intel_engine_cs.c 53.7 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
39 40 41

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

42
#define MAX_MMIO_BASES 3
43
struct engine_info {
44 45
	u8 class;
	u8 instance;
46
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
47
	struct engine_mmio_base {
48
		u32 graphics_ver : 8;
49 50
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
51 52 53
};

static const struct engine_info intel_engines[] = {
54
	[RCS0] = {
55 56
		.class = RENDER_CLASS,
		.instance = 0,
57
		.mmio_bases = {
58
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
59
		},
60
	},
61
	[BCS0] = {
62 63
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
64
		.mmio_bases = {
65
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
66
		},
67
	},
68
	[VCS0] = {
69 70
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
71
		.mmio_bases = {
72 73 74
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
75
		},
76
	},
77
	[VCS1] = {
78 79
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
80
		.mmio_bases = {
81 82
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
83
		},
84
	},
85
	[VCS2] = {
86 87
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
88
		.mmio_bases = {
89
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
90
		},
91
	},
92
	[VCS3] = {
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
97
		},
98
	},
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
127
	[VECS0] = {
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130
		.mmio_bases = {
131 132
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
133
		},
134
	},
135
	[VECS1] = {
136 137
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
138
		.mmio_bases = {
139
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
140
		},
141
	},
142 143 144 145 146 147 148 149 150 151 152 153 154 155
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
156 157
};

158
/**
159
 * intel_engine_context_size() - return the size of the context for an engine
160
 * @gt: the gt
161 162 163 164 165 166 167 168 169 170 171
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
172
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
173
{
174
	struct intel_uncore *uncore = gt->uncore;
175 176 177 178 179 180
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
181
		switch (GRAPHICS_VER(gt->i915)) {
182
		default:
183
			MISSING_CASE(GRAPHICS_VER(gt->i915));
184
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185
		case 12:
186 187
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
188 189 190
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
191
			return GEN8_LR_CONTEXT_RENDER_SIZE;
192
		case 7:
193
			if (IS_HASWELL(gt->i915))
194 195
				return HSW_CXT_TOTAL_SIZE;

196
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
197 198 199
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
200
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
201 202 203
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
204
		case 4:
205 206 207 208 209 210 211 212 213 214
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
215
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
216
			drm_dbg(&gt->i915->drm,
217 218
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
219
				cxt_size - 1);
220
			return round_up(cxt_size * 64, PAGE_SIZE);
221 222 223 224 225 226 227 228 229
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
230
		fallthrough;
231 232 233
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
234
		if (GRAPHICS_VER(gt->i915) < 8)
235 236 237 238 239
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

240 241 242 243 244 245
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
246
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
247 248 249 250 251 252 253 254
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

255
static void __sprint_engine_name(struct intel_engine_cs *engine)
256
{
257 258 259 260 261 262 263 264
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
265 266
}

267 268 269 270 271 272
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
273
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
274 275
		return;

276
	if (GRAPHICS_VER(engine->i915) >= 3)
277
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
278
	else
279
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
280 281 282 283 284 285 286 287
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

288 289 290 291 292
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

293 294
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
			      u8 logical_instance)
295 296
{
	const struct engine_info *info = &intel_engines[id];
297
	struct drm_i915_private *i915 = gt->i915;
298
	struct intel_engine_cs *engine;
299
	u8 guc_class;
300

301 302
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
303 304
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
305

306 307 308
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

309
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
310 311
		return -EINVAL;

312
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
313 314
		return -EINVAL;

315
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
316 317
		return -EINVAL;

318 319 320
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
321

322 323
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

324
	INIT_LIST_HEAD(&engine->pinned_contexts_list);
325
	engine->id = id;
326
	engine->legacy_idx = INVALID_ENGINE;
327
	engine->mask = BIT(id);
328
	engine->i915 = i915;
329 330
	engine->gt = gt;
	engine->uncore = gt->uncore;
331 332 333
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
334

335 336
	engine->irq_handler = nop_irq_handler;

337 338
	engine->class = info->class;
	engine->instance = info->instance;
339
	engine->logical_mask = BIT(logical_instance);
340
	__sprint_engine_name(engine);
341

342 343
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
344 345
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
346 347
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
348 349
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
350 351
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
352

353
	/* Override to uninterruptible for OpenCL workloads. */
354
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
355 356
		engine->props.preempt_timeout_ms = 0;

357 358
	engine->defaults = engine->props; /* never to change again */

359
	engine->context_size = intel_engine_context_size(gt, engine->class);
360 361
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
362
	if (engine->context_size)
363
		DRIVER_CAPS(i915)->has_logical_contexts = true;
364

365
	ewma__engine_latency_init(&engine->latency);
366
	seqcount_init(&engine->stats.lock);
367

368 369
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

370 371 372
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

373
	gt->engine_class[info->class][info->instance] = engine;
374
	gt->engine[id] = engine;
375

376
	return 0;
377 378
}

379 380 381 382 383 384 385 386 387
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
388 389
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
390 391 392 393 394 395 396
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
397
		if ((GRAPHICS_VER(i915) >= 11 &&
398 399
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
400
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
401 402 403
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
404 405
		if (GRAPHICS_VER(i915) >= 9 &&
		    engine->gt->info.sfc_mask & BIT(engine->instance))
406 407 408 409 410
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

411
static void intel_setup_engine_capabilities(struct intel_gt *gt)
412 413 414 415
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

416
	for_each_engine(engine, gt, id)
417 418 419
		__setup_engine_capabilities(engine);
}

420
/**
421
 * intel_engines_release() - free the resources allocated for Command Streamers
422
 * @gt: pointer to struct intel_gt
423
 */
424
void intel_engines_release(struct intel_gt *gt)
425 426 427 428
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

429 430 431 432 433 434 435 436 437 438 439 440 441
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

442
	/* Decouple the backend; but keep the layout for late GPU resets */
443
	for_each_engine(engine, gt, id) {
444 445 446
		if (!engine->release)
			continue;

447 448 449
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

450 451 452 453
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
454 455 456
	}
}

457 458 459 460 461 462 463 464
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

465 466 467 468 469
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

470 471 472
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

473
	for_each_engine(engine, gt, id) {
474
		intel_engine_free_request_pool(engine);
475 476 477 478 479
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

480
static
481
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
482 483 484
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
485 486
	struct drm_i915_private *i915 = gt->i915;

487 488 489 490 491 492
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
493 494 495
	 *
	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
	 * in the fuse register that tells us whether a specific SFC is present.
496
	 */
497 498 499
	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
		return false;
	else if (GRAPHICS_VER(i915) == 12)
500 501 502 503 504 505 506 507 508
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

509 510 511 512 513 514 515 516 517 518 519 520 521
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
522
	struct intel_gt_info *info = &gt->info;
523 524 525
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
526
	u32 media_fuse, fuse1;
527 528 529
	u16 vdbox_mask;
	u16 vebox_mask;

530 531
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

532
	if (GRAPHICS_VER(i915) < 11)
533 534
		return info->engine_mask;

535 536 537 538 539 540 541 542
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
543 544 545 546 547

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

548 549 550 551 552 553 554
	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
	} else {
		gt->info.sfc_mask = ~0;
	}

555 556 557 558 559 560 561 562 563 564 565 566
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

567
		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
568
			gt->info.vdbox_sfc_access |= BIT(i);
569
		logical_vdbox++;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
				 u8 class, const u8 *map, u8 num_instances)
{
	int i, j;
	u8 current_logical_id = 0;

	for (j = 0; j < num_instances; ++j) {
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			if (!HAS_ENGINE(gt, i) ||
			    intel_engines[i].class != class)
				continue;

			if (intel_engines[i].instance == map[j]) {
				logical_ids[intel_engines[i].instance] =
					current_logical_id++;
				break;
			}
		}
	}
}

static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
{
	int i;
	u8 map[MAX_ENGINE_INSTANCE + 1];

	for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
		map[i] = i;
	populate_logical_ids(gt, logical_ids, class, map, ARRAY_SIZE(map));
}

624
/**
625
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
626
 * @gt: pointer to struct intel_gt
627 628 629
 *
 * Return: non-zero if the initialization failed.
 */
630
int intel_engines_init_mmio(struct intel_gt *gt)
631
{
632
	struct drm_i915_private *i915 = gt->i915;
633
	const unsigned int engine_mask = init_engine_mask(gt);
634
	unsigned int mask = 0;
635 636
	unsigned int i, class;
	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
637
	int err;
638

639 640 641
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
642

643
	if (i915_inject_probe_failure(i915))
644 645
		return -ENODEV;

646 647
	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
		setup_logical_ids(gt, logical_ids, class);
648

649 650
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			u8 instance = intel_engines[i].instance;
651

652 653 654 655 656 657 658 659 660 661 662
			if (intel_engines[i].class != class ||
			    !HAS_ENGINE(gt, i))
				continue;

			err = intel_engine_setup(gt, i,
						 logical_ids[instance]);
			if (err)
				goto cleanup;

			mask |= BIT(i);
		}
663 664 665 666 667 668 669
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
670
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
671
		gt->info.engine_mask = mask;
672

673
	gt->info.num_engines = hweight32(mask);
674

675
	intel_gt_check_and_clear_faults(gt);
676

677
	intel_setup_engine_capabilities(gt);
678

679 680
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

681 682 683
	return 0;

cleanup:
684
	intel_engines_free(gt);
685 686 687
	return err;
}

688
void intel_engine_init_execlists(struct intel_engine_cs *engine)
689 690 691
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

692
	execlists->port_mask = 1;
693
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
694 695
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

696 697 698
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
699 700
}

701
static void cleanup_status_page(struct intel_engine_cs *engine)
702
{
703 704
	struct i915_vma *vma;

705 706 707
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

708 709 710
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
711

712 713 714 715
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
716
	i915_gem_object_put(vma->obj);
717 718 719
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
720
				struct i915_gem_ww_ctx *ww,
721 722 723 724
				struct i915_vma *vma)
{
	unsigned int flags;

725
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
726 727 728 729 730 731 732 733 734 735 736
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
737
		flags = PIN_MAPPABLE;
738
	else
739
		flags = PIN_HIGH;
740

741
	return i915_ggtt_pin(vma, ww, 0, flags);
742 743 744 745 746
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
747
	struct i915_gem_ww_ctx ww;
748 749 750 751
	struct i915_vma *vma;
	void *vaddr;
	int ret;

752 753
	INIT_LIST_HEAD(&engine->status_page.timelines);

754 755 756 757 758 759 760
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
761 762
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
763 764
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
765 766 767
		return PTR_ERR(obj);
	}

768
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
769

770
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
771 772
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
773
		goto err_put;
774 775
	}

776 777 778 779 780 781 782 783
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

784 785 786
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
787
		goto err_unpin;
788 789
	}

790
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
791
	engine->status_page.vma = vma;
792

793
err_unpin:
794 795
	if (ret)
		i915_vma_unpin(vma);
796
err:
797 798 799 800 801 802 803 804 805
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
806 807 808
	return ret;
}

809
static int engine_setup_common(struct intel_engine_cs *engine)
810 811 812
{
	int err;

813 814
	init_llist_head(&engine->barrier_tasks);

815 816 817 818
	err = init_status_page(engine);
	if (err)
		return err;

819 820 821 822 823 824
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

825 826 827 828 829
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
830
	engine->sched_engine->private_data = engine;
831

832 833 834 835
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

836 837
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
838
	intel_engine_init_retire(engine);
839

840 841
	/* Use the whole device by default */
	engine->sseu =
842
		intel_sseu_from_device_info(&engine->gt->info.sseu);
843

844 845 846 847
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

848
	if (GRAPHICS_VER(engine->i915) >= 12)
849 850
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

851
	return 0;
852

853
err_cmd_parser:
854 855
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
856
	intel_breadcrumbs_put(engine->breadcrumbs);
857 858 859
err_status:
	cleanup_status_page(engine);
	return err;
860 861
}

862 863 864
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
865
	u32 cs[2048];
866 867
};

868
static int measure_breadcrumb_dw(struct intel_context *ce)
869
{
870
	struct intel_engine_cs *engine = ce->engine;
871
	struct measure_breadcrumb *frame;
872
	int dw;
873

874
	GEM_BUG_ON(!engine->gt->scratch);
875 876 877 878 879

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

880 881 882
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
883
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
884

885 886
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
887 888
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
889 890 891
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
892

893
	mutex_lock(&ce->timeline->mutex);
894
	spin_lock_irq(&engine->sched_engine->lock);
895

896
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
897

898
	spin_unlock_irq(&engine->sched_engine->lock);
899
	mutex_unlock(&ce->timeline->mutex);
900

901
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
902

903
	kfree(frame);
904 905 906
	return dw;
}

907 908 909 910 911 912 913
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
914 915 916 917
{
	struct intel_context *ce;
	int err;

918
	ce = intel_context_create(engine);
919 920 921
	if (IS_ERR(ce))
		return ce;

922
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
923
	ce->timeline = page_pack_bits(NULL, hwsp);
924 925
	ce->ring = NULL;
	ce->ring_size = ring_size;
926 927 928

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
929

930
	err = intel_context_pin(ce); /* perma-pin so it is always available */
931 932 933 934 935
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

936 937
	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);

938 939 940 941 942 943
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
944
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
945

946 947 948
	return ce;
}

949
void intel_engine_destroy_pinned_context(struct intel_context *ce)
950 951 952 953 954 955 956 957 958 959
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

960
	list_del(&ce->pinned_contexts_link);
961 962 963 964
	intel_context_unpin(ce);
	intel_context_put(ce);
}

965 966 967 968 969
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

970 971 972
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
973 974
}

975 976 977 978 979 980 981 982 983 984 985
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
986
static int engine_init_common(struct intel_engine_cs *engine)
987
{
988
	struct intel_context *ce;
989 990
	int ret;

991 992
	engine->set_default_submission(engine);

993 994
	/*
	 * We may need to do things with the shrinker which
995 996 997 998 999 1000
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
1001 1002 1003 1004
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

1005 1006 1007 1008 1009
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
1010
	engine->kernel_context = ce;
1011

1012
	return 0;
1013 1014

err_context:
1015
	intel_engine_destroy_pinned_context(ce);
1016
	return ret;
1017
}
1018

1019 1020 1021 1022 1023 1024 1025
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

1026 1027
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
1028
		setup = intel_guc_submission_setup;
1029 1030
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
1031
		setup = intel_execlists_submission_setup;
1032 1033
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
1034
		setup = intel_ring_submission_setup;
1035
	}
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

1056 1057 1058 1059 1060 1061 1062 1063 1064
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1065
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1066

1067
	i915_sched_engine_put(engine->sched_engine);
1068
	intel_breadcrumbs_put(engine->breadcrumbs);
1069

1070
	intel_engine_fini_retire(engine);
1071
	intel_engine_cleanup_cmd_parser(engine);
1072

1073
	if (engine->default_state)
1074
		fput(engine->default_state);
1075

1076
	if (engine->kernel_context)
1077
		intel_engine_destroy_pinned_context(engine->kernel_context);
1078

1079
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1080
	cleanup_status_page(engine);
1081

1082
	intel_wa_list_free(&engine->ctx_wa_list);
1083
	intel_wa_list_free(&engine->wa_list);
1084
	intel_wa_list_free(&engine->whitelist);
1085
}
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1101
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1102
{
1103 1104
	struct drm_i915_private *i915 = engine->i915;

1105 1106
	u64 acthd;

1107
	if (GRAPHICS_VER(i915) >= 8)
1108
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1109
	else if (GRAPHICS_VER(i915) >= 4)
1110
		acthd = ENGINE_READ(engine, RING_ACTHD);
1111
	else
1112
		acthd = ENGINE_READ(engine, ACTHD);
1113 1114 1115 1116

	return acthd;
}

1117
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1118 1119 1120
{
	u64 bbaddr;

1121
	if (GRAPHICS_VER(engine->i915) >= 8)
1122
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1123
	else
1124
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1125 1126 1127

	return bbaddr;
}
1128

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1144 1145 1146
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1147
{
1148
	struct intel_uncore *uncore = engine->uncore;
1149
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1150 1151
	int err;

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1168
	if (GRAPHICS_VER(engine->i915) < 3)
1169 1170
		return -ENODEV;

1171
	ENGINE_TRACE(engine, "\n");
1172
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1186 1187 1188 1189 1190
	}

	return err;
}

1191 1192
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1193
	ENGINE_TRACE(engine, "\n");
1194

1195
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1196 1197
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1209
static u32
1210 1211
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1212
{
1213 1214
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1215 1216 1217
}

/* NB: please notice the memset */
1218
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1219 1220
			       struct intel_instdone *instdone)
{
1221
	struct drm_i915_private *i915 = engine->i915;
1222
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1223
	struct intel_uncore *uncore = engine->uncore;
1224 1225 1226
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1227
	int iter;
1228 1229 1230

	memset(instdone, 0, sizeof(*instdone));

1231
	if (GRAPHICS_VER(i915) >= 8) {
1232 1233
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1234

1235
		if (engine->id != RCS0)
1236
			return;
1237

1238 1239
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1240
		if (GRAPHICS_VER(i915) >= 12) {
1241 1242 1243 1244 1245
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1265
		}
1266 1267 1268 1269 1270 1271 1272

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1273
	} else if (GRAPHICS_VER(i915) >= 7) {
1274 1275
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1276

1277
		if (engine->id != RCS0)
1278
			return;
1279

1280 1281 1282 1283 1284 1285
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1286
	} else if (GRAPHICS_VER(i915) >= 4) {
1287 1288
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1289
		if (engine->id == RCS0)
1290
			/* HACK: Using the wrong struct member */
1291 1292
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1293
	} else {
1294
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1295 1296
	}
}
1297

1298 1299 1300 1301
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1302 1303 1304
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1305
	if (!intel_engine_pm_get_if_awake(engine))
1306
		return true;
1307

1308
	/* First check that no commands are left in the ring */
1309 1310
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1311
		idle = false;
1312

1313
	/* No bit for gen2, so assume the CS parser is idle */
1314
	if (GRAPHICS_VER(engine->i915) > 2 &&
1315
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1316 1317
		idle = false;

1318
	intel_engine_pm_put(engine);
1319 1320 1321 1322

	return idle;
}

1323
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1324
{
1325
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1326

1327
	if (!t->callback)
1328 1329
		return;

1330 1331 1332 1333
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1334
			t->callback(t);
1335
		tasklet_unlock(t);
1336
	}
1337
	local_bh_enable();
1338 1339 1340 1341

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1342 1343
}

1344 1345 1346 1347 1348 1349 1350 1351 1352
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1353
	/* More white lies, if wedged, hw state is inconsistent */
1354
	if (intel_gt_is_wedged(engine->gt))
1355 1356
		return true;

1357
	if (!intel_engine_pm_is_awake(engine))
1358 1359
		return true;

1360
	/* Waiting to drain ELSP? */
1361
	intel_synchronize_hardirq(engine->i915);
1362
	intel_engine_flush_submission(engine);
1363

1364
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1365
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1366 1367
		return false;

1368
	/* Ring stopped? */
1369
	return ring_is_idle(engine);
1370 1371
}

1372
bool intel_engines_are_idle(struct intel_gt *gt)
1373 1374 1375 1376
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1377 1378
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1379 1380
	 * report that it is still busy, even though we have stopped using it.
	 */
1381
	if (intel_gt_is_wedged(gt))
1382 1383
		return true;

1384
	/* Already parked (and passed an idleness test); must still be idle */
1385
	if (!READ_ONCE(gt->awake))
1386 1387
		return true;

1388
	for_each_engine(engine, gt, id) {
1389 1390 1391 1392 1393 1394 1395
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1420
void intel_engines_reset_default_submission(struct intel_gt *gt)
1421 1422 1423 1424
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1425 1426 1427 1428
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1429
		engine->set_default_submission(engine);
1430
	}
1431 1432
}

1433 1434
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1435
	switch (GRAPHICS_VER(engine->i915)) {
1436 1437 1438 1439 1440
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1441 1442
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1443 1444 1445 1446 1447 1448 1449
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1450 1451 1452 1453 1454
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1455
	 * Even though we are holding the engine->sched_engine->lock here, there
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1515
		drm_printf(m, "[%04zx] %s\n", pos, line);
1516 1517 1518 1519 1520 1521

		prev = buf + pos;
		skip = false;
	}
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1533
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1534
					 struct drm_printer *m)
1535 1536
{
	struct drm_i915_private *dev_priv = engine->i915;
1537
	struct intel_engine_execlists * const execlists = &engine->execlists;
1538 1539
	u64 addr;

1540
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1541
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1542 1543 1544 1545 1546 1547
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1548
	drm_printf(m, "\tRING_START: 0x%08x\n",
1549
		   ENGINE_READ(engine, RING_START));
1550
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1551
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1552
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1553
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1554
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1555 1556
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1557
	if (GRAPHICS_VER(engine->i915) > 2) {
1558
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1559 1560
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1561
	}
1562

1563
	if (GRAPHICS_VER(dev_priv) >= 6) {
1564
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1565
			   ENGINE_READ(engine, RING_IMR));
1566 1567 1568 1569 1570 1571
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1572 1573
	}

1574 1575 1576 1577 1578 1579
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1580
	if (GRAPHICS_VER(dev_priv) >= 8)
1581
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1582
	else if (GRAPHICS_VER(dev_priv) >= 4)
1583
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1584
	else
1585
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1586 1587
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1588
	if (GRAPHICS_VER(dev_priv) >= 4) {
1589
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1590
			   ENGINE_READ(engine, RING_IPEIR));
1591
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1592
			   ENGINE_READ(engine, RING_IPEHR));
1593
	} else {
1594 1595
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1596
	}
1597

1598
	if (intel_engine_uses_guc(engine)) {
1599 1600
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1601
		struct i915_request * const *port, *rq;
1602 1603
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1604
		const u8 num_entries = execlists->csb_size;
1605
		unsigned int idx;
1606
		u8 read, write;
1607

1608
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1609
			   yesno(test_bit(TASKLET_STATE_SCHED,
1610 1611
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1612
			   repr_timer(&engine->execlists.preempt),
1613
			   repr_timer(&engine->execlists.timer));
1614

1615 1616 1617
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1618 1619 1620 1621 1622
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1623
		if (read >= num_entries)
1624
			read = 0;
1625
		if (write >= num_entries)
1626 1627
			write = 0;
		if (read > write)
1628
			write += num_entries;
1629
		while (read < write) {
1630 1631 1632
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1633 1634
		}

1635
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1636
		rcu_read_lock();
1637
		for (port = execlists->active; (rq = *port); port++) {
1638
			char hdr[160];
1639 1640
			int len;

1641
			len = scnprintf(hdr, sizeof(hdr),
1642
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1643
					(int)(port - execlists->active),
1644 1645 1646
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1647
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1648
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1649
			i915_request_show(m, rq, hdr, 0);
1650 1651
		}
		for (port = execlists->pending; (rq = *port); port++) {
1652 1653
			char hdr[160];
			int len;
1654

1655
			len = scnprintf(hdr, sizeof(hdr),
1656
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1657
					(int)(port - execlists->pending),
1658 1659 1660
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1661 1662
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1663
			i915_request_show(m, rq, hdr, 0);
1664
		}
1665
		rcu_read_unlock();
1666
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1667
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1668
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1669
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1670
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1671
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1672
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1673
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1674
	}
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1848 1849 1850 1851 1852
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1853
	struct i915_request *rq;
1854
	intel_wakeref_t wakeref;
1855
	unsigned long flags;
1856
	ktime_t dummy;
1857 1858 1859 1860 1861 1862 1863 1864 1865

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1866
	if (intel_gt_is_wedged(engine->gt))
1867 1868
		drm_printf(m, "*** WEDGED ***\n");

1869
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1870 1871
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1872 1873
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1874 1875 1876 1877
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1878
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1879
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1880 1881 1882 1883 1884 1885 1886

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1887 1888 1889
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1890
	print_properties(engine, m);
1891

1892
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1893
	engine_dump_active_requests(engine, m);
1894

1895 1896 1897
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1898

1899
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1900
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1901
	if (wakeref) {
1902
		intel_engine_print_registers(engine, m);
1903
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1904 1905 1906
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1907

C
Chris Wilson 已提交
1908
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1909

1910
	drm_printf(m, "HWSP:\n");
1911
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1912

1913
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1914 1915

	intel_engine_print_breadcrumbs(engine, m);
1916 1917
}

1918 1919
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1920 1921 1922 1923 1924 1925 1926
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1927
	*now = ktime_get();
1928
	if (READ_ONCE(engine->stats.active))
1929
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1930 1931 1932 1933 1934 1935 1936

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1937
 * @now: monotonic timestamp of sampling
1938 1939 1940
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1941
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1942
{
1943
	unsigned int seq;
1944 1945
	ktime_t total;

1946
	do {
1947
		seq = read_seqcount_begin(&engine->stats.lock);
1948
		total = __intel_engine_get_busy_time(engine, now);
1949
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1950 1951 1952 1953

	return total;
}

1954 1955
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
1956
			    unsigned int count, unsigned long flags)
1957 1958 1959 1960
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

1961
	if (count == 1 && !(flags & FORCE_VIRTUAL))
1962 1963 1964
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
1965
	return siblings[0]->cops->create_virtual(siblings, count, flags);
1966 1967
}

1968
struct i915_request *
1969
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1970 1971 1972
{
	struct i915_request *request, *active = NULL;

1973 1974 1975 1976 1977 1978 1979
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1991
	lockdep_assert_held(&engine->sched_engine->lock);
1992 1993 1994 1995 1996 1997 1998

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1999
			if (__i915_request_is_complete(request))
2000 2001 2002 2003 2004 2005 2006 2007 2008
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

2009 2010
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
2011
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2012
			continue;
2013 2014 2015 2016 2017 2018 2019 2020

		active = request;
		break;
	}

	return active;
}

2021
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2022
#include "mock_engine.c"
2023
#include "selftest_engine.c"
2024
#include "selftest_engine_cs.c"
2025
#endif