intel_engine_cs.c 47.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_breadcrumbs.h"
32
#include "intel_context.h"
33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		fallthrough;
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278
	struct drm_i915_private *i915 = gt->i915;
279 280
	struct intel_engine_cs *engine;

281 282 283
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

284 285 286
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

287
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 289
		return -EINVAL;

290
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 292
		return -EINVAL;

293
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 295
		return -EINVAL;

296 297 298
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
299

300 301
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

302
	engine->id = id;
303
	engine->legacy_idx = INVALID_ENGINE;
304
	engine->mask = BIT(id);
305
	engine->i915 = i915;
306 307
	engine->gt = gt;
	engine->uncore = gt->uncore;
308
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309 310
	engine->hw_id = info->hw_id;
	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
311

312 313
	engine->class = info->class;
	engine->instance = info->instance;
314
	__sprint_engine_name(engine);
315

316 317
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
318 319
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
320 321
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
322 323
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
324 325
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
326

327 328 329 330
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

331 332
	engine->defaults = engine->props; /* never to change again */

333
	engine->context_size = intel_engine_context_size(gt, engine->class);
334 335
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
336
	if (engine->context_size)
337
		DRIVER_CAPS(i915)->has_logical_contexts = true;
338

339 340 341
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

342
	ewma__engine_latency_init(&engine->latency);
343
	seqlock_init(&engine->stats.lock);
344

345 346
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

347 348 349
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

350
	gt->engine_class[info->class][info->instance] = engine;
351
	gt->engine[id] = engine;
352

353
	return 0;
354 355
}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
375 376
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
377 378 379 380 381 382 383 384 385 386
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

387
static void intel_setup_engine_capabilities(struct intel_gt *gt)
388 389 390 391
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

392
	for_each_engine(engine, gt, id)
393 394 395
		__setup_engine_capabilities(engine);
}

396
/**
397
 * intel_engines_release() - free the resources allocated for Command Streamers
398
 * @gt: pointer to struct intel_gt
399
 */
400
void intel_engines_release(struct intel_gt *gt)
401 402 403 404
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

405 406 407 408 409 410 411 412 413 414 415 416 417
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

418
	/* Decouple the backend; but keep the layout for late GPU resets */
419
	for_each_engine(engine, gt, id) {
420 421 422
		if (!engine->release)
			continue;

423 424 425
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

426 427 428 429
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
430 431 432
	}
}

433 434 435 436 437 438 439 440
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

441 442 443 444 445
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

446 447 448
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

449
	for_each_engine(engine, gt, id) {
450
		intel_engine_free_request_pool(engine);
451 452 453 454 455
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

456 457 458 459 460 461 462 463 464 465 466 467 468
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
469
	struct intel_gt_info *info = &gt->info;
470 471 472 473 474 475 476
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

477 478
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
506
			gt->info.vdbox_sfc_access |= BIT(i);
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

530
/**
531
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
532
 * @gt: pointer to struct intel_gt
533 534 535
 *
 * Return: non-zero if the initialization failed.
 */
536
int intel_engines_init_mmio(struct intel_gt *gt)
537
{
538
	struct drm_i915_private *i915 = gt->i915;
539
	const unsigned int engine_mask = init_engine_mask(gt);
540
	unsigned int mask = 0;
541
	unsigned int i;
542
	int err;
543

544 545 546
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
547

548
	if (i915_inject_probe_failure(i915))
549 550
		return -ENODEV;

551
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
552
		if (!HAS_ENGINE(gt, i))
553 554
			continue;

555
		err = intel_engine_setup(gt, i);
556 557 558
		if (err)
			goto cleanup;

559
		mask |= BIT(i);
560 561 562 563 564 565 566
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
567
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
568
		gt->info.engine_mask = mask;
569

570
	gt->info.num_engines = hweight32(mask);
571

572
	intel_gt_check_and_clear_faults(gt);
573

574
	intel_setup_engine_capabilities(gt);
575

576 577
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

578 579 580
	return 0;

cleanup:
581
	intel_engines_free(gt);
582 583 584
	return err;
}

585
void intel_engine_init_execlists(struct intel_engine_cs *engine)
586 587 588
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

589
	execlists->port_mask = 1;
590
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
591 592
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

593 594 595 596
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

597
	execlists->queue_priority_hint = INT_MIN;
598
	execlists->queue = RB_ROOT_CACHED;
599 600
}

601
static void cleanup_status_page(struct intel_engine_cs *engine)
602
{
603 604
	struct i915_vma *vma;

605 606 607
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

608 609 610
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
611

612 613 614 615
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
616
	i915_gem_object_put(vma->obj);
617 618 619 620 621 622 623
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

624
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
625 626 627 628 629 630 631 632 633 634 635
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
636
		flags = PIN_MAPPABLE;
637
	else
638
		flags = PIN_HIGH;
639

640
	return i915_ggtt_pin(vma, NULL, 0, flags);
641 642 643 644 645 646 647 648 649
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

650 651 652 653 654 655 656
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
657 658
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
659 660
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
661 662 663
		return PTR_ERR(obj);
	}

664
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
665

666
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
667 668 669 670 671 672 673 674
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
675
		goto err;
676 677
	}

678
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
679
	engine->status_page.vma = vma;
680 681 682 683 684 685 686

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

687 688 689
	return 0;

err_unpin:
690
	i915_gem_object_unpin_map(obj);
691 692 693 694 695
err:
	i915_gem_object_put(obj);
	return ret;
}

696
static int engine_setup_common(struct intel_engine_cs *engine)
697 698 699
{
	int err;

700 701
	init_llist_head(&engine->barrier_tasks);

702 703 704 705
	err = init_status_page(engine);
	if (err)
		return err;

706 707 708 709 710 711
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

712
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
713
	intel_engine_init_execlists(engine);
714
	intel_engine_init_cmd_parser(engine);
715
	intel_engine_init__pm(engine);
716
	intel_engine_init_retire(engine);
717

718 719
	/* Use the whole device by default */
	engine->sseu =
720
		intel_sseu_from_device_info(&engine->gt->info.sseu);
721

722 723 724 725
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

726
	return 0;
727 728 729 730

err_status:
	cleanup_status_page(engine);
	return err;
731 732
}

733 734 735
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
736
	u32 cs[2048];
737 738
};

739
static int measure_breadcrumb_dw(struct intel_context *ce)
740
{
741
	struct intel_engine_cs *engine = ce->engine;
742
	struct measure_breadcrumb *frame;
743
	int dw;
744

745
	GEM_BUG_ON(!engine->gt->scratch);
746 747 748 749 750

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

751 752 753
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
754

755 756
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
757 758
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
759 760 761
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
762

763
	mutex_lock(&ce->timeline->mutex);
764
	spin_lock_irq(&engine->active.lock);
765

766
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
767

768
	spin_unlock_irq(&engine->active.lock);
769
	mutex_unlock(&ce->timeline->mutex);
770

771
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
772

773
	kfree(frame);
774 775 776
	return dw;
}

777 778 779 780
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
781
	INIT_LIST_HEAD(&engine->active.hold);
782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

799
static struct intel_context *
800 801 802 803
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
804 805 806 807
{
	struct intel_context *ce;
	int err;

808
	ce = intel_context_create(engine);
809 810 811
	if (IS_ERR(ce))
		return ce;

812
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
813
	ce->timeline = page_pack_bits(NULL, hwsp);
814

815
	err = intel_context_pin(ce); /* perma-pin so it is always available */
816 817 818 819 820
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

821 822 823 824 825 826
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
827
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
828

829 830 831
	return ce;
}

832 833 834 835 836 837 838 839 840
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

841 842 843 844 845 846 847 848 849 850 851
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
852
static int engine_init_common(struct intel_engine_cs *engine)
853
{
854
	struct intel_context *ce;
855 856
	int ret;

857 858
	engine->set_default_submission(engine);

859 860
	/*
	 * We may need to do things with the shrinker which
861 862 863 864 865 866
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
867 868 869 870
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

871 872 873 874 875
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
876
	engine->kernel_context = ce;
877

878
	return 0;
879 880 881 882

err_context:
	intel_context_put(ce);
	return ret;
883
}
884

885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

916 917 918 919 920 921 922 923 924
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
925
	GEM_BUG_ON(!list_empty(&engine->active.requests));
926
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
927

928
	cleanup_status_page(engine);
929
	intel_breadcrumbs_free(engine->breadcrumbs);
930

931
	intel_engine_fini_retire(engine);
932
	intel_engine_cleanup_cmd_parser(engine);
933

934
	if (engine->default_state)
935
		fput(engine->default_state);
936

937 938 939 940
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
941
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
942

943
	intel_wa_list_free(&engine->ctx_wa_list);
944
	intel_wa_list_free(&engine->wa_list);
945
	intel_wa_list_free(&engine->whitelist);
946
}
947

948 949 950 951 952 953 954 955 956 957 958 959 960 961
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

962
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
963
{
964 965
	struct drm_i915_private *i915 = engine->i915;

966 967
	u64 acthd;

968 969 970 971
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
972
	else
973
		acthd = ENGINE_READ(engine, ACTHD);
974 975 976 977

	return acthd;
}

978
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
979 980 981
{
	u64 bbaddr;

982 983
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
984
	else
985
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
986 987 988

	return bbaddr;
}
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1005 1006
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
1007
	struct intel_uncore *uncore = engine->uncore;
1008 1009 1010 1011
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

1012
	if (INTEL_GEN(engine->i915) < 3)
1013 1014
		return -ENODEV;

1015
	ENGINE_TRACE(engine, "\n");
1016

1017
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1018 1019

	err = 0;
1020
	if (__intel_wait_for_register_fw(uncore,
1021
					 mode, MODE_IDLE, MODE_IDLE,
1022
					 1000, stop_timeout(engine),
1023
					 NULL)) {
1024
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1025 1026 1027 1028
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1029
	intel_uncore_posting_read_fw(uncore, mode);
1030 1031 1032 1033

	return err;
}

1034 1035
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1036
	ENGINE_TRACE(engine, "\n");
1037

1038
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1039 1040
}

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1052
static u32
1053 1054
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1055
{
1056 1057
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1058
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1059 1060
	enum forcewake_domains fw_domains;

1061
	if (INTEL_GEN(i915) >= 11) {
1062 1063
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1064
	} else {
1065 1066
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1067 1068
	}

1069
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1070
						    FW_REG_READ);
1071
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1072 1073 1074
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1075 1076
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1077

1078
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1079

1080 1081
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1082
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1083

1084
	val = intel_uncore_read_fw(uncore, reg);
1085

1086 1087
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1088

1089
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1090

1091 1092
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1093

1094
	return val;
1095 1096 1097
}

/* NB: please notice the memset */
1098
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1099 1100
			       struct intel_instdone *instdone)
{
1101
	struct drm_i915_private *i915 = engine->i915;
1102
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1103
	struct intel_uncore *uncore = engine->uncore;
1104 1105 1106 1107 1108 1109
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1110
	switch (INTEL_GEN(i915)) {
1111
	default:
1112 1113
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1114

1115
		if (engine->id != RCS0)
1116 1117
			break;

1118 1119
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1120 1121 1122 1123 1124 1125
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1126
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1127
			instdone->sampler[slice][subslice] =
1128
				read_subslice_reg(engine, slice, subslice,
1129 1130
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1131
				read_subslice_reg(engine, slice, subslice,
1132 1133 1134 1135
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1136 1137
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1138

1139
		if (engine->id != RCS0)
1140 1141
			break;

1142 1143 1144 1145 1146 1147
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1148 1149 1150 1151 1152

		break;
	case 6:
	case 5:
	case 4:
1153 1154
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1155
		if (engine->id == RCS0)
1156
			/* HACK: Using the wrong struct member */
1157 1158
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1159 1160 1161
		break;
	case 3:
	case 2:
1162
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1163 1164 1165
		break;
	}
}
1166

1167 1168 1169 1170
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1171 1172 1173
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1174
	if (!intel_engine_pm_get_if_awake(engine))
1175
		return true;
1176

1177
	/* First check that no commands are left in the ring */
1178 1179
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1180
		idle = false;
1181

1182
	/* No bit for gen2, so assume the CS parser is idle */
1183
	if (INTEL_GEN(engine->i915) > 2 &&
1184
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1185 1186
		idle = false;

1187
	intel_engine_pm_put(engine);
1188 1189 1190 1191

	return idle;
}

1192
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1193 1194 1195
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1196 1197 1198
	if (!t->func)
		return;

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
	/* Synchronise and wait for the tasklet on another CPU */
	tasklet_kill(t);

	/* Having cancelled the tasklet, ensure that is run */
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1209
	}
1210
	local_bh_enable();
1211 1212
}

1213 1214 1215 1216 1217 1218 1219 1220 1221
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1222
	/* More white lies, if wedged, hw state is inconsistent */
1223
	if (intel_gt_is_wedged(engine->gt))
1224 1225
		return true;

1226
	if (!intel_engine_pm_is_awake(engine))
1227 1228
		return true;

1229
	/* Waiting to drain ELSP? */
1230
	if (execlists_active(&engine->execlists)) {
1231
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1232

1233
		intel_engine_flush_submission(engine);
1234

1235
		if (execlists_active(&engine->execlists))
1236 1237
			return false;
	}
1238

1239
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1240
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1241 1242
		return false;

1243
	/* Ring stopped? */
1244
	return ring_is_idle(engine);
1245 1246
}

1247
bool intel_engines_are_idle(struct intel_gt *gt)
1248 1249 1250 1251
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1252 1253
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1254 1255
	 * report that it is still busy, even though we have stopped using it.
	 */
1256
	if (intel_gt_is_wedged(gt))
1257 1258
		return true;

1259
	/* Already parked (and passed an idleness test); must still be idle */
1260
	if (!READ_ONCE(gt->awake))
1261 1262
		return true;

1263
	for_each_engine(engine, gt, id) {
1264 1265 1266 1267 1268 1269 1270
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1271
void intel_engines_reset_default_submission(struct intel_gt *gt)
1272 1273 1274 1275
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1276
	for_each_engine(engine, gt, id)
1277 1278 1279
		engine->set_default_submission(engine);
}

1280 1281 1282 1283 1284 1285 1286 1287
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1288 1289
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1290 1291 1292 1293 1294 1295 1296
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1362
		drm_printf(m, "[%04zx] %s\n", pos, line);
1363 1364 1365 1366 1367 1368

		prev = buf + pos;
		skip = false;
	}
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1380
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1381
					 struct drm_printer *m)
1382 1383
{
	struct drm_i915_private *dev_priv = engine->i915;
1384
	struct intel_engine_execlists * const execlists = &engine->execlists;
1385 1386
	u64 addr;

1387
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1388
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1389 1390 1391 1392 1393 1394
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1395
	drm_printf(m, "\tRING_START: 0x%08x\n",
1396
		   ENGINE_READ(engine, RING_START));
1397
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1398
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1399
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1400
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1401
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1402 1403
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1404 1405
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1406 1407
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1408
	}
1409 1410

	if (INTEL_GEN(dev_priv) >= 6) {
1411
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1412
			   ENGINE_READ(engine, RING_IMR));
1413 1414 1415 1416 1417 1418
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1419 1420
	}

1421 1422 1423 1424 1425 1426
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1427
	if (INTEL_GEN(dev_priv) >= 8)
1428
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1429
	else if (INTEL_GEN(dev_priv) >= 4)
1430
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1431
	else
1432
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1433 1434 1435 1436
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1437
			   ENGINE_READ(engine, RING_IPEIR));
1438
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1439
			   ENGINE_READ(engine, RING_IPEHR));
1440
	} else {
1441 1442
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1443
	}
1444

1445
	if (HAS_EXECLISTS(dev_priv)) {
1446
		struct i915_request * const *port, *rq;
1447 1448
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1449
		const u8 num_entries = execlists->csb_size;
1450
		unsigned int idx;
1451
		u8 read, write;
1452

1453
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1454 1455 1456
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1457
			   repr_timer(&engine->execlists.preempt),
1458
			   repr_timer(&engine->execlists.timer));
1459

1460 1461 1462
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1463 1464 1465 1466 1467
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1468
		if (read >= num_entries)
1469
			read = 0;
1470
		if (write >= num_entries)
1471 1472
			write = 0;
		if (read > write)
1473
			write += num_entries;
1474
		while (read < write) {
1475 1476 1477
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1478 1479
		}

1480
		execlists_active_lock_bh(execlists);
1481
		rcu_read_lock();
1482
		for (port = execlists->active; (rq = *port); port++) {
1483
			char hdr[160];
1484 1485
			int len;

1486
			len = scnprintf(hdr, sizeof(hdr),
1487
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1488
					(int)(port - execlists->active),
1489 1490 1491
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1492
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1493
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
C
Chris Wilson 已提交
1494
			i915_request_show(m, rq, hdr);
1495 1496
		}
		for (port = execlists->pending; (rq = *port); port++) {
1497 1498
			char hdr[160];
			int len;
1499

1500
			len = scnprintf(hdr, sizeof(hdr),
1501
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1502
					(int)(port - execlists->pending),
1503 1504 1505
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1506 1507
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
C
Chris Wilson 已提交
1508
			i915_request_show(m, rq, hdr);
1509
		}
1510
		rcu_read_unlock();
1511
		execlists_active_unlock_bh(execlists);
1512 1513
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1514
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1515
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1516
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1517
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1518
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1519
	}
1520 1521
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1601 1602 1603 1604 1605
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1606
	struct i915_request *rq;
1607
	intel_wakeref_t wakeref;
1608
	unsigned long flags;
1609
	ktime_t dummy;
1610 1611 1612 1613 1614 1615 1616 1617 1618

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1619
	if (intel_gt_is_wedged(engine->gt))
1620 1621
		drm_printf(m, "*** WEDGED ***\n");

1622
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1623 1624
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1625 1626
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1627 1628 1629 1630
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1631 1632
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
		   engine->fw_domain, atomic_read(&engine->fw_active));
1633 1634 1635 1636 1637 1638 1639

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1640 1641 1642
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1643
	print_properties(engine, m);
1644 1645 1646

	drm_printf(m, "\tRequests:\n");

1647
	spin_lock_irqsave(&engine->active.lock, flags);
1648
	rq = intel_engine_find_active_request(engine);
1649
	if (rq) {
1650 1651
		struct intel_timeline *tl = get_timeline(rq);

C
Chris Wilson 已提交
1652
		i915_request_show(m, rq, "\t\tactive ");
1653

1654
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1655
			   i915_ggtt_offset(rq->ring->vma));
1656
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1657
			   rq->ring->head);
1658
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1659
			   rq->ring->tail);
1660 1661 1662 1663
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1664 1665 1666 1667 1668 1669

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1670 1671

		print_request_ring(m, rq);
1672

1673
		if (rq->context->lrc_reg_state) {
1674
			drm_printf(m, "Logical Ring Context:\n");
1675
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1676
		}
1677
	}
1678
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1679
	spin_unlock_irqrestore(&engine->active.lock, flags);
1680

1681
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1682
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1683
	if (wakeref) {
1684
		intel_engine_print_registers(engine, m);
1685
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1686 1687 1688
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1689

C
Chris Wilson 已提交
1690
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1691

1692
	drm_printf(m, "HWSP:\n");
1693
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1694

1695
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1696 1697

	intel_engine_print_breadcrumbs(engine, m);
1698 1699
}

1700 1701
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1702 1703 1704 1705 1706 1707 1708
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1709
	*now = ktime_get();
1710
	if (atomic_read(&engine->stats.active))
1711
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1712 1713 1714 1715 1716 1717 1718

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1719
 * @now: monotonic timestamp of sampling
1720 1721 1722
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1723
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1724
{
1725
	unsigned int seq;
1726 1727
	ktime_t total;

1728 1729
	do {
		seq = read_seqbegin(&engine->stats.lock);
1730
		total = __intel_engine_get_busy_time(engine, now);
1731
	} while (read_seqretry(&engine->stats.lock, seq));
1732 1733 1734 1735

	return total;
}

1736 1737
static bool match_ring(struct i915_request *rq)
{
1738
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1759
	lockdep_assert_held(&engine->active.lock);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1777
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1778 1779 1780 1781
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1782
			continue;
1783 1784 1785

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1786
			continue;
1787 1788 1789 1790 1791 1792 1793 1794

		active = request;
		break;
	}

	return active;
}

1795
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1796
#include "mock_engine.c"
1797
#include "selftest_engine.c"
1798
#include "selftest_engine_cs.c"
1799
#endif