intel_engine_cs.c 45.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		/* fall through */
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278 279
	struct intel_engine_cs *engine;

280 281 282
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

283 284 285
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 294
		return -EINVAL;

295 296 297
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
298

299 300
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

301
	engine->id = id;
302
	engine->legacy_idx = INVALID_ENGINE;
303
	engine->mask = BIT(id);
304 305 306
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
307
	engine->hw_id = engine->guc_id = info->hw_id;
308
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
309

310 311
	engine->class = info->class;
	engine->instance = info->instance;
312
	__sprint_engine_name(engine);
313

314 315
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 317
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
318 319
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
320 321
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
322

323
	engine->context_size = intel_engine_context_size(gt, engine->class);
324 325
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
326
	if (engine->context_size)
327
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
328

329 330 331
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

332
	ewma__engine_latency_init(&engine->latency);
333
	seqlock_init(&engine->stats.lock);
334

335 336
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

337 338 339
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

340
	gt->engine_class[info->class][info->instance] = engine;
341
	gt->engine[id] = engine;
342 343 344

	gt->i915->engine[id] = engine;

345
	return 0;
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

378
static void intel_setup_engine_capabilities(struct intel_gt *gt)
379 380 381 382
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

383
	for_each_engine(engine, gt, id)
384 385 386
		__setup_engine_capabilities(engine);
}

387
/**
388
 * intel_engines_release() - free the resources allocated for Command Streamers
389
 * @gt: pointer to struct intel_gt
390
 */
391
void intel_engines_release(struct intel_gt *gt)
392 393 394 395
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

396 397 398 399 400 401 402 403 404 405 406 407 408
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

409
	/* Decouple the backend; but keep the layout for late GPU resets */
410
	for_each_engine(engine, gt, id) {
411
		intel_wakeref_wait_for_idle(&engine->wakeref);
412 413
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

414 415 416 417 418 419 420 421
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));

422
		gt->i915->engine[id] = NULL;
423 424 425
	}
}

426 427 428 429 430 431 432 433 434 435 436
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, gt, id) {
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

437
/**
438
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
439
 * @gt: pointer to struct intel_gt
440 441 442
 *
 * Return: non-zero if the initialization failed.
 */
443
int intel_engines_init_mmio(struct intel_gt *gt)
444
{
445
	struct drm_i915_private *i915 = gt->i915;
446 447
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
448
	unsigned int mask = 0;
449
	unsigned int i;
450
	int err;
451

452 453 454
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
455

456
	if (i915_inject_probe_failure(i915))
457 458
		return -ENODEV;

459
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
460
		if (!HAS_ENGINE(i915, i))
461 462
			continue;

463
		err = intel_engine_setup(gt, i);
464 465 466
		if (err)
			goto cleanup;

467
		mask |= BIT(i);
468 469 470 471 472 473 474
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
475
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
476
		device_info->engine_mask = mask;
477

478
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
479

480
	intel_gt_check_and_clear_faults(gt);
481

482
	intel_setup_engine_capabilities(gt);
483

484 485 486
	return 0;

cleanup:
487
	intel_engines_free(gt);
488 489 490
	return err;
}

491
void intel_engine_init_execlists(struct intel_engine_cs *engine)
492 493 494
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

495
	execlists->port_mask = 1;
496
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
497 498
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

499 500 501 502
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

503
	execlists->queue_priority_hint = INT_MIN;
504
	execlists->queue = RB_ROOT_CACHED;
505 506
}

507
static void cleanup_status_page(struct intel_engine_cs *engine)
508
{
509 510
	struct i915_vma *vma;

511 512 513
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

514 515 516
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
517

518 519 520 521
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
522
	i915_gem_object_put(vma->obj);
523 524 525 526 527 528 529
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

530
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
531 532 533 534 535 536 537 538 539 540 541
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
542
		flags = PIN_MAPPABLE;
543
	else
544
		flags = PIN_HIGH;
545

546
	return i915_ggtt_pin(vma, 0, flags);
547 548 549 550 551 552 553 554 555
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

556 557 558 559 560 561 562
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
563 564
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
565 566
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
567 568 569
		return PTR_ERR(obj);
	}

570
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
571

572
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
573 574 575 576 577 578 579 580
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
581
		goto err;
582 583
	}

584
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
585
	engine->status_page.vma = vma;
586 587 588 589 590 591 592

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

593 594 595
	return 0;

err_unpin:
596
	i915_gem_object_unpin_map(obj);
597 598 599 600 601
err:
	i915_gem_object_put(obj);
	return ret;
}

602
static int engine_setup_common(struct intel_engine_cs *engine)
603 604 605
{
	int err;

606 607
	init_llist_head(&engine->barrier_tasks);

608 609 610 611
	err = init_status_page(engine);
	if (err)
		return err;

612
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
613
	intel_engine_init_breadcrumbs(engine);
614
	intel_engine_init_execlists(engine);
615
	intel_engine_init_cmd_parser(engine);
616
	intel_engine_init__pm(engine);
617
	intel_engine_init_retire(engine);
618

619 620
	intel_engine_pool_init(&engine->pool);

621 622 623 624
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

625 626 627 628
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

629 630 631
	return 0;
}

632 633 634 635 636 637
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
	u32 cs[1024];
};

638
static int measure_breadcrumb_dw(struct intel_context *ce)
639
{
640
	struct intel_engine_cs *engine = ce->engine;
641
	struct measure_breadcrumb *frame;
642
	int dw = -ENOMEM;
643

644
	GEM_BUG_ON(!engine->gt->scratch);
645 646 647 648 649

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

650 651 652 653
	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
654

655 656 657 658 659
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
660

661
	mutex_lock(&ce->timeline->mutex);
662
	spin_lock_irq(&engine->active.lock);
663

664
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
665

666
	spin_unlock_irq(&engine->active.lock);
667
	mutex_unlock(&ce->timeline->mutex);
668

669
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
670

671
	kfree(frame);
672 673 674
	return dw;
}

675 676 677 678
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
679
	INIT_LIST_HEAD(&engine->active.hold);
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

697 698 699
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
700
	static struct lock_class_key kernel;
701 702 703
	struct intel_context *ce;
	int err;

704
	ce = intel_context_create(engine);
705 706 707
	if (IS_ERR(ce))
		return ce;

708
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
709

710
	err = intel_context_pin(ce); /* perma-pin so it is always available */
711 712 713 714 715
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

716 717 718 719 720 721 722 723
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

724 725 726
	return ce;
}

727 728 729 730 731 732 733 734 735 736 737
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
738
static int engine_init_common(struct intel_engine_cs *engine)
739
{
740
	struct intel_context *ce;
741 742
	int ret;

743 744
	engine->set_default_submission(engine);

745 746
	/*
	 * We may need to do things with the shrinker which
747 748 749 750 751 752
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
753 754 755 756
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

757 758 759 760 761
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
762
	engine->kernel_context = ce;
763

764
	return 0;
765 766 767 768

err_context:
	intel_context_put(ce);
	return ret;
769
}
770

771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

802 803 804 805 806 807 808 809 810
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
811
	GEM_BUG_ON(!list_empty(&engine->active.requests));
812
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
813

814
	cleanup_status_page(engine);
815

816
	intel_engine_fini_retire(engine);
817
	intel_engine_pool_fini(&engine->pool);
818
	intel_engine_fini_breadcrumbs(engine);
819
	intel_engine_cleanup_cmd_parser(engine);
820

821 822 823
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

824 825 826 827
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
828
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
829

830
	intel_wa_list_free(&engine->ctx_wa_list);
831
	intel_wa_list_free(&engine->wa_list);
832
	intel_wa_list_free(&engine->whitelist);
833
}
834

835 836 837 838 839 840 841 842 843 844 845 846 847 848
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

849
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
850
{
851 852
	struct drm_i915_private *i915 = engine->i915;

853 854
	u64 acthd;

855 856 857 858
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
859
	else
860
		acthd = ENGINE_READ(engine, ACTHD);
861 862 863 864

	return acthd;
}

865
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
866 867 868
{
	u64 bbaddr;

869 870
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
871
	else
872
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
873 874 875

	return bbaddr;
}
876

877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

892 893
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
894
	struct intel_uncore *uncore = engine->uncore;
895 896 897 898
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

899
	if (INTEL_GEN(engine->i915) < 3)
900 901
		return -ENODEV;

902
	ENGINE_TRACE(engine, "\n");
903

904
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
905 906

	err = 0;
907
	if (__intel_wait_for_register_fw(uncore,
908
					 mode, MODE_IDLE, MODE_IDLE,
909
					 1000, stop_timeout(engine),
910
					 NULL)) {
911
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
912 913 914 915
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
916
	intel_uncore_posting_read_fw(uncore, mode);
917 918 919 920

	return err;
}

921 922
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
923
	ENGINE_TRACE(engine, "\n");
924

925
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
926 927
}

928 929 930 931 932 933 934 935 936 937 938
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

939
static u32
940 941
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
942
{
943 944
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
945
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
946 947
	enum forcewake_domains fw_domains;

948
	if (INTEL_GEN(i915) >= 11) {
949 950
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
951
	} else {
952 953
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
954 955
	}

956
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
957
						    FW_REG_READ);
958
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
959 960 961
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

962 963
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
964

965
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
966

967 968
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
969
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
970

971
	val = intel_uncore_read_fw(uncore, reg);
972

973 974
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
975

976
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
977

978 979
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
980

981
	return val;
982 983 984
}

/* NB: please notice the memset */
985
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
986 987
			       struct intel_instdone *instdone)
{
988
	struct drm_i915_private *i915 = engine->i915;
989
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
990
	struct intel_uncore *uncore = engine->uncore;
991 992 993 994 995 996
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

997
	switch (INTEL_GEN(i915)) {
998
	default:
999 1000
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1001

1002
		if (engine->id != RCS0)
1003 1004
			break;

1005 1006
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1007 1008 1009 1010 1011 1012
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1013
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1014
			instdone->sampler[slice][subslice] =
1015
				read_subslice_reg(engine, slice, subslice,
1016 1017
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1018
				read_subslice_reg(engine, slice, subslice,
1019 1020 1021 1022
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1023 1024
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1025

1026
		if (engine->id != RCS0)
1027 1028
			break;

1029 1030 1031 1032 1033 1034
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1035 1036 1037 1038 1039

		break;
	case 6:
	case 5:
	case 4:
1040 1041
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1042
		if (engine->id == RCS0)
1043
			/* HACK: Using the wrong struct member */
1044 1045
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1046 1047 1048
		break;
	case 3:
	case 2:
1049
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1050 1051 1052
		break;
	}
}
1053

1054 1055 1056 1057
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1058 1059 1060
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1061
	if (!intel_engine_pm_get_if_awake(engine))
1062
		return true;
1063

1064
	/* First check that no commands are left in the ring */
1065 1066
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1067
		idle = false;
1068

1069
	/* No bit for gen2, so assume the CS parser is idle */
1070
	if (INTEL_GEN(engine->i915) > 2 &&
1071
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1072 1073
		idle = false;

1074
	intel_engine_pm_put(engine);
1075 1076 1077 1078

	return idle;
}

1079
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1098 1099 1100 1101 1102 1103 1104 1105 1106
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1107
	/* More white lies, if wedged, hw state is inconsistent */
1108
	if (intel_gt_is_wedged(engine->gt))
1109 1110
		return true;

1111
	if (!intel_engine_pm_is_awake(engine))
1112 1113
		return true;

1114
	/* Waiting to drain ELSP? */
1115
	if (execlists_active(&engine->execlists)) {
1116
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1117

1118
		intel_engine_flush_submission(engine);
1119

1120
		if (execlists_active(&engine->execlists))
1121 1122
			return false;
	}
1123

1124
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1125
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1126 1127
		return false;

1128
	/* Ring stopped? */
1129
	return ring_is_idle(engine);
1130 1131
}

1132
bool intel_engines_are_idle(struct intel_gt *gt)
1133 1134 1135 1136
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1137 1138
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1139 1140
	 * report that it is still busy, even though we have stopped using it.
	 */
1141
	if (intel_gt_is_wedged(gt))
1142 1143
		return true;

1144
	/* Already parked (and passed an idleness test); must still be idle */
1145
	if (!READ_ONCE(gt->awake))
1146 1147
		return true;

1148
	for_each_engine(engine, gt, id) {
1149 1150 1151 1152 1153 1154 1155
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1156
void intel_engines_reset_default_submission(struct intel_gt *gt)
1157 1158 1159 1160
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1161
	for_each_engine(engine, gt, id)
1162 1163 1164
		engine->set_default_submission(engine);
}

1165 1166 1167 1168 1169 1170 1171 1172
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1173 1174
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1175 1176 1177 1178 1179 1180 1181
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1182 1183 1184
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1185 1186
{
	if (attr->priority == I915_PRIORITY_INVALID)
1187 1188 1189 1190
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1191

1192
	return x;
1193 1194
}

1195
static void print_request(struct drm_printer *m,
1196
			  struct i915_request *rq,
1197 1198
			  const char *prefix)
{
1199
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1200
	char buf[80] = "";
1201 1202 1203
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1204

1205
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1206
		   prefix,
1207
		   rq->fence.context, rq->fence.seqno,
1208 1209 1210
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1211 1212
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1213
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1214 1215
			    &rq->fence.flags) ? "-" :
		   "",
1216
		   buf,
1217
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1218
		   name);
1219 1220
}

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1243
		drm_printf(m, "[%04zx] %s\n", pos, line);
1244 1245 1246 1247 1248 1249

		prev = buf + pos;
		skip = false;
	}
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1282
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1283
					 struct drm_printer *m)
1284 1285
{
	struct drm_i915_private *dev_priv = engine->i915;
1286
	struct intel_engine_execlists * const execlists = &engine->execlists;
1287 1288
	u64 addr;

1289
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1290
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1291
	drm_printf(m, "\tRING_START: 0x%08x\n",
1292
		   ENGINE_READ(engine, RING_START));
1293
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1294
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1295
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1296
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1297
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1298 1299
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1300 1301
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1302 1303
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1304
	}
1305 1306

	if (INTEL_GEN(dev_priv) >= 6) {
1307
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1308
			   ENGINE_READ(engine, RING_IMR));
1309 1310 1311 1312 1313 1314
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1315 1316
	}

1317 1318 1319 1320 1321 1322
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1323
	if (INTEL_GEN(dev_priv) >= 8)
1324
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1325
	else if (INTEL_GEN(dev_priv) >= 4)
1326
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1327
	else
1328
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1329 1330 1331 1332
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1333
			   ENGINE_READ(engine, RING_IPEIR));
1334
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1335
			   ENGINE_READ(engine, RING_IPEHR));
1336
	} else {
1337 1338
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1339
	}
1340

1341
	if (HAS_EXECLISTS(dev_priv)) {
1342
		struct i915_request * const *port, *rq;
1343 1344
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1345
		const u8 num_entries = execlists->csb_size;
1346
		unsigned int idx;
1347
		u8 read, write;
1348

1349
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1350 1351 1352
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1353
			   repr_timer(&engine->execlists.preempt),
1354
			   repr_timer(&engine->execlists.timer));
1355

1356 1357 1358
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1359 1360 1361 1362 1363
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1364
		if (read >= num_entries)
1365
			read = 0;
1366
		if (write >= num_entries)
1367 1368
			write = 0;
		if (read > write)
1369
			write += num_entries;
1370
		while (read < write) {
1371 1372 1373
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1374 1375
		}

1376
		execlists_active_lock_bh(execlists);
1377
		rcu_read_lock();
1378 1379 1380 1381 1382
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1383
				       "\t\tActive[%d]: ",
1384
				       (int)(port - execlists->active));
1385 1386 1387
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1388 1389 1390
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1391
						tl ? tl->hwsp_offset : 0,
1392
						hwsp_seqno(rq));
1393 1394 1395 1396

				if (tl)
					intel_timeline_put(tl);
			}
1397 1398 1399 1400
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1401
			struct intel_timeline *tl = get_timeline(rq);
1402
			char hdr[80];
1403

1404 1405 1406 1407
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1408
				 tl ? tl->hwsp_offset : 0,
1409 1410
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1411 1412 1413

			if (tl)
				intel_timeline_put(tl);
1414
		}
1415
		rcu_read_unlock();
1416
		execlists_active_unlock_bh(execlists);
1417 1418
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1419
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1420
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1421
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1422
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1423
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1424
	}
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1471 1472 1473 1474 1475
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1476
	struct i915_request *rq;
1477
	intel_wakeref_t wakeref;
1478
	unsigned long flags;
1479 1480 1481 1482 1483 1484 1485 1486 1487

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1488
	if (intel_gt_is_wedged(engine->gt))
1489 1490
		drm_printf(m, "*** WEDGED ***\n");

1491
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1492 1493
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1494 1495
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1496 1497 1498 1499 1500 1501 1502

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1503 1504 1505 1506 1507 1508
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1509
	spin_lock_irqsave(&engine->active.lock, flags);
1510
	rq = intel_engine_find_active_request(engine);
1511
	if (rq) {
1512 1513
		struct intel_timeline *tl = get_timeline(rq);

1514
		print_request(m, rq, "\t\tactive ");
1515

1516
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1517
			   i915_ggtt_offset(rq->ring->vma));
1518
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1519
			   rq->ring->head);
1520
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1521
			   rq->ring->tail);
1522 1523 1524 1525
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1526 1527 1528 1529 1530 1531

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1532 1533

		print_request_ring(m, rq);
1534

1535
		if (rq->context->lrc_reg_state) {
1536
			drm_printf(m, "Logical Ring Context:\n");
1537
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1538
		}
1539
	}
1540
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1541
	spin_unlock_irqrestore(&engine->active.lock, flags);
1542

1543
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1544
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1545
	if (wakeref) {
1546
		intel_engine_print_registers(engine, m);
1547
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1548 1549 1550
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1551

1552
	intel_execlists_show_requests(engine, m, print_request, 8);
1553

1554
	drm_printf(m, "HWSP:\n");
1555
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1556

1557
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1558 1559

	intel_engine_print_breadcrumbs(engine, m);
1560 1561
}

1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1572
	struct intel_engine_execlists *execlists = &engine->execlists;
1573
	unsigned long flags;
1574
	int err = 0;
1575

1576
	if (!intel_engine_supports_stats(engine))
1577 1578
		return -ENODEV;

1579 1580
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1581 1582 1583 1584 1585 1586

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1587
	if (engine->stats.enabled++ == 0) {
1588 1589
		struct i915_request * const *port;
		struct i915_request *rq;
1590

1591
		engine->stats.enabled_at = ktime_get();
1592 1593

		/* XXX submission method oblivious? */
1594
		for (port = execlists->active; (rq = *port); port++)
1595
			engine->stats.active++;
1596 1597 1598

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1599
			if (!intel_context_inflight_count(rq->context))
1600
				engine->stats.active++;
1601 1602 1603 1604 1605
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1606

1607
unlock:
1608 1609
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1610

1611
	return err;
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1637
	unsigned int seq;
1638 1639
	ktime_t total;

1640 1641 1642 1643
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1658
	if (!intel_engine_supports_stats(engine))
1659 1660
		return;

1661
	write_seqlock_irqsave(&engine->stats.lock, flags);
1662 1663 1664 1665 1666
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1667
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1668 1669
}

1670 1671
static bool match_ring(struct i915_request *rq)
{
1672
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1693
	lockdep_assert_held(&engine->active.lock);
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1711
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1712 1713 1714 1715
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1716
			continue;
1717 1718 1719

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1720
			continue;
1721 1722 1723 1724 1725 1726 1727 1728

		active = request;
		break;
	}

	return active;
}

1729
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1730
#include "mock_engine.c"
1731
#include "selftest_engine.c"
1732
#include "selftest_engine_cs.c"
1733
#endif