intel_engine_cs.c 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40
#include "intel_ring.h"
41

42 43 44 45 46 47 48 49 50
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

51
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
52 53
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
55
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
56 57 58

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

59
#define MAX_MMIO_BASES 3
60
struct engine_info {
61
	unsigned int hw_id;
62 63
	u8 class;
	u8 instance;
64 65 66 67 68
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
69 70 71
};

static const struct engine_info intel_engines[] = {
72 73
	[RCS0] = {
		.hw_id = RCS0_HW,
74 75
		.class = RENDER_CLASS,
		.instance = 0,
76 77 78
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
79
	},
80 81
	[BCS0] = {
		.hw_id = BCS0_HW,
82 83
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
84 85 86
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
87
	},
88 89
	[VCS0] = {
		.hw_id = VCS0_HW,
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
92 93 94 95 96
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
97
	},
98 99
	[VCS1] = {
		.hw_id = VCS1_HW,
100 101
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
102 103 104 105
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
106
	},
107 108
	[VCS2] = {
		.hw_id = VCS2_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
111 112 113
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
114
	},
115 116
	[VCS3] = {
		.hw_id = VCS3_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
122
	},
123 124
	[VECS0] = {
		.hw_id = VECS0_HW,
125 126
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
131
	},
132 133
	[VECS1] = {
		.hw_id = VECS1_HW,
134 135
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
139
	},
140 141
};

142
/**
143
 * intel_engine_context_size() - return the size of the context for an engine
144 145 146 147 148 149 150 151 152 153 154 155
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
156
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
157 158 159 160 161 162 163 164 165 166
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
167
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
168
		case 12:
169 170
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
171
		case 10:
O
Oscar Mateo 已提交
172
			return GEN10_LR_CONTEXT_RENDER_SIZE;
173 174 175
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
176
			return GEN8_LR_CONTEXT_RENDER_SIZE;
177 178 179 180 181 182 183 184 185 186 187 188
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
189
		case 4:
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
206 207 208 209 210 211 212 213 214
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
215
		/* fall through */
216 217 218 219 220 221 222 223 224
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

240
static void __sprint_engine_name(struct intel_engine_cs *engine)
241
{
242 243 244 245 246 247 248 249
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
250 251
}

252 253 254 255 256 257
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
258
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
259 260
		return;

261 262
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
263
	else
264
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
265 266 267 268 269 270 271 272
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

273
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
274 275
{
	const struct engine_info *info = &intel_engines[id];
276 277
	struct intel_engine_cs *engine;

278 279 280
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

281 282 283
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

284
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
285 286
		return -EINVAL;

287
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
288 289
		return -EINVAL;

290
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
291 292
		return -EINVAL;

293 294 295
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
296

297 298
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

299
	engine->id = id;
300
	engine->legacy_idx = INVALID_ENGINE;
301
	engine->mask = BIT(id);
302 303 304
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
305
	engine->hw_id = engine->guc_id = info->hw_id;
306
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
307

308 309
	engine->class = info->class;
	engine->instance = info->instance;
310
	__sprint_engine_name(engine);
311

312 313
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
314 315
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
316 317
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
318 319
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
320

321 322 323 324 325 326
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

327
	engine->context_size = intel_engine_context_size(gt->i915,
328
							 engine->class);
329 330
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
331
	if (engine->context_size)
332
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
333

334 335 336
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

337
	seqlock_init(&engine->stats.lock);
338

339 340
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

341 342 343
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

344
	gt->engine_class[info->class][info->instance] = engine;
345
	gt->engine[id] = engine;
346 347 348

	gt->i915->engine[id] = engine;

349
	return 0;
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

382
static void intel_setup_engine_capabilities(struct intel_gt *gt)
383 384 385 386
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

387
	for_each_engine(engine, gt, id)
388 389 390
		__setup_engine_capabilities(engine);
}

391 392
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
393
 * @gt: pointer to struct intel_gt
394
 */
395
void intel_engines_cleanup(struct intel_gt *gt)
396 397 398 399
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

400
	for_each_engine(engine, gt, id) {
401
		engine->destroy(engine);
402 403
		gt->engine[id] = NULL;
		gt->i915->engine[id] = NULL;
404 405 406
	}
}

407
/**
408
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
409
 * @gt: pointer to struct intel_gt
410 411 412
 *
 * Return: non-zero if the initialization failed.
 */
413
int intel_engines_init_mmio(struct intel_gt *gt)
414
{
415
	struct drm_i915_private *i915 = gt->i915;
416 417
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
418
	unsigned int mask = 0;
419
	unsigned int i;
420
	int err;
421

422 423
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
424
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
425

426
	if (i915_inject_probe_failure(i915))
427 428
		return -ENODEV;

429
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
430
		if (!HAS_ENGINE(i915, i))
431 432
			continue;

433
		err = intel_engine_setup(gt, i);
434 435 436
		if (err)
			goto cleanup;

437
		mask |= BIT(i);
438 439 440 441 442 443 444
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
445 446
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
447

448
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
449

450
	intel_gt_check_and_clear_faults(gt);
451

452
	intel_setup_engine_capabilities(gt);
453

454 455 456
	return 0;

cleanup:
457
	intel_engines_cleanup(gt);
458 459 460 461
	return err;
}

/**
462
 * intel_engines_init() - init the Engine Command Streamers
463
 * @gt: pointer to struct intel_gt
464 465 466
 *
 * Return: non-zero if the initialization failed.
 */
467
int intel_engines_init(struct intel_gt *gt)
468
{
469
	int (*init)(struct intel_engine_cs *engine);
470
	struct intel_engine_cs *engine;
471
	enum intel_engine_id id;
472
	int err;
473

474
	if (HAS_EXECLISTS(gt->i915))
475 476 477
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
478

479
	for_each_engine(engine, gt, id) {
480
		err = init(engine);
481
		if (err)
482
			goto cleanup;
483 484

		intel_engine_add_user(engine);
485 486 487 488 489
	}

	return 0;

cleanup:
490
	intel_engines_cleanup(gt);
491
	return err;
492 493
}

494
void intel_engine_init_execlists(struct intel_engine_cs *engine)
495 496 497
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

498
	execlists->port_mask = 1;
499
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
500 501
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

502 503 504 505
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

506
	execlists->queue_priority_hint = INT_MIN;
507
	execlists->queue = RB_ROOT_CACHED;
508 509
}

510
static void cleanup_status_page(struct intel_engine_cs *engine)
511
{
512 513
	struct i915_vma *vma;

514 515 516
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

517 518 519
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
520

521 522 523 524
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
525
	i915_gem_object_put(vma->obj);
526 527 528 529 530 531 532 533
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
534
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
535 536 537 538 539 540 541 542 543 544 545 546 547 548
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
549

550
	return i915_vma_pin(vma, 0, 0, flags);
551 552 553 554 555 556 557 558 559
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

560 561 562 563 564 565 566
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
567 568 569 570 571 572
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

573
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
574

575
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
576 577 578 579 580 581 582 583
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
584
		goto err;
585 586
	}

587
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
588
	engine->status_page.vma = vma;
589 590 591 592 593 594 595

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

596 597 598
	return 0;

err_unpin:
599
	i915_gem_object_unpin_map(obj);
600 601 602 603 604
err:
	i915_gem_object_put(obj);
	return ret;
}

605
static int intel_engine_setup_common(struct intel_engine_cs *engine)
606 607 608
{
	int err;

609 610
	init_llist_head(&engine->barrier_tasks);

611 612 613 614
	err = init_status_page(engine);
	if (err)
		return err;

615
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
616
	intel_engine_init_breadcrumbs(engine);
617
	intel_engine_init_execlists(engine);
618
	intel_engine_init_cmd_parser(engine);
619
	intel_engine_init__pm(engine);
620
	intel_engine_init_retire(engine);
621

622 623
	intel_engine_pool_init(&engine->pool);

624 625 626 627
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

628 629 630 631
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

632 633 634
	return 0;
}

635 636
/**
 * intel_engines_setup- setup engine state not requiring hw access
637
 * @gt: pointer to struct intel_gt
638 639 640 641 642 643
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
644
int intel_engines_setup(struct intel_gt *gt)
645 646 647 648 649 650
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

651
	if (HAS_EXECLISTS(gt->i915))
652 653 654 655
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

656
	for_each_engine(engine, gt, id) {
657 658 659 660 661 662 663 664
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

665 666 667
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

668 669 670 671 672 673
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
674
	intel_engines_cleanup(gt);
675 676 677
	return err;
}

678 679
struct measure_breadcrumb {
	struct i915_request rq;
680
	struct intel_timeline timeline;
681 682 683 684
	struct intel_ring ring;
	u32 cs[1024];
};

685
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
686 687
{
	struct measure_breadcrumb *frame;
688
	int dw = -ENOMEM;
689

690
	GEM_BUG_ON(!engine->gt->scratch);
691 692 693 694 695

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

696 697 698
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
699
		goto out_frame;
700

701 702
	mutex_lock(&frame->timeline.mutex);

703 704 705 706 707 708 709 710
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
711
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
712

713
	dw = intel_timeline_pin(&frame->timeline);
714 715 716
	if (dw < 0)
		goto out_timeline;

717
	spin_lock_irq(&engine->active.lock);
718
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
719 720
	spin_unlock_irq(&engine->active.lock);

721
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
722

723
	intel_timeline_unpin(&frame->timeline);
724

725
out_timeline:
726
	mutex_unlock(&frame->timeline.mutex);
727
	intel_timeline_fini(&frame->timeline);
728 729
out_frame:
	kfree(frame);
730 731 732
	return dw;
}

733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

754 755 756
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
757
	static struct lock_class_key kernel;
758 759 760 761 762 763 764
	struct intel_context *ce;
	int err;

	ce = intel_context_create(engine->i915->kernel_context, engine);
	if (IS_ERR(ce))
		return ce;

765 766
	ce->ring = __intel_context_ring_size(SZ_4K);

767 768 769 770 771 772
	err = intel_context_pin(ce);
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

773 774 775 776 777 778 779 780
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

781 782 783
	return ce;
}

784 785 786 787 788 789 790 791 792 793 794 795 796
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
797
	struct intel_context *ce;
798 799
	int ret;

800 801
	engine->set_default_submission(engine);

802 803
	/*
	 * We may need to do things with the shrinker which
804 805 806 807 808 809
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
810 811 812 813 814
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
815

816
	ret = measure_breadcrumb_dw(engine);
817
	if (ret < 0)
818
		goto err_unpin;
819

820
	engine->emit_fini_breadcrumb_dw = ret;
821

822
	return 0;
823

824
err_unpin:
825 826
	intel_context_unpin(ce);
	intel_context_put(ce);
827
	return ret;
828
}
829 830 831 832 833 834 835 836 837 838

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
839 840
	GEM_BUG_ON(!list_empty(&engine->active.requests));

841
	cleanup_status_page(engine);
842

843
	intel_engine_fini_retire(engine);
844
	intel_engine_pool_fini(&engine->pool);
845
	intel_engine_fini_breadcrumbs(engine);
846
	intel_engine_cleanup_cmd_parser(engine);
847

848 849 850
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

851 852 853 854
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
855
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
856

857
	intel_wa_list_free(&engine->ctx_wa_list);
858
	intel_wa_list_free(&engine->wa_list);
859
	intel_wa_list_free(&engine->whitelist);
860
}
861

862
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
863
{
864 865
	struct drm_i915_private *i915 = engine->i915;

866 867
	u64 acthd;

868 869 870 871
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
872
	else
873
		acthd = ENGINE_READ(engine, ACTHD);
874 875 876 877

	return acthd;
}

878
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
879 880 881
{
	u64 bbaddr;

882 883
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
884
	else
885
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
886 887 888

	return bbaddr;
}
889

890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

905 906
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
907
	struct intel_uncore *uncore = engine->uncore;
908 909 910 911
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

912
	if (INTEL_GEN(engine->i915) < 3)
913 914 915 916
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

917
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
918 919

	err = 0;
920
	if (__intel_wait_for_register_fw(uncore,
921
					 mode, MODE_IDLE, MODE_IDLE,
922
					 1000, stop_timeout(engine),
923 924 925 926 927 928
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
929
	intel_uncore_posting_read_fw(uncore, mode);
930 931 932 933

	return err;
}

934 935 936 937
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

938
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
939 940
}

941 942 943 944 945 946 947 948 949 950 951
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

952 953 954
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
955
{
956 957
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
958
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
959 960
	enum forcewake_domains fw_domains;

961
	if (INTEL_GEN(i915) >= 11) {
962 963
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
964
	} else {
965 966
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
967 968
	}

969
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
970
						    FW_REG_READ);
971
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
972 973 974
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

975 976
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
977

978
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
979

980 981
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
982
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
983

984
	val = intel_uncore_read_fw(uncore, reg);
985

986 987
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
988

989
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
990

991 992
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
993

994
	return val;
995 996 997 998 999 1000
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
1001
	struct drm_i915_private *i915 = engine->i915;
1002
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
1003
	struct intel_uncore *uncore = engine->uncore;
1004 1005 1006 1007 1008 1009
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1010
	switch (INTEL_GEN(i915)) {
1011
	default:
1012 1013
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1014

1015
		if (engine->id != RCS0)
1016 1017
			break;

1018 1019
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1020
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1021
			instdone->sampler[slice][subslice] =
1022
				read_subslice_reg(engine, slice, subslice,
1023 1024
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1025
				read_subslice_reg(engine, slice, subslice,
1026 1027 1028 1029
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1030 1031
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1032

1033
		if (engine->id != RCS0)
1034 1035
			break;

1036 1037 1038 1039 1040 1041
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1042 1043 1044 1045 1046

		break;
	case 6:
	case 5:
	case 4:
1047 1048
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1049
		if (engine->id == RCS0)
1050
			/* HACK: Using the wrong struct member */
1051 1052
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1053 1054 1055
		break;
	case 3:
	case 2:
1056
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1057 1058 1059
		break;
	}
}
1060

1061 1062 1063 1064
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1065 1066 1067
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1068
	if (!intel_engine_pm_get_if_awake(engine))
1069
		return true;
1070

1071
	/* First check that no commands are left in the ring */
1072 1073
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1074
		idle = false;
1075

1076
	/* No bit for gen2, so assume the CS parser is idle */
1077
	if (INTEL_GEN(engine->i915) > 2 &&
1078
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1079 1080
		idle = false;

1081
	intel_engine_pm_put(engine);
1082 1083 1084 1085

	return idle;
}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
void intel_engine_flush_submission(struct intel_engine_cs *engine)
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1105 1106 1107 1108 1109 1110 1111 1112 1113
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1114
	/* More white lies, if wedged, hw state is inconsistent */
1115
	if (intel_gt_is_wedged(engine->gt))
1116 1117
		return true;

1118
	if (!intel_engine_pm_is_awake(engine))
1119 1120
		return true;

1121
	/* Waiting to drain ELSP? */
1122
	if (execlists_active(&engine->execlists)) {
1123
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1124

1125
		intel_engine_flush_submission(engine);
1126

1127
		if (execlists_active(&engine->execlists))
1128 1129
			return false;
	}
1130

1131
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1132
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1133 1134
		return false;

1135
	/* Ring stopped? */
1136
	return ring_is_idle(engine);
1137 1138
}

1139
bool intel_engines_are_idle(struct intel_gt *gt)
1140 1141 1142 1143
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1144 1145
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1146 1147
	 * report that it is still busy, even though we have stopped using it.
	 */
1148
	if (intel_gt_is_wedged(gt))
1149 1150
		return true;

1151
	/* Already parked (and passed an idleness test); must still be idle */
1152
	if (!READ_ONCE(gt->awake))
1153 1154
		return true;

1155
	for_each_engine(engine, gt, id) {
1156 1157 1158 1159 1160 1161 1162
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1163
void intel_engines_reset_default_submission(struct intel_gt *gt)
1164 1165 1166 1167
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1168
	for_each_engine(engine, gt, id)
1169 1170 1171
		engine->set_default_submission(engine);
}

1172 1173 1174 1175 1176 1177 1178 1179
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1180 1181
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1182 1183 1184 1185 1186 1187 1188
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1189 1190 1191
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1192 1193
{
	if (attr->priority == I915_PRIORITY_INVALID)
1194 1195 1196 1197
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1198

1199
	return x;
1200 1201
}

1202
static void print_request(struct drm_printer *m,
1203
			  struct i915_request *rq,
1204 1205
			  const char *prefix)
{
1206
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1207
	char buf[80] = "";
1208 1209 1210
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1211

1212
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1213
		   prefix,
1214
		   rq->fence.context, rq->fence.seqno,
1215 1216 1217
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1218 1219
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1220
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1221 1222
			    &rq->fence.flags) ? "-" :
		   "",
1223
		   buf,
1224
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1225
		   name);
1226 1227
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1250
		drm_printf(m, "[%04zx] %s\n", pos, line);
1251 1252 1253 1254 1255 1256

		prev = buf + pos;
		skip = false;
	}
}

1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1289
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1290
					 struct drm_printer *m)
1291 1292
{
	struct drm_i915_private *dev_priv = engine->i915;
1293
	struct intel_engine_execlists * const execlists = &engine->execlists;
1294 1295
	u64 addr;

1296
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1297
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1298
	drm_printf(m, "\tRING_START: 0x%08x\n",
1299
		   ENGINE_READ(engine, RING_START));
1300
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1301
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1302
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1303
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1304
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1305 1306
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1307 1308
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1309 1310
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1311
	}
1312 1313

	if (INTEL_GEN(dev_priv) >= 6) {
1314 1315
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1316 1317
	}

1318 1319 1320 1321 1322 1323
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1324
	if (INTEL_GEN(dev_priv) >= 8)
1325
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1326
	else if (INTEL_GEN(dev_priv) >= 4)
1327
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1328
	else
1329
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1330 1331 1332 1333
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1334
			   ENGINE_READ(engine, RING_IPEIR));
1335
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1336
			   ENGINE_READ(engine, RING_IPEHR));
1337
	} else {
1338 1339
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1340
	}
1341

1342
	if (HAS_EXECLISTS(dev_priv)) {
1343
		struct i915_request * const *port, *rq;
1344 1345
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1346
		const u8 num_entries = execlists->csb_size;
1347
		unsigned int idx;
1348
		u8 read, write;
1349

1350
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1351 1352 1353
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1354
			   repr_timer(&engine->execlists.preempt),
1355
			   repr_timer(&engine->execlists.timer));
1356

1357 1358 1359
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1360 1361 1362 1363 1364
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1365
		if (read >= num_entries)
1366
			read = 0;
1367
		if (write >= num_entries)
1368 1369
			write = 0;
		if (read > write)
1370
			write += num_entries;
1371
		while (read < write) {
1372 1373 1374
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1375 1376
		}

1377
		execlists_active_lock_bh(execlists);
1378
		rcu_read_lock();
1379 1380 1381 1382 1383
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1384
				       "\t\tActive[%d]: ",
1385
				       (int)(port - execlists->active));
1386 1387 1388
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1389 1390 1391
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1392
						tl ? tl->hwsp_offset : 0,
1393
						hwsp_seqno(rq));
1394 1395 1396 1397

				if (tl)
					intel_timeline_put(tl);
			}
1398 1399 1400 1401
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1402
			struct intel_timeline *tl = get_timeline(rq);
1403
			char hdr[80];
1404

1405 1406 1407 1408
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1409
				 tl ? tl->hwsp_offset : 0,
1410 1411
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1412 1413 1414

			if (tl)
				intel_timeline_put(tl);
1415
		}
1416
		rcu_read_unlock();
1417
		execlists_active_unlock_bh(execlists);
1418 1419
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1420
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1421
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1422
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1423
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1424
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1425
	}
1426 1427
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1461 1462 1463 1464 1465
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1466
	struct i915_request *rq;
1467
	intel_wakeref_t wakeref;
1468
	unsigned long flags;
1469 1470 1471 1472 1473 1474 1475 1476 1477

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1478
	if (intel_gt_is_wedged(engine->gt))
1479 1480
		drm_printf(m, "*** WEDGED ***\n");

1481
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1482 1483
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1484 1485 1486 1487 1488 1489 1490

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1491 1492 1493 1494 1495 1496
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1497
	spin_lock_irqsave(&engine->active.lock, flags);
1498
	rq = intel_engine_find_active_request(engine);
1499
	if (rq) {
1500 1501
		struct intel_timeline *tl = get_timeline(rq);

1502
		print_request(m, rq, "\t\tactive ");
1503

1504
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1505
			   i915_ggtt_offset(rq->ring->vma));
1506
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1507
			   rq->ring->head);
1508
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1509
			   rq->ring->tail);
1510 1511 1512 1513
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1514 1515 1516 1517 1518 1519

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1520 1521

		print_request_ring(m, rq);
1522 1523 1524 1525 1526

		if (rq->hw_context->lrc_reg_state) {
			drm_printf(m, "Logical Ring Context:\n");
			hexdump(m, rq->hw_context->lrc_reg_state, PAGE_SIZE);
		}
1527
	}
1528
	spin_unlock_irqrestore(&engine->active.lock, flags);
1529

1530
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1531
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1532
	if (wakeref) {
1533
		intel_engine_print_registers(engine, m);
1534
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1535 1536 1537
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1538

1539
	intel_execlists_show_requests(engine, m, print_request, 8);
1540

1541
	drm_printf(m, "HWSP:\n");
1542
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1543

1544
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1545 1546

	intel_engine_print_breadcrumbs(engine, m);
1547 1548
}

1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1559
	struct intel_engine_execlists *execlists = &engine->execlists;
1560
	unsigned long flags;
1561
	int err = 0;
1562

1563
	if (!intel_engine_supports_stats(engine))
1564 1565
		return -ENODEV;

1566 1567
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1568 1569 1570 1571 1572 1573

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1574
	if (engine->stats.enabled++ == 0) {
1575 1576
		struct i915_request * const *port;
		struct i915_request *rq;
1577

1578
		engine->stats.enabled_at = ktime_get();
1579 1580

		/* XXX submission method oblivious? */
1581
		for (port = execlists->active; (rq = *port); port++)
1582
			engine->stats.active++;
1583 1584 1585

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1586
			if (!intel_context_inflight_count(rq->hw_context))
1587
				engine->stats.active++;
1588 1589 1590 1591 1592
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1593

1594
unlock:
1595 1596
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1597

1598
	return err;
1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1624
	unsigned int seq;
1625 1626
	ktime_t total;

1627 1628 1629 1630
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1645
	if (!intel_engine_supports_stats(engine))
1646 1647
		return;

1648
	write_seqlock_irqsave(&engine->stats.lock, flags);
1649 1650 1651 1652 1653
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1654
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1655 1656
}

1657 1658
static bool match_ring(struct i915_request *rq)
{
1659
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1680
	lockdep_assert_held(&engine->active.lock);
1681
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1682 1683 1684 1685
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1686
			continue;
1687 1688 1689

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1690
			continue;
1691 1692 1693 1694 1695 1696 1697 1698

		active = request;
		break;
	}

	return active;
}

1699
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1700
#include "mock_engine.c"
1701
#include "selftest_engine.c"
1702
#include "selftest_engine_cs.c"
1703
#endif