intel_engine_cs.c 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		/* fall through */
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278 279
	struct intel_engine_cs *engine;

280 281 282
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

283 284 285
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 294
		return -EINVAL;

295 296 297
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
298

299 300
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

301
	engine->id = id;
302
	engine->legacy_idx = INVALID_ENGINE;
303
	engine->mask = BIT(id);
304 305 306
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
307
	engine->hw_id = engine->guc_id = info->hw_id;
308
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
309

310 311
	engine->class = info->class;
	engine->instance = info->instance;
312
	__sprint_engine_name(engine);
313

314 315
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 317
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
318 319
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
320 321
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
322

323
	engine->context_size = intel_engine_context_size(gt, engine->class);
324 325
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
326
	if (engine->context_size)
327
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
328

329 330 331
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

332
	ewma__engine_latency_init(&engine->latency);
333
	seqlock_init(&engine->stats.lock);
334

335 336
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

337 338 339
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

340
	gt->engine_class[info->class][info->instance] = engine;
341
	gt->engine[id] = engine;
342 343 344

	gt->i915->engine[id] = engine;

345
	return 0;
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

378
static void intel_setup_engine_capabilities(struct intel_gt *gt)
379 380 381 382
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

383
	for_each_engine(engine, gt, id)
384 385 386
		__setup_engine_capabilities(engine);
}

387
/**
388
 * intel_engines_release() - free the resources allocated for Command Streamers
389
 * @gt: pointer to struct intel_gt
390
 */
391
void intel_engines_release(struct intel_gt *gt)
392 393 394 395
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

396 397 398 399 400 401 402 403 404 405 406 407 408
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

409
	/* Decouple the backend; but keep the layout for late GPU resets */
410
	for_each_engine(engine, gt, id) {
411
		intel_wakeref_wait_for_idle(&engine->wakeref);
412 413
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

414 415 416 417 418 419 420 421
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));

422
		gt->i915->engine[id] = NULL;
423 424 425
	}
}

426 427 428 429 430 431 432 433 434 435 436
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, gt, id) {
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

437
/**
438
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
439
 * @gt: pointer to struct intel_gt
440 441 442
 *
 * Return: non-zero if the initialization failed.
 */
443
int intel_engines_init_mmio(struct intel_gt *gt)
444
{
445
	struct drm_i915_private *i915 = gt->i915;
446 447
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
448
	unsigned int mask = 0;
449
	unsigned int i;
450
	int err;
451

452 453 454
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
455

456
	if (i915_inject_probe_failure(i915))
457 458
		return -ENODEV;

459
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
460
		if (!HAS_ENGINE(i915, i))
461 462
			continue;

463
		err = intel_engine_setup(gt, i);
464 465 466
		if (err)
			goto cleanup;

467
		mask |= BIT(i);
468 469 470 471 472 473 474
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
475
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
476
		device_info->engine_mask = mask;
477

478
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
479

480
	intel_gt_check_and_clear_faults(gt);
481

482
	intel_setup_engine_capabilities(gt);
483

484 485 486
	return 0;

cleanup:
487
	intel_engines_free(gt);
488 489 490
	return err;
}

491
void intel_engine_init_execlists(struct intel_engine_cs *engine)
492 493 494
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

495
	execlists->port_mask = 1;
496
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
497 498
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

499 500 501 502
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

503
	execlists->queue_priority_hint = INT_MIN;
504
	execlists->queue = RB_ROOT_CACHED;
505 506
}

507
static void cleanup_status_page(struct intel_engine_cs *engine)
508
{
509 510
	struct i915_vma *vma;

511 512 513
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

514 515 516
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
517

518 519 520 521
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
522
	i915_gem_object_put(vma->obj);
523 524 525 526 527 528 529
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

530
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
531 532 533 534 535 536 537 538 539 540 541
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
542
		flags = PIN_MAPPABLE;
543
	else
544
		flags = PIN_HIGH;
545

546
	return i915_ggtt_pin(vma, 0, flags);
547 548 549 550 551 552 553 554 555
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

556 557 558 559 560 561 562
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
563 564
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
565 566
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
567 568 569
		return PTR_ERR(obj);
	}

570
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
571

572
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
573 574 575 576 577 578 579 580
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
581
		goto err;
582 583
	}

584
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
585
	engine->status_page.vma = vma;
586 587 588 589 590 591 592

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

593 594 595
	return 0;

err_unpin:
596
	i915_gem_object_unpin_map(obj);
597 598 599 600 601
err:
	i915_gem_object_put(obj);
	return ret;
}

602
static int engine_setup_common(struct intel_engine_cs *engine)
603 604 605
{
	int err;

606 607
	init_llist_head(&engine->barrier_tasks);

608 609 610 611
	err = init_status_page(engine);
	if (err)
		return err;

612
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
613
	intel_engine_init_breadcrumbs(engine);
614
	intel_engine_init_execlists(engine);
615
	intel_engine_init_cmd_parser(engine);
616
	intel_engine_init__pm(engine);
617
	intel_engine_init_retire(engine);
618

619 620
	intel_engine_pool_init(&engine->pool);

621 622 623 624
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

625 626 627 628
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

629 630 631
	return 0;
}

632 633
struct measure_breadcrumb {
	struct i915_request rq;
634
	struct intel_timeline timeline;
635 636 637 638
	struct intel_ring ring;
	u32 cs[1024];
};

639
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
640 641
{
	struct measure_breadcrumb *frame;
642
	int dw = -ENOMEM;
643

644
	GEM_BUG_ON(!engine->gt->scratch);
645 646 647 648 649

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

650 651 652
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
653
		goto out_frame;
654

655 656
	mutex_lock(&frame->timeline.mutex);

657 658 659 660 661 662 663 664
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
665
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
666

667
	dw = intel_timeline_pin(&frame->timeline);
668 669 670
	if (dw < 0)
		goto out_timeline;

671
	spin_lock_irq(&engine->active.lock);
672
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
673 674
	spin_unlock_irq(&engine->active.lock);

675
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
676

677
	intel_timeline_unpin(&frame->timeline);
678

679
out_timeline:
680
	mutex_unlock(&frame->timeline.mutex);
681
	intel_timeline_fini(&frame->timeline);
682 683
out_frame:
	kfree(frame);
684 685 686
	return dw;
}

687 688 689 690
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
691
	INIT_LIST_HEAD(&engine->active.hold);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

709 710 711
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
712
	static struct lock_class_key kernel;
713 714 715
	struct intel_context *ce;
	int err;

716
	ce = intel_context_create(engine);
717 718 719
	if (IS_ERR(ce))
		return ce;

720
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
721

722
	err = intel_context_pin(ce); /* perma-pin so it is always available */
723 724 725 726 727
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

728 729 730 731 732 733 734 735
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

736 737 738
	return ce;
}

739 740 741 742 743 744 745 746 747 748 749
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
750
static int engine_init_common(struct intel_engine_cs *engine)
751
{
752
	struct intel_context *ce;
753 754
	int ret;

755 756
	engine->set_default_submission(engine);

757 758 759 760 761 762
	ret = measure_breadcrumb_dw(engine);
	if (ret < 0)
		return ret;

	engine->emit_fini_breadcrumb_dw = ret;

763 764
	/*
	 * We may need to do things with the shrinker which
765 766 767 768 769 770
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
771 772 773 774 775
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
776

777
	return 0;
778
}
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

811 812 813 814 815 816 817 818 819
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
820
	GEM_BUG_ON(!list_empty(&engine->active.requests));
821
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
822

823
	cleanup_status_page(engine);
824

825
	intel_engine_fini_retire(engine);
826
	intel_engine_pool_fini(&engine->pool);
827
	intel_engine_fini_breadcrumbs(engine);
828
	intel_engine_cleanup_cmd_parser(engine);
829

830 831 832
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

833 834 835 836
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
837
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
838

839
	intel_wa_list_free(&engine->ctx_wa_list);
840
	intel_wa_list_free(&engine->wa_list);
841
	intel_wa_list_free(&engine->whitelist);
842
}
843

844
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
845
{
846 847
	struct drm_i915_private *i915 = engine->i915;

848 849
	u64 acthd;

850 851 852 853
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
854
	else
855
		acthd = ENGINE_READ(engine, ACTHD);
856 857 858 859

	return acthd;
}

860
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
861 862 863
{
	u64 bbaddr;

864 865
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
866
	else
867
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
868 869 870

	return bbaddr;
}
871

872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

887 888
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
889
	struct intel_uncore *uncore = engine->uncore;
890 891 892 893
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

894
	if (INTEL_GEN(engine->i915) < 3)
895 896
		return -ENODEV;

897
	ENGINE_TRACE(engine, "\n");
898

899
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
900 901

	err = 0;
902
	if (__intel_wait_for_register_fw(uncore,
903
					 mode, MODE_IDLE, MODE_IDLE,
904
					 1000, stop_timeout(engine),
905
					 NULL)) {
906
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
907 908 909 910
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
911
	intel_uncore_posting_read_fw(uncore, mode);
912 913 914 915

	return err;
}

916 917
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
918
	ENGINE_TRACE(engine, "\n");
919

920
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
921 922
}

923 924 925 926 927 928 929 930 931 932 933
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

934
static u32
935 936
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
937
{
938 939
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
940
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
941 942
	enum forcewake_domains fw_domains;

943
	if (INTEL_GEN(i915) >= 11) {
944 945
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
946
	} else {
947 948
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
949 950
	}

951
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
952
						    FW_REG_READ);
953
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
954 955 956
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

957 958
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
959

960
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
961

962 963
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
964
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
965

966
	val = intel_uncore_read_fw(uncore, reg);
967

968 969
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
970

971
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
972

973 974
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
975

976
	return val;
977 978 979
}

/* NB: please notice the memset */
980
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
981 982
			       struct intel_instdone *instdone)
{
983
	struct drm_i915_private *i915 = engine->i915;
984
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
985
	struct intel_uncore *uncore = engine->uncore;
986 987 988 989 990 991
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

992
	switch (INTEL_GEN(i915)) {
993
	default:
994 995
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
996

997
		if (engine->id != RCS0)
998 999
			break;

1000 1001
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1002 1003 1004 1005 1006 1007
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1008
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1009
			instdone->sampler[slice][subslice] =
1010
				read_subslice_reg(engine, slice, subslice,
1011 1012
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1013
				read_subslice_reg(engine, slice, subslice,
1014 1015 1016 1017
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1018 1019
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1020

1021
		if (engine->id != RCS0)
1022 1023
			break;

1024 1025 1026 1027 1028 1029
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1030 1031 1032 1033 1034

		break;
	case 6:
	case 5:
	case 4:
1035 1036
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1037
		if (engine->id == RCS0)
1038
			/* HACK: Using the wrong struct member */
1039 1040
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1041 1042 1043
		break;
	case 3:
	case 2:
1044
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1045 1046 1047
		break;
	}
}
1048

1049 1050 1051 1052
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1053 1054 1055
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1056
	if (!intel_engine_pm_get_if_awake(engine))
1057
		return true;
1058

1059
	/* First check that no commands are left in the ring */
1060 1061
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1062
		idle = false;
1063

1064
	/* No bit for gen2, so assume the CS parser is idle */
1065
	if (INTEL_GEN(engine->i915) > 2 &&
1066
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1067 1068
		idle = false;

1069
	intel_engine_pm_put(engine);
1070 1071 1072 1073

	return idle;
}

1074
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1093 1094 1095 1096 1097 1098 1099 1100 1101
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1102
	/* More white lies, if wedged, hw state is inconsistent */
1103
	if (intel_gt_is_wedged(engine->gt))
1104 1105
		return true;

1106
	if (!intel_engine_pm_is_awake(engine))
1107 1108
		return true;

1109
	/* Waiting to drain ELSP? */
1110
	if (execlists_active(&engine->execlists)) {
1111
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1112

1113
		intel_engine_flush_submission(engine);
1114

1115
		if (execlists_active(&engine->execlists))
1116 1117
			return false;
	}
1118

1119
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1120
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1121 1122
		return false;

1123
	/* Ring stopped? */
1124
	return ring_is_idle(engine);
1125 1126
}

1127
bool intel_engines_are_idle(struct intel_gt *gt)
1128 1129 1130 1131
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1132 1133
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1134 1135
	 * report that it is still busy, even though we have stopped using it.
	 */
1136
	if (intel_gt_is_wedged(gt))
1137 1138
		return true;

1139
	/* Already parked (and passed an idleness test); must still be idle */
1140
	if (!READ_ONCE(gt->awake))
1141 1142
		return true;

1143
	for_each_engine(engine, gt, id) {
1144 1145 1146 1147 1148 1149 1150
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1151
void intel_engines_reset_default_submission(struct intel_gt *gt)
1152 1153 1154 1155
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1156
	for_each_engine(engine, gt, id)
1157 1158 1159
		engine->set_default_submission(engine);
}

1160 1161 1162 1163 1164 1165 1166 1167
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1168 1169
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1170 1171 1172 1173 1174 1175 1176
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1177 1178 1179
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1180 1181
{
	if (attr->priority == I915_PRIORITY_INVALID)
1182 1183 1184 1185
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1186

1187
	return x;
1188 1189
}

1190
static void print_request(struct drm_printer *m,
1191
			  struct i915_request *rq,
1192 1193
			  const char *prefix)
{
1194
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1195
	char buf[80] = "";
1196 1197 1198
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1199

1200
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1201
		   prefix,
1202
		   rq->fence.context, rq->fence.seqno,
1203 1204 1205
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1206 1207
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1208
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1209 1210
			    &rq->fence.flags) ? "-" :
		   "",
1211
		   buf,
1212
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1213
		   name);
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1238
		drm_printf(m, "[%04zx] %s\n", pos, line);
1239 1240 1241 1242 1243 1244

		prev = buf + pos;
		skip = false;
	}
}

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1277
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1278
					 struct drm_printer *m)
1279 1280
{
	struct drm_i915_private *dev_priv = engine->i915;
1281
	struct intel_engine_execlists * const execlists = &engine->execlists;
1282 1283
	u64 addr;

1284
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1285
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1286
	drm_printf(m, "\tRING_START: 0x%08x\n",
1287
		   ENGINE_READ(engine, RING_START));
1288
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1289
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1290
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1291
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1292
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1293 1294
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1295 1296
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1297 1298
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1299
	}
1300 1301

	if (INTEL_GEN(dev_priv) >= 6) {
1302
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1303
			   ENGINE_READ(engine, RING_IMR));
1304 1305 1306 1307 1308 1309
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1310 1311
	}

1312 1313 1314 1315 1316 1317
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1318
	if (INTEL_GEN(dev_priv) >= 8)
1319
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1320
	else if (INTEL_GEN(dev_priv) >= 4)
1321
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1322
	else
1323
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1324 1325 1326 1327
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1328
			   ENGINE_READ(engine, RING_IPEIR));
1329
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1330
			   ENGINE_READ(engine, RING_IPEHR));
1331
	} else {
1332 1333
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1334
	}
1335

1336
	if (HAS_EXECLISTS(dev_priv)) {
1337
		struct i915_request * const *port, *rq;
1338 1339
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1340
		const u8 num_entries = execlists->csb_size;
1341
		unsigned int idx;
1342
		u8 read, write;
1343

1344
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1345 1346 1347
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1348
			   repr_timer(&engine->execlists.preempt),
1349
			   repr_timer(&engine->execlists.timer));
1350

1351 1352 1353
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1354 1355 1356 1357 1358
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1359
		if (read >= num_entries)
1360
			read = 0;
1361
		if (write >= num_entries)
1362 1363
			write = 0;
		if (read > write)
1364
			write += num_entries;
1365
		while (read < write) {
1366 1367 1368
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1369 1370
		}

1371
		execlists_active_lock_bh(execlists);
1372
		rcu_read_lock();
1373 1374 1375 1376 1377
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1378
				       "\t\tActive[%d]: ",
1379
				       (int)(port - execlists->active));
1380 1381 1382
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1383 1384 1385
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1386
						tl ? tl->hwsp_offset : 0,
1387
						hwsp_seqno(rq));
1388 1389 1390 1391

				if (tl)
					intel_timeline_put(tl);
			}
1392 1393 1394 1395
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1396
			struct intel_timeline *tl = get_timeline(rq);
1397
			char hdr[80];
1398

1399 1400 1401 1402
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1403
				 tl ? tl->hwsp_offset : 0,
1404 1405
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1406 1407 1408

			if (tl)
				intel_timeline_put(tl);
1409
		}
1410
		rcu_read_unlock();
1411
		execlists_active_unlock_bh(execlists);
1412 1413
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1414
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1415
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1416
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1417
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1418
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1419
	}
1420 1421
}

1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1466 1467 1468 1469 1470
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1471
	struct i915_request *rq;
1472
	intel_wakeref_t wakeref;
1473
	unsigned long flags;
1474 1475 1476 1477 1478 1479 1480 1481 1482

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1483
	if (intel_gt_is_wedged(engine->gt))
1484 1485
		drm_printf(m, "*** WEDGED ***\n");

1486
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1487 1488
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1489 1490
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1491 1492 1493 1494 1495 1496 1497

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1498 1499 1500 1501 1502 1503
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1504
	spin_lock_irqsave(&engine->active.lock, flags);
1505
	rq = intel_engine_find_active_request(engine);
1506
	if (rq) {
1507 1508
		struct intel_timeline *tl = get_timeline(rq);

1509
		print_request(m, rq, "\t\tactive ");
1510

1511
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1512
			   i915_ggtt_offset(rq->ring->vma));
1513
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1514
			   rq->ring->head);
1515
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1516
			   rq->ring->tail);
1517 1518 1519 1520
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1521 1522 1523 1524 1525 1526

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1527 1528

		print_request_ring(m, rq);
1529

1530
		if (rq->context->lrc_reg_state) {
1531
			drm_printf(m, "Logical Ring Context:\n");
1532
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1533
		}
1534
	}
1535
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1536
	spin_unlock_irqrestore(&engine->active.lock, flags);
1537

1538
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1539
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1540
	if (wakeref) {
1541
		intel_engine_print_registers(engine, m);
1542
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1543 1544 1545
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1546

1547
	intel_execlists_show_requests(engine, m, print_request, 8);
1548

1549
	drm_printf(m, "HWSP:\n");
1550
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1551

1552
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1553 1554

	intel_engine_print_breadcrumbs(engine, m);
1555 1556
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1567
	struct intel_engine_execlists *execlists = &engine->execlists;
1568
	unsigned long flags;
1569
	int err = 0;
1570

1571
	if (!intel_engine_supports_stats(engine))
1572 1573
		return -ENODEV;

1574 1575
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1576 1577 1578 1579 1580 1581

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1582
	if (engine->stats.enabled++ == 0) {
1583 1584
		struct i915_request * const *port;
		struct i915_request *rq;
1585

1586
		engine->stats.enabled_at = ktime_get();
1587 1588

		/* XXX submission method oblivious? */
1589
		for (port = execlists->active; (rq = *port); port++)
1590
			engine->stats.active++;
1591 1592 1593

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1594
			if (!intel_context_inflight_count(rq->context))
1595
				engine->stats.active++;
1596 1597 1598 1599 1600
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1601

1602
unlock:
1603 1604
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1605

1606
	return err;
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1632
	unsigned int seq;
1633 1634
	ktime_t total;

1635 1636 1637 1638
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1653
	if (!intel_engine_supports_stats(engine))
1654 1655
		return;

1656
	write_seqlock_irqsave(&engine->stats.lock, flags);
1657 1658 1659 1660 1661
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1662
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1663 1664
}

1665 1666
static bool match_ring(struct i915_request *rq)
{
1667
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1688
	lockdep_assert_held(&engine->active.lock);
1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1706
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1707 1708 1709 1710
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1711
			continue;
1712 1713 1714

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1715
			continue;
1716 1717 1718 1719 1720 1721 1722 1723

		active = request;
		break;
	}

	return active;
}

1724
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1725
#include "mock_engine.c"
1726
#include "selftest_engine.c"
1727
#include "selftest_engine_cs.c"
1728
#endif