
1738
			char hdr[160];
1739 1740
			int len;

1741
			len = scnprintf(hdr, sizeof(hdr),
1742
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1743
					(int)(port - execlists->active),
1744 1745 1746
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1747
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1748
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1749
			i915_request_show(m, rq, hdr, 0);
1750 1751
		}
		for (port = execlists->pending; (rq = *port); port++) {
1752 1753
			char hdr[160];
			int len;
1754

1755
			len = scnprintf(hdr, sizeof(hdr),
1756
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1757
					(int)(port - execlists->pending),
1758 1759 1760
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1761 1762
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1763
			i915_request_show(m, rq, hdr, 0);
1764
		}
1765
		rcu_read_unlock();
1766
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1767
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1768
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1769
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1770
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1771
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1772
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1773
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1774
	}
1775 1776
}

1777 1778
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
1779
	struct i915_vma_resource *vma_res = rq->batch_res;
1780 1781 1782 1783 1784 1785
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
1786 1787
		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1949 1950 1951 1952 1953
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1954
	struct i915_request *rq;
1955
	intel_wakeref_t wakeref;
1956
	unsigned long flags;
1957
	ktime_t dummy;
1958 1959 1960 1961 1962 1963 1964 1965 1966

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1967
	if (intel_gt_is_wedged(engine->gt))
1968 1969
		drm_printf(m, "*** WEDGED ***\n");

1970
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1971 1972
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1973 1974
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1975 1976 1977 1978
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1979
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1980
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1981 1982 1983 1984 1985 1986 1987

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1988 1989 1990
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1991
	print_properties(engine, m);
1992

1993
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1994
	engine_dump_active_requests(engine, m);
1995

1996 1997 1998
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1999

2000
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2001
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2002
	if (wakeref) {
2003
		intel_engine_print_registers(engine, m);
2004
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2005 2006 2007
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
2008

C
Chris Wilson 已提交
2009
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2010

2011
	drm_printf(m, "HWSP:\n");
2012
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2013

2014
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
2015 2016

	intel_engine_print_breadcrumbs(engine, m);
2017 2018
}

2019 2020 2021
/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
2022
 * @now: monotonic timestamp of sampling
2023 2024 2025
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
2026
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2027
{
2028
	return engine->busyness(engine, now);
2029 2030
}

2031 2032
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
2033
			    unsigned int count, unsigned long flags)
2034 2035 2036 2037
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

2038
	if (count == 1 && !(flags & FORCE_VIRTUAL))
2039 2040 2041
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2042
	return siblings[0]->cops->create_virtual(siblings, count, flags);
2043 2044
}

2045
struct i915_request *
2046
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2047 2048 2049
{
	struct i915_request *request, *active = NULL;

2050 2051 2052 2053 2054 2055 2056
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
2068
	lockdep_assert_held(&engine->sched_engine->lock);
2069 2070 2071 2072 2073 2074 2075

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2076
			if (__i915_request_is_complete(request))
2077 2078 2079 2080 2081 2082 2083 2084 2085
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

2086 2087
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
2088
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2089
			continue;
2090 2091 2092 2093 2094 2095 2096 2097

		active = request;
		break;
	}

	return active;
}

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
{
	/*
	 * If there are any non-fused-off CCS engines, we need to enable CCS
	 * support in the RCU_MODE register.  This only needs to be done once,
	 * so for simplicity we'll take care of this in the RCS engine's
	 * resume handler; since the RCS and all CCS engines belong to the
	 * same reset domain and are reset together, this will also take care
	 * of re-applying the setting after i915-triggered resets.
	 */
	if (!CCS_MASK(engine->gt))
		return;

	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
}

2115
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2116
#include "mock_engine.c"
2117
#include "selftest_engine.c"
2118
#include "selftest_engine_cs.c"
2119
#endif