intel_engine_cs.c 55.1 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8
#include "gem/i915_gem_context.h"
9
#include "gem/i915_gem_internal.h"
10
#include "gt/intel_gt_regs.h"
11

12
#include "i915_cmd_parser.h"
13
#include "i915_drv.h"
14
#include "intel_breadcrumbs.h"
15
#include "intel_context.h"
16
#include "intel_engine.h"
17
#include "intel_engine_pm.h"
18
#include "intel_engine_regs.h"
19
#include "intel_engine_user.h"
20
#include "intel_execlists_submission.h"
21 22
#include "intel_gt.h"
#include "intel_gt_requests.h"
23
#include "intel_gt_pm.h"
24
#include "intel_lrc.h"
25
#include "intel_lrc_reg.h"
26
#include "intel_reset.h"
27
#include "intel_ring.h"
28
#include "uc/intel_guc_submission.h"
29

30 31 32 33 34 35 36 37 38
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

39
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
40 41
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
42
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
43 44 45

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

46
#define MAX_MMIO_BASES 3
47
struct engine_info {
48 49
	u8 class;
	u8 instance;
50
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
51
	struct engine_mmio_base {
52
		u32 graphics_ver : 8;
53 54
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
55 56 57
};

static const struct engine_info intel_engines[] = {
58
	[RCS0] = {
59 60
		.class = RENDER_CLASS,
		.instance = 0,
61
		.mmio_bases = {
62
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
63
		},
64
	},
65
	[BCS0] = {
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72
	[VCS0] = {
73 74
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
75
		.mmio_bases = {
76 77 78
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
79
		},
80
	},
81
	[VCS1] = {
82 83
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
84
		.mmio_bases = {
85 86
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
87
		},
88
	},
89
	[VCS2] = {
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
92
		.mmio_bases = {
93
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
94
		},
95
	},
96
	[VCS3] = {
97 98
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
99
		.mmio_bases = {
100
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
101
		},
102
	},
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
131
	[VECS0] = {
132 133
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
134
		.mmio_bases = {
135 136
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
137
		},
138
	},
139
	[VECS1] = {
140 141
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
142
		.mmio_bases = {
143
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
144
		},
145
	},
146 147 148 149 150 151 152 153 154 155 156 157 158 159
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
	[CCS0] = {
		.class = COMPUTE_CLASS,
		.instance = 0,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
		}
	},
	[CCS1] = {
		.class = COMPUTE_CLASS,
		.instance = 1,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
		}
	},
	[CCS2] = {
		.class = COMPUTE_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
		}
	},
	[CCS3] = {
		.class = COMPUTE_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
		}
	},
188 189
};

190
/**
191
 * intel_engine_context_size() - return the size of the context for an engine
192
 * @gt: the gt
193 194 195 196 197 198 199 200 201 202 203
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
204
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
205
{
206
	struct intel_uncore *uncore = gt->uncore;
207 208 209 210 211
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
212 213
	case COMPUTE_CLASS:
		fallthrough;
214
	case RENDER_CLASS:
215
		switch (GRAPHICS_VER(gt->i915)) {
216
		default:
217
			MISSING_CASE(GRAPHICS_VER(gt->i915));
218
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
219
		case 12:
220 221
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
222 223 224
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
225
			return GEN8_LR_CONTEXT_RENDER_SIZE;
226
		case 7:
227
			if (IS_HASWELL(gt->i915))
228 229
				return HSW_CXT_TOTAL_SIZE;

230
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
231 232 233
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
234
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
235 236 237
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
238
		case 4:
239 240 241 242 243 244 245 246 247 248
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
249
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
250
			drm_dbg(&gt->i915->drm,
251 252
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
253
				cxt_size - 1);
254
			return round_up(cxt_size * 64, PAGE_SIZE);
255 256 257 258 259 260 261 262 263
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
264
		fallthrough;
265 266 267
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
268
		if (GRAPHICS_VER(gt->i915) < 8)
269 270 271 272 273
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

274 275 276 277 278 279
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
280
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
281 282 283 284 285 286 287 288
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

289
static void __sprint_engine_name(struct intel_engine_cs *engine)
290
{
291 292 293 294 295 296 297 298
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
299 300
}

301 302 303 304 305 306
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
307
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
308 309
		return;

310
	if (GRAPHICS_VER(engine->i915) >= 3)
311
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
312
	else
313
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
314 315 316 317 318 319 320 321
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

322 323 324 325 326
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
{
	u32 reset_domain;

	if (ver >= 11) {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN11_GRDOM_RENDER,
			[BCS0]  = GEN11_GRDOM_BLT,
			[VCS0]  = GEN11_GRDOM_MEDIA,
			[VCS1]  = GEN11_GRDOM_MEDIA2,
			[VCS2]  = GEN11_GRDOM_MEDIA3,
			[VCS3]  = GEN11_GRDOM_MEDIA4,
			[VCS4]  = GEN11_GRDOM_MEDIA5,
			[VCS5]  = GEN11_GRDOM_MEDIA6,
			[VCS6]  = GEN11_GRDOM_MEDIA7,
			[VCS7]  = GEN11_GRDOM_MEDIA8,
			[VECS0] = GEN11_GRDOM_VECS,
			[VECS1] = GEN11_GRDOM_VECS2,
			[VECS2] = GEN11_GRDOM_VECS3,
			[VECS3] = GEN11_GRDOM_VECS4,
347 348 349 350
			[CCS0]  = GEN11_GRDOM_RENDER,
			[CCS1]  = GEN11_GRDOM_RENDER,
			[CCS2]  = GEN11_GRDOM_RENDER,
			[CCS3]  = GEN11_GRDOM_RENDER,
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		reset_domain = engine_reset_domains[id];
	} else {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN6_GRDOM_RENDER,
			[BCS0]  = GEN6_GRDOM_BLT,
			[VCS0]  = GEN6_GRDOM_MEDIA,
			[VCS1]  = GEN8_GRDOM_MEDIA2,
			[VECS0] = GEN6_GRDOM_VECS,
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		reset_domain = engine_reset_domains[id];
	}

	return reset_domain;
}

371 372
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
			      u8 logical_instance)
373 374
{
	const struct engine_info *info = &intel_engines[id];
375
	struct drm_i915_private *i915 = gt->i915;
376
	struct intel_engine_cs *engine;
377
	u8 guc_class;
378

379 380
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
381 382
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
383

384 385 386
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

387
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
388 389
		return -EINVAL;

390
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
391 392
		return -EINVAL;

393
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
394 395
		return -EINVAL;

396 397 398
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
399

400 401
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

402
	INIT_LIST_HEAD(&engine->pinned_contexts_list);
403
	engine->id = id;
404
	engine->legacy_idx = INVALID_ENGINE;
405
	engine->mask = BIT(id);
406 407
	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
						id);
408
	engine->i915 = i915;
409 410
	engine->gt = gt;
	engine->uncore = gt->uncore;
411 412 413
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
414

415 416
	engine->irq_handler = nop_irq_handler;

417 418
	engine->class = info->class;
	engine->instance = info->instance;
419
	engine->logical_mask = BIT(logical_instance);
420
	__sprint_engine_name(engine);
421

422 423
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
424 425
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
426 427
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
428 429
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
430 431
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
432

433
	/* Override to uninterruptible for OpenCL workloads. */
434
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
435 436
		engine->props.preempt_timeout_ms = 0;

437
	/* features common between engines sharing EUs */
438
	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
439
		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
440 441
		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
	}
442

443 444
	engine->defaults = engine->props; /* never to change again */

445
	engine->context_size = intel_engine_context_size(gt, engine->class);
446 447
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
448
	if (engine->context_size)
449
		DRIVER_CAPS(i915)->has_logical_contexts = true;
450

451
	ewma__engine_latency_init(&engine->latency);
452
	seqcount_init(&engine->stats.execlists.lock);
453

454 455
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

456 457 458
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

459
	gt->engine_class[info->class][info->instance] = engine;
460
	gt->engine[id] = engine;
461

462
	return 0;
463 464
}

465 466 467 468 469 470 471 472 473
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
474 475
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
476 477 478 479 480 481 482
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
483
		if ((GRAPHICS_VER(i915) >= 11 &&
484 485
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
486
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
487 488 489
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
490 491
		if (GRAPHICS_VER(i915) >= 9 &&
		    engine->gt->info.sfc_mask & BIT(engine->instance))
492 493 494 495 496
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

497
static void intel_setup_engine_capabilities(struct intel_gt *gt)
498 499 500 501
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

502
	for_each_engine(engine, gt, id)
503 504 505
		__setup_engine_capabilities(engine);
}

506
/**
507
 * intel_engines_release() - free the resources allocated for Command Streamers
508
 * @gt: pointer to struct intel_gt
509
 */
510
void intel_engines_release(struct intel_gt *gt)
511 512 513 514
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

515 516 517 518 519 520 521 522 523 524 525 526 527
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

528
	/* Decouple the backend; but keep the layout for late GPU resets */
529
	for_each_engine(engine, gt, id) {
530 531 532
		if (!engine->release)
			continue;

533 534 535
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

536 537 538 539
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
540 541 542
	}
}

543 544 545 546 547 548 549 550
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

551 552 553 554 555
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

556 557 558
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

559
	for_each_engine(engine, gt, id) {
560
		intel_engine_free_request_pool(engine);
561 562 563 564 565
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

566
static
567
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
568 569 570
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
571 572
	struct drm_i915_private *i915 = gt->i915;

573 574 575 576 577 578
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
579 580 581
	 *
	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
	 * in the fuse register that tells us whether a specific SFC is present.
582
	 */
583 584 585
	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
		return false;
	else if (GRAPHICS_VER(i915) == 12)
586 587 588 589 590 591 592 593 594
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

595 596 597 598 599 600 601 602 603 604 605 606 607
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
608
	struct intel_gt_info *info = &gt->info;
609 610 611
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
612
	u32 media_fuse, fuse1;
613 614 615
	u16 vdbox_mask;
	u16 vebox_mask;

616 617
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

618
	if (GRAPHICS_VER(i915) < 11)
619 620
		return info->engine_mask;

621 622 623 624 625 626 627 628
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
629 630 631 632 633

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

634 635 636 637 638 639 640
	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
	} else {
		gt->info.sfc_mask = ~0;
	}

641 642 643 644 645 646 647 648 649 650 651 652
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

653
		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
654
			gt->info.vdbox_sfc_access |= BIT(i);
655
		logical_vdbox++;
656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
				 u8 class, const u8 *map, u8 num_instances)
{
	int i, j;
	u8 current_logical_id = 0;

	for (j = 0; j < num_instances; ++j) {
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			if (!HAS_ENGINE(gt, i) ||
			    intel_engines[i].class != class)
				continue;

			if (intel_engines[i].instance == map[j]) {
				logical_ids[intel_engines[i].instance] =
					current_logical_id++;
				break;
			}
		}
	}
}

static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
{
	int i;
	u8 map[MAX_ENGINE_INSTANCE + 1];

	for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
		map[i] = i;
	populate_logical_ids(gt, logical_ids, class, map, ARRAY_SIZE(map));
}

710
/**
711
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
712
 * @gt: pointer to struct intel_gt
713 714 715
 *
 * Return: non-zero if the initialization failed.
 */
716
int intel_engines_init_mmio(struct intel_gt *gt)
717
{
718
	struct drm_i915_private *i915 = gt->i915;
719
	const unsigned int engine_mask = init_engine_mask(gt);
720
	unsigned int mask = 0;
721 722
	unsigned int i, class;
	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
723
	int err;
724

725 726 727
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
728

729
	if (i915_inject_probe_failure(i915))
730 731
		return -ENODEV;

732 733
	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
		setup_logical_ids(gt, logical_ids, class);
734

735 736
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			u8 instance = intel_engines[i].instance;
737

738 739 740 741 742 743 744 745 746 747 748
			if (intel_engines[i].class != class ||
			    !HAS_ENGINE(gt, i))
				continue;

			err = intel_engine_setup(gt, i,
						 logical_ids[instance]);
			if (err)
				goto cleanup;

			mask |= BIT(i);
		}
749 750 751 752 753 754 755
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
756
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
757
		gt->info.engine_mask = mask;
758

759
	gt->info.num_engines = hweight32(mask);
760

761
	intel_gt_check_and_clear_faults(gt);
762

763
	intel_setup_engine_capabilities(gt);
764

765 766
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

767 768 769
	return 0;

cleanup:
770
	intel_engines_free(gt);
771 772 773
	return err;
}

774
void intel_engine_init_execlists(struct intel_engine_cs *engine)
775 776 777
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

778
	execlists->port_mask = 1;
779
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
780 781
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

782 783 784
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
785 786
}

787
static void cleanup_status_page(struct intel_engine_cs *engine)
788
{
789 790
	struct i915_vma *vma;

791 792 793
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

794 795 796
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
797

798 799 800 801
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
802
	i915_gem_object_put(vma->obj);
803 804 805
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
806
				struct i915_gem_ww_ctx *ww,
807 808 809 810
				struct i915_vma *vma)
{
	unsigned int flags;

811
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
812 813 814 815 816 817 818 819 820 821 822
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
823
		flags = PIN_MAPPABLE;
824
	else
825
		flags = PIN_HIGH;
826

827
	return i915_ggtt_pin(vma, ww, 0, flags);
828 829 830 831 832
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
833
	struct i915_gem_ww_ctx ww;
834 835 836 837
	struct i915_vma *vma;
	void *vaddr;
	int ret;

838 839
	INIT_LIST_HEAD(&engine->status_page.timelines);

840 841 842 843 844 845 846
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
847 848
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
849 850
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
851 852 853
		return PTR_ERR(obj);
	}

854
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
855

856
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
857 858
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
859
		goto err_put;
860 861
	}

862 863 864 865 866 867 868 869
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

870 871 872
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
873
		goto err_unpin;
874 875
	}

876
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
877
	engine->status_page.vma = vma;
878

879
err_unpin:
880 881
	if (ret)
		i915_vma_unpin(vma);
882
err:
883 884 885 886 887 888 889 890 891
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
892 893 894
	return ret;
}

895
static int engine_setup_common(struct intel_engine_cs *engine)
896 897 898
{
	int err;

899 900
	init_llist_head(&engine->barrier_tasks);

901 902 903 904
	err = init_status_page(engine);
	if (err)
		return err;

905 906 907 908 909 910
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

911 912 913 914 915
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
916
	engine->sched_engine->private_data = engine;
917

918 919 920 921
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

922 923
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
924
	intel_engine_init_retire(engine);
925

926 927
	/* Use the whole device by default */
	engine->sseu =
928
		intel_sseu_from_device_info(&engine->gt->info.sseu);
929

930 931 932 933
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

934
	if (GRAPHICS_VER(engine->i915) >= 12)
935 936
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

937
	return 0;
938

939
err_cmd_parser:
940 941
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
942
	intel_breadcrumbs_put(engine->breadcrumbs);
943 944 945
err_status:
	cleanup_status_page(engine);
	return err;
946 947
}

948 949 950
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
951
	u32 cs[2048];
952 953
};

954
static int measure_breadcrumb_dw(struct intel_context *ce)
955
{
956
	struct intel_engine_cs *engine = ce->engine;
957
	struct measure_breadcrumb *frame;
958
	int dw;
959

960
	GEM_BUG_ON(!engine->gt->scratch);
961 962 963 964 965

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

966 967 968
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
969
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
970

971 972
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
973 974
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
975 976 977
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
978

979
	mutex_lock(&ce->timeline->mutex);
980
	spin_lock_irq(&engine->sched_engine->lock);
981

982
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
983

984
	spin_unlock_irq(&engine->sched_engine->lock);
985
	mutex_unlock(&ce->timeline->mutex);
986

987
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
988

989
	kfree(frame);
990 991 992
	return dw;
}

993 994 995 996 997 998 999
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
1000 1001 1002 1003
{
	struct intel_context *ce;
	int err;

1004
	ce = intel_context_create(engine);
1005 1006 1007
	if (IS_ERR(ce))
		return ce;

1008
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1009
	ce->timeline = page_pack_bits(NULL, hwsp);
1010 1011
	ce->ring = NULL;
	ce->ring_size = ring_size;
1012 1013 1014

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
1015

1016
	err = intel_context_pin(ce); /* perma-pin so it is always available */
1017 1018 1019 1020 1021
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

1022 1023
	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);

1024 1025 1026 1027 1028 1029
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
1030
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1031

1032 1033 1034
	return ce;
}

1035
void intel_engine_destroy_pinned_context(struct intel_context *ce)
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

1046
	list_del(&ce->pinned_contexts_link);
1047 1048 1049 1050
	intel_context_unpin(ce);
	intel_context_put(ce);
}

1051 1052 1053 1054 1055
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

1056 1057 1058
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
1059 1060
}

1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
1072
static int engine_init_common(struct intel_engine_cs *engine)
1073
{
1074
	struct intel_context *ce;
1075 1076
	int ret;

1077 1078
	engine->set_default_submission(engine);

1079 1080
	/*
	 * We may need to do things with the shrinker which
1081 1082 1083 1084 1085 1086
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
1087 1088 1089 1090
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

1091 1092 1093 1094 1095
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
1096
	engine->kernel_context = ce;
1097

1098
	return 0;
1099 1100

err_context:
1101
	intel_engine_destroy_pinned_context(ce);
1102
	return ret;
1103
}
1104

1105 1106 1107 1108 1109 1110 1111
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

1112 1113
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
1114
		setup = intel_guc_submission_setup;
1115 1116
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
1117
		setup = intel_execlists_submission_setup;
1118 1119
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
1120
		setup = intel_ring_submission_setup;
1121
	}
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

1142 1143 1144 1145 1146 1147 1148 1149 1150
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1151
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1152

1153
	i915_sched_engine_put(engine->sched_engine);
1154
	intel_breadcrumbs_put(engine->breadcrumbs);
1155

1156
	intel_engine_fini_retire(engine);
1157
	intel_engine_cleanup_cmd_parser(engine);
1158

1159
	if (engine->default_state)
1160
		fput(engine->default_state);
1161

1162
	if (engine->kernel_context)
1163
		intel_engine_destroy_pinned_context(engine->kernel_context);
1164

1165
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1166
	cleanup_status_page(engine);
1167

1168
	intel_wa_list_free(&engine->ctx_wa_list);
1169
	intel_wa_list_free(&engine->wa_list);
1170
	intel_wa_list_free(&engine->whitelist);
1171
}
1172

1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1187
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1188
{
1189 1190
	struct drm_i915_private *i915 = engine->i915;

1191 1192
	u64 acthd;

1193
	if (GRAPHICS_VER(i915) >= 8)
1194
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1195
	else if (GRAPHICS_VER(i915) >= 4)
1196
		acthd = ENGINE_READ(engine, RING_ACTHD);
1197
	else
1198
		acthd = ENGINE_READ(engine, ACTHD);
1199 1200 1201 1202

	return acthd;
}

1203
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1204 1205 1206
{
	u64 bbaddr;

1207
	if (GRAPHICS_VER(engine->i915) >= 8)
1208
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1209
	else
1210
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1211 1212 1213

	return bbaddr;
}
1214

1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1230 1231 1232
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1233
{
1234
	struct intel_uncore *uncore = engine->uncore;
1235
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1236 1237
	int err;

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1254
	if (GRAPHICS_VER(engine->i915) < 3)
1255 1256
		return -ENODEV;

1257
	ENGINE_TRACE(engine, "\n");
1258
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1272 1273 1274 1275 1276
	}

	return err;
}

1277 1278
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1279
	ENGINE_TRACE(engine, "\n");
1280

1281
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1282 1283
}

1284
static u32
1285 1286
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1287
{
1288 1289
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1290 1291 1292
}

/* NB: please notice the memset */
1293
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1294 1295
			       struct intel_instdone *instdone)
{
1296
	struct drm_i915_private *i915 = engine->i915;
1297
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1298
	struct intel_uncore *uncore = engine->uncore;
1299 1300 1301
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1302
	int iter;
1303 1304 1305

	memset(instdone, 0, sizeof(*instdone));

1306
	if (GRAPHICS_VER(i915) >= 8) {
1307 1308
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1309

1310
		if (engine->id != RCS0)
1311
			return;
1312

1313 1314
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1315
		if (GRAPHICS_VER(i915) >= 12) {
1316 1317 1318 1319 1320
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1340
		}
1341 1342 1343 1344 1345 1346 1347

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1348
	} else if (GRAPHICS_VER(i915) >= 7) {
1349 1350
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1351

1352
		if (engine->id != RCS0)
1353
			return;
1354

1355 1356 1357 1358 1359 1360
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1361
	} else if (GRAPHICS_VER(i915) >= 4) {
1362 1363
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1364
		if (engine->id == RCS0)
1365
			/* HACK: Using the wrong struct member */
1366 1367
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1368
	} else {
1369
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1370 1371
	}
}
1372

1373 1374 1375 1376
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1377 1378 1379
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1380
	if (!intel_engine_pm_get_if_awake(engine))
1381
		return true;
1382

1383
	/* First check that no commands are left in the ring */
1384 1385
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1386
		idle = false;
1387

1388
	/* No bit for gen2, so assume the CS parser is idle */
1389
	if (GRAPHICS_VER(engine->i915) > 2 &&
1390
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1391 1392
		idle = false;

1393
	intel_engine_pm_put(engine);
1394 1395 1396 1397

	return idle;
}

1398
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1399
{
1400
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1401

1402
	if (!t->callback)
1403 1404
		return;

1405 1406 1407 1408
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1409
			t->callback(t);
1410
		tasklet_unlock(t);
1411
	}
1412
	local_bh_enable();
1413 1414 1415 1416

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1417 1418
}

1419 1420 1421 1422 1423 1424 1425 1426 1427
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1428
	/* More white lies, if wedged, hw state is inconsistent */
1429
	if (intel_gt_is_wedged(engine->gt))
1430 1431
		return true;

1432
	if (!intel_engine_pm_is_awake(engine))
1433 1434
		return true;

1435
	/* Waiting to drain ELSP? */
1436
	intel_synchronize_hardirq(engine->i915);
1437
	intel_engine_flush_submission(engine);
1438

1439
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1440
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1441 1442
		return false;

1443
	/* Ring stopped? */
1444
	return ring_is_idle(engine);
1445 1446
}

1447
bool intel_engines_are_idle(struct intel_gt *gt)
1448 1449 1450 1451
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1452 1453
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1454 1455
	 * report that it is still busy, even though we have stopped using it.
	 */
1456
	if (intel_gt_is_wedged(gt))
1457 1458
		return true;

1459
	/* Already parked (and passed an idleness test); must still be idle */
1460
	if (!READ_ONCE(gt->awake))
1461 1462
		return true;

1463
	for_each_engine(engine, gt, id) {
1464 1465 1466 1467 1468 1469 1470
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1495
void intel_engines_reset_default_submission(struct intel_gt *gt)
1496 1497 1498 1499
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1500 1501 1502 1503
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1504
		engine->set_default_submission(engine);
1505
	}
1506 1507
}

1508 1509
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1510
	switch (GRAPHICS_VER(engine->i915)) {
1511 1512 1513 1514 1515
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1516 1517
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1518 1519 1520 1521 1522 1523 1524
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1525 1526 1527 1528 1529
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1530
	 * Even though we are holding the engine->sched_engine->lock here, there
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1590
		drm_printf(m, "[%04zx] %s\n", pos, line);
1591 1592 1593 1594 1595 1596

		prev = buf + pos;
		skip = false;
	}
}

1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1608
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1609
					 struct drm_printer *m)
1610 1611
{
	struct drm_i915_private *dev_priv = engine->i915;
1612
	struct intel_engine_execlists * const execlists = &engine->execlists;
1613 1614
	u64 addr;

1615
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1616
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1617 1618 1619 1620 1621 1622
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1623
	drm_printf(m, "\tRING_START: 0x%08x\n",
1624
		   ENGINE_READ(engine, RING_START));
1625
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1626
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1627
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1628
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1629
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1630 1631
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1632
	if (GRAPHICS_VER(engine->i915) > 2) {
1633
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1634 1635
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1636
	}
1637

1638
	if (GRAPHICS_VER(dev_priv) >= 6) {
1639
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1640
			   ENGINE_READ(engine, RING_IMR));
1641 1642 1643 1644 1645 1646
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1647 1648
	}

1649 1650 1651 1652 1653 1654
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1655
	if (GRAPHICS_VER(dev_priv) >= 8)
1656
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1657
	else if (GRAPHICS_VER(dev_priv) >= 4)
1658
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1659
	else
1660
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1661 1662
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1663
	if (GRAPHICS_VER(dev_priv) >= 4) {
1664
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1665
			   ENGINE_READ(engine, RING_IPEIR));
1666
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1667
			   ENGINE_READ(engine, RING_IPEHR));
1668
	} else {
1669 1670
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1671
	}
1672

1673
	if (intel_engine_uses_guc(engine)) {
1674 1675
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1676
		struct i915_request * const *port, *rq;
1677 1678
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1679
		const u8 num_entries = execlists->csb_size;
1680
		unsigned int idx;
1681
		u8 read, write;
1682

1683
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1684
			   yesno(test_bit(TASKLET_STATE_SCHED,
1685 1686
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1687
			   repr_timer(&engine->execlists.preempt),
1688
			   repr_timer(&engine->execlists.timer));
1689

1690 1691 1692
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1693 1694 1695 1696 1697
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1698
		if (read >= num_entries)
1699
			read = 0;
1700
		if (write >= num_entries)
1701 1702
			write = 0;
		if (read > write)
1703
			write += num_entries;
1704
		while (read < write) {
1705 1706 1707
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1708 1709
		}

1710
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1711
		rcu_read_lock();
1712
		for (port = execlists->active; (rq = *port); port++) {
1713
			char hdr[160];
1714 1715
			int len;

1716
			len = scnprintf(hdr, sizeof(hdr),
1717
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1718
					(int)(port - execlists->active),
1719 1720 1721
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1722
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1723
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1724
			i915_request_show(m, rq, hdr, 0);
1725 1726
		}
		for (port = execlists->pending; (rq = *port); port++) {
1727 1728
			char hdr[160];
			int len;
1729

1730
			len = scnprintf(hdr, sizeof(hdr),
1731
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1732
					(int)(port - execlists->pending),
1733 1734 1735
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1736 1737
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1738
			i915_request_show(m, rq, hdr, 0);
1739
		}
1740
		rcu_read_unlock();
1741
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1742
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1743
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1744
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1745
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1746
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1747
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1748
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1749
	}
1750 1751
}

1752 1753
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
1754
	struct i915_vma_resource *vma_res = rq->batch_res;
1755 1756 1757 1758 1759 1760
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
1761 1762
		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1924 1925 1926 1927 1928
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1929
	struct i915_request *rq;
1930
	intel_wakeref_t wakeref;
1931
	unsigned long flags;
1932
	ktime_t dummy;
1933 1934 1935 1936 1937 1938 1939 1940 1941

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1942
	if (intel_gt_is_wedged(engine->gt))
1943 1944
		drm_printf(m, "*** WEDGED ***\n");

1945
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1946 1947
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1948 1949
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1950 1951 1952 1953
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1954
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1955
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1956 1957 1958 1959 1960 1961 1962

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1963 1964 1965
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1966
	print_properties(engine, m);
1967

1968
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1969
	engine_dump_active_requests(engine, m);
1970

1971 1972 1973
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1974

1975
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1976
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1977
	if (wakeref) {
1978
		intel_engine_print_registers(engine, m);
1979
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1980 1981 1982
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1983

C
Chris Wilson 已提交
1984
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1985

1986
	drm_printf(m, "HWSP:\n");
1987
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1988

1989
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1990 1991

	intel_engine_print_breadcrumbs(engine, m);
1992 1993
}

1994 1995 1996
/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1997
 * @now: monotonic timestamp of sampling
1998 1999 2000
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
2001
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2002
{
2003
	return engine->busyness(engine, now);
2004 2005
}

2006 2007
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
2008
			    unsigned int count, unsigned long flags)
2009 2010 2011 2012
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

2013
	if (count == 1 && !(flags & FORCE_VIRTUAL))
2014 2015 2016
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2017
	return siblings[0]->cops->create_virtual(siblings, count, flags);
2018 2019
}

2020
struct i915_request *
2021
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2022 2023 2024
{
	struct i915_request *request, *active = NULL;

2025 2026 2027 2028 2029 2030 2031
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
2043
	lockdep_assert_held(&engine->sched_engine->lock);
2044 2045 2046 2047 2048 2049 2050

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2051
			if (__i915_request_is_complete(request))
2052 2053 2054 2055 2056 2057 2058 2059 2060
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

2061 2062
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
2063
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2064
			continue;
2065 2066 2067 2068 2069 2070 2071 2072

		active = request;
		break;
	}

	return active;
}

2073
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2074
#include "mock_engine.c"
2075
#include "selftest_engine.c"
2076
#include "selftest_engine_cs.c"
2077
#endif