intel_engine_cs.c 52.4 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
39 40 41

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

42
#define MAX_MMIO_BASES 3
43
struct engine_info {
44 45
	u8 class;
	u8 instance;
46
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
47
	struct engine_mmio_base {
48
		u32 graphics_ver : 8;
49 50
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
51 52 53
};

static const struct engine_info intel_engines[] = {
54
	[RCS0] = {
55 56
		.class = RENDER_CLASS,
		.instance = 0,
57
		.mmio_bases = {
58
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
59
		},
60
	},
61
	[BCS0] = {
62 63
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
64
		.mmio_bases = {
65
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
66
		},
67
	},
68
	[VCS0] = {
69 70
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
71
		.mmio_bases = {
72 73 74
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
75
		},
76
	},
77
	[VCS1] = {
78 79
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
80
		.mmio_bases = {
81 82
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
83
		},
84
	},
85
	[VCS2] = {
86 87
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
88
		.mmio_bases = {
89
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
90
		},
91
	},
92
	[VCS3] = {
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
97
		},
98
	},
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
127
	[VECS0] = {
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130
		.mmio_bases = {
131 132
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
133
		},
134
	},
135
	[VECS1] = {
136 137
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
138
		.mmio_bases = {
139
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
140
		},
141
	},
142 143 144 145 146 147 148 149 150 151 152 153 154 155
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
156 157
};

158
/**
159
 * intel_engine_context_size() - return the size of the context for an engine
160
 * @gt: the gt
161 162 163 164 165 166 167 168 169 170 171
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
172
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
173
{
174
	struct intel_uncore *uncore = gt->uncore;
175 176 177 178 179 180
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
181
		switch (GRAPHICS_VER(gt->i915)) {
182
		default:
183
			MISSING_CASE(GRAPHICS_VER(gt->i915));
184
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185
		case 12:
186 187
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
188 189 190
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
191
			return GEN8_LR_CONTEXT_RENDER_SIZE;
192
		case 7:
193
			if (IS_HASWELL(gt->i915))
194 195
				return HSW_CXT_TOTAL_SIZE;

196
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
197 198 199
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
200
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
201 202 203
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
204
		case 4:
205 206 207 208 209 210 211 212 213 214
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
215
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
216
			drm_dbg(&gt->i915->drm,
217 218
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
219
				cxt_size - 1);
220
			return round_up(cxt_size * 64, PAGE_SIZE);
221 222 223 224 225 226 227 228 229
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
230
		fallthrough;
231 232 233
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
234
		if (GRAPHICS_VER(gt->i915) < 8)
235 236 237 238 239
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

240 241 242 243 244 245
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
246
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
247 248 249 250 251 252 253 254
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

255
static void __sprint_engine_name(struct intel_engine_cs *engine)
256
{
257 258 259 260 261 262 263 264
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
265 266
}

267 268 269 270 271 272
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
273
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
274 275
		return;

276
	if (GRAPHICS_VER(engine->i915) >= 3)
277
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
278
	else
279
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
280 281 282 283 284 285 286 287
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

288 289 290 291 292
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

293
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
294 295
{
	const struct engine_info *info = &intel_engines[id];
296
	struct drm_i915_private *i915 = gt->i915;
297
	struct intel_engine_cs *engine;
298
	u8 guc_class;
299

300 301
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
302 303
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
304

305 306 307
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

308
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
309 310
		return -EINVAL;

311
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
312 313
		return -EINVAL;

314
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
315 316
		return -EINVAL;

317 318 319
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
320

321 322
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

323
	engine->id = id;
324
	engine->legacy_idx = INVALID_ENGINE;
325
	engine->mask = BIT(id);
326
	engine->i915 = i915;
327 328
	engine->gt = gt;
	engine->uncore = gt->uncore;
329 330 331
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
332

333 334
	engine->irq_handler = nop_irq_handler;

335 336
	engine->class = info->class;
	engine->instance = info->instance;
337
	__sprint_engine_name(engine);
338

339 340
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
341 342
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
343 344
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
345 346
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
347 348
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
349

350
	/* Override to uninterruptible for OpenCL workloads. */
351
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
352 353
		engine->props.preempt_timeout_ms = 0;

354 355
	engine->defaults = engine->props; /* never to change again */

356
	engine->context_size = intel_engine_context_size(gt, engine->class);
357 358
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
359
	if (engine->context_size)
360
		DRIVER_CAPS(i915)->has_logical_contexts = true;
361

362
	ewma__engine_latency_init(&engine->latency);
363
	seqcount_init(&engine->stats.lock);
364

365 366
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

367 368 369
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

370
	gt->engine_class[info->class][info->instance] = engine;
371
	gt->engine[id] = engine;
372

373
	return 0;
374 375
}

376 377 378 379 380 381 382 383 384
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
385 386
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
387 388 389 390 391 392 393
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
394
		if ((GRAPHICS_VER(i915) >= 11 &&
395 396
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
397
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
398 399 400
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
401 402
		if (GRAPHICS_VER(i915) >= 9 &&
		    engine->gt->info.sfc_mask & BIT(engine->instance))
403 404 405 406 407
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

408
static void intel_setup_engine_capabilities(struct intel_gt *gt)
409 410 411 412
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

413
	for_each_engine(engine, gt, id)
414 415 416
		__setup_engine_capabilities(engine);
}

417
/**
418
 * intel_engines_release() - free the resources allocated for Command Streamers
419
 * @gt: pointer to struct intel_gt
420
 */
421
void intel_engines_release(struct intel_gt *gt)
422 423 424 425
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

426 427 428 429 430 431 432 433 434 435 436 437 438
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

439
	/* Decouple the backend; but keep the layout for late GPU resets */
440
	for_each_engine(engine, gt, id) {
441 442 443
		if (!engine->release)
			continue;

444 445 446
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

447 448 449 450
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
451 452 453
	}
}

454 455 456 457 458 459 460 461
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

462 463 464 465 466
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

467 468 469
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

470
	for_each_engine(engine, gt, id) {
471
		intel_engine_free_request_pool(engine);
472 473 474 475 476
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

477
static
478
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
479 480 481
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
482 483
	struct drm_i915_private *i915 = gt->i915;

484 485 486 487 488 489
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
490 491 492
	 *
	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
	 * in the fuse register that tells us whether a specific SFC is present.
493
	 */
494 495 496
	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
		return false;
	else if (GRAPHICS_VER(i915) == 12)
497 498 499 500 501 502 503 504 505
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

506 507 508 509 510 511 512 513 514 515 516 517 518
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
519
	struct intel_gt_info *info = &gt->info;
520 521 522
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
523
	u32 media_fuse, fuse1;
524 525 526
	u16 vdbox_mask;
	u16 vebox_mask;

527 528
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

529
	if (GRAPHICS_VER(i915) < 11)
530 531
		return info->engine_mask;

532 533 534 535 536 537 538 539
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
540 541 542 543 544

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

545 546 547 548 549 550 551
	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
	} else {
		gt->info.sfc_mask = ~0;
	}

552 553 554 555 556 557 558 559 560 561 562 563
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

564
		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
565
			gt->info.vdbox_sfc_access |= BIT(i);
566
		logical_vdbox++;
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

590
/**
591
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
592
 * @gt: pointer to struct intel_gt
593 594 595
 *
 * Return: non-zero if the initialization failed.
 */
596
int intel_engines_init_mmio(struct intel_gt *gt)
597
{
598
	struct drm_i915_private *i915 = gt->i915;
599
	const unsigned int engine_mask = init_engine_mask(gt);
600
	unsigned int mask = 0;
601
	unsigned int i;
602
	int err;
603

604 605 606
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
607

608
	if (i915_inject_probe_failure(i915))
609 610
		return -ENODEV;

611
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
612
		if (!HAS_ENGINE(gt, i))
613 614
			continue;

615
		err = intel_engine_setup(gt, i);
616 617 618
		if (err)
			goto cleanup;

619
		mask |= BIT(i);
620 621 622 623 624 625 626
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
627
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
628
		gt->info.engine_mask = mask;
629

630
	gt->info.num_engines = hweight32(mask);
631

632
	intel_gt_check_and_clear_faults(gt);
633

634
	intel_setup_engine_capabilities(gt);
635

636 637
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

638 639 640
	return 0;

cleanup:
641
	intel_engines_free(gt);
642 643 644
	return err;
}

645
void intel_engine_init_execlists(struct intel_engine_cs *engine)
646 647 648
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

649
	execlists->port_mask = 1;
650
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
651 652
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

653 654 655
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
656 657
}

658
static void cleanup_status_page(struct intel_engine_cs *engine)
659
{
660 661
	struct i915_vma *vma;

662 663 664
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

665 666 667
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
668

669 670 671 672
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
673
	i915_gem_object_put(vma->obj);
674 675 676
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
677
				struct i915_gem_ww_ctx *ww,
678 679 680 681
				struct i915_vma *vma)
{
	unsigned int flags;

682
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
683 684 685 686 687 688 689 690 691 692 693
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
694
		flags = PIN_MAPPABLE;
695
	else
696
		flags = PIN_HIGH;
697

698
	return i915_ggtt_pin(vma, ww, 0, flags);
699 700 701 702 703
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
704
	struct i915_gem_ww_ctx ww;
705 706 707 708
	struct i915_vma *vma;
	void *vaddr;
	int ret;

709 710
	INIT_LIST_HEAD(&engine->status_page.timelines);

711 712 713 714 715 716 717
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
718 719
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
720 721
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
722 723 724
		return PTR_ERR(obj);
	}

725
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
726

727
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
728 729
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
730
		goto err_put;
731 732
	}

733 734 735 736 737 738 739 740
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

741 742 743
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
744
		goto err_unpin;
745 746
	}

747
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
748
	engine->status_page.vma = vma;
749

750
err_unpin:
751 752
	if (ret)
		i915_vma_unpin(vma);
753
err:
754 755 756 757 758 759 760 761 762
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
763 764 765
	return ret;
}

766
static int engine_setup_common(struct intel_engine_cs *engine)
767 768 769
{
	int err;

770 771
	init_llist_head(&engine->barrier_tasks);

772 773 774 775
	err = init_status_page(engine);
	if (err)
		return err;

776 777 778 779 780 781
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

782 783 784 785 786
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
787
	engine->sched_engine->private_data = engine;
788

789 790 791 792
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

793 794
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
795
	intel_engine_init_retire(engine);
796

797 798
	/* Use the whole device by default */
	engine->sseu =
799
		intel_sseu_from_device_info(&engine->gt->info.sseu);
800

801 802 803 804
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

805
	if (GRAPHICS_VER(engine->i915) >= 12)
806 807
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

808
	return 0;
809

810
err_cmd_parser:
811 812
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
813
	intel_breadcrumbs_put(engine->breadcrumbs);
814 815 816
err_status:
	cleanup_status_page(engine);
	return err;
817 818
}

819 820 821
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
822
	u32 cs[2048];
823 824
};

825
static int measure_breadcrumb_dw(struct intel_context *ce)
826
{
827
	struct intel_engine_cs *engine = ce->engine;
828
	struct measure_breadcrumb *frame;
829
	int dw;
830

831
	GEM_BUG_ON(!engine->gt->scratch);
832 833 834 835 836

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

837 838 839
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
840
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
841

842 843
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
844 845
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
846 847 848
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
849

850
	mutex_lock(&ce->timeline->mutex);
851
	spin_lock_irq(&engine->sched_engine->lock);
852

853
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
854

855
	spin_unlock_irq(&engine->sched_engine->lock);
856
	mutex_unlock(&ce->timeline->mutex);
857

858
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
859

860
	kfree(frame);
861 862 863
	return dw;
}

864 865 866 867 868 869 870
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
871 872 873 874
{
	struct intel_context *ce;
	int err;

875
	ce = intel_context_create(engine);
876 877 878
	if (IS_ERR(ce))
		return ce;

879
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
880
	ce->timeline = page_pack_bits(NULL, hwsp);
881 882
	ce->ring = NULL;
	ce->ring_size = ring_size;
883 884 885

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
886

887
	err = intel_context_pin(ce); /* perma-pin so it is always available */
888 889 890 891 892
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

893 894 895 896 897 898
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
899
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
900

901 902 903
	return ce;
}

904
void intel_engine_destroy_pinned_context(struct intel_context *ce)
905 906 907 908 909 910 911 912 913 914 915 916 917 918
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

919 920 921 922 923
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

924 925 926
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
927 928
}

929 930 931 932 933 934 935 936 937 938 939
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
940
static int engine_init_common(struct intel_engine_cs *engine)
941
{
942
	struct intel_context *ce;
943 944
	int ret;

945 946
	engine->set_default_submission(engine);

947 948
	/*
	 * We may need to do things with the shrinker which
949 950 951 952 953 954
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
955 956 957 958
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

959 960 961 962 963
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
964
	engine->kernel_context = ce;
965

966
	return 0;
967 968

err_context:
969
	intel_engine_destroy_pinned_context(ce);
970
	return ret;
971
}
972

973 974 975 976 977 978 979
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

980 981
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
982
		setup = intel_guc_submission_setup;
983 984
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
985
		setup = intel_execlists_submission_setup;
986 987
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
988
		setup = intel_ring_submission_setup;
989
	}
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

1010 1011 1012 1013 1014 1015 1016 1017 1018
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1019
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1020

1021
	i915_sched_engine_put(engine->sched_engine);
1022
	intel_breadcrumbs_put(engine->breadcrumbs);
1023

1024
	intel_engine_fini_retire(engine);
1025
	intel_engine_cleanup_cmd_parser(engine);
1026

1027
	if (engine->default_state)
1028
		fput(engine->default_state);
1029

1030
	if (engine->kernel_context)
1031
		intel_engine_destroy_pinned_context(engine->kernel_context);
1032

1033
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1034
	cleanup_status_page(engine);
1035

1036
	intel_wa_list_free(&engine->ctx_wa_list);
1037
	intel_wa_list_free(&engine->wa_list);
1038
	intel_wa_list_free(&engine->whitelist);
1039
}
1040

1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1055
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1056
{
1057 1058
	struct drm_i915_private *i915 = engine->i915;

1059 1060
	u64 acthd;

1061
	if (GRAPHICS_VER(i915) >= 8)
1062
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1063
	else if (GRAPHICS_VER(i915) >= 4)
1064
		acthd = ENGINE_READ(engine, RING_ACTHD);
1065
	else
1066
		acthd = ENGINE_READ(engine, ACTHD);
1067 1068 1069 1070

	return acthd;
}

1071
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1072 1073 1074
{
	u64 bbaddr;

1075
	if (GRAPHICS_VER(engine->i915) >= 8)
1076
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1077
	else
1078
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1079 1080 1081

	return bbaddr;
}
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1098 1099 1100
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1101
{
1102
	struct intel_uncore *uncore = engine->uncore;
1103
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1104 1105
	int err;

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1122
	if (GRAPHICS_VER(engine->i915) < 3)
1123 1124
		return -ENODEV;

1125
	ENGINE_TRACE(engine, "\n");
1126
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1140 1141 1142 1143 1144
	}

	return err;
}

1145 1146
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1147
	ENGINE_TRACE(engine, "\n");
1148

1149
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1150 1151
}

1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1163
static u32
1164 1165
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1166
{
1167 1168
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1169 1170 1171
}

/* NB: please notice the memset */
1172
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1173 1174
			       struct intel_instdone *instdone)
{
1175
	struct drm_i915_private *i915 = engine->i915;
1176
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1177
	struct intel_uncore *uncore = engine->uncore;
1178 1179 1180
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1181
	int iter;
1182 1183 1184

	memset(instdone, 0, sizeof(*instdone));

1185
	if (GRAPHICS_VER(i915) >= 8) {
1186 1187
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1188

1189
		if (engine->id != RCS0)
1190
			return;
1191

1192 1193
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1194
		if (GRAPHICS_VER(i915) >= 12) {
1195 1196 1197 1198 1199
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1219
		}
1220 1221 1222 1223 1224 1225 1226

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1227
	} else if (GRAPHICS_VER(i915) >= 7) {
1228 1229
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1230

1231
		if (engine->id != RCS0)
1232
			return;
1233

1234 1235 1236 1237 1238 1239
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1240
	} else if (GRAPHICS_VER(i915) >= 4) {
1241 1242
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1243
		if (engine->id == RCS0)
1244
			/* HACK: Using the wrong struct member */
1245 1246
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1247
	} else {
1248
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1249 1250
	}
}
1251

1252 1253 1254 1255
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1256 1257 1258
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1259
	if (!intel_engine_pm_get_if_awake(engine))
1260
		return true;
1261

1262
	/* First check that no commands are left in the ring */
1263 1264
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1265
		idle = false;
1266

1267
	/* No bit for gen2, so assume the CS parser is idle */
1268
	if (GRAPHICS_VER(engine->i915) > 2 &&
1269
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1270 1271
		idle = false;

1272
	intel_engine_pm_put(engine);
1273 1274 1275 1276

	return idle;
}

1277
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1278
{
1279
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1280

1281
	if (!t->callback)
1282 1283
		return;

1284 1285 1286 1287
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1288
			t->callback(t);
1289
		tasklet_unlock(t);
1290
	}
1291
	local_bh_enable();
1292 1293 1294 1295

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1296 1297
}

1298 1299 1300 1301 1302 1303 1304 1305 1306
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1307
	/* More white lies, if wedged, hw state is inconsistent */
1308
	if (intel_gt_is_wedged(engine->gt))
1309 1310
		return true;

1311
	if (!intel_engine_pm_is_awake(engine))
1312 1313
		return true;

1314
	/* Waiting to drain ELSP? */
1315
	intel_synchronize_hardirq(engine->i915);
1316
	intel_engine_flush_submission(engine);
1317

1318
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1319
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1320 1321
		return false;

1322
	/* Ring stopped? */
1323
	return ring_is_idle(engine);
1324 1325
}

1326
bool intel_engines_are_idle(struct intel_gt *gt)
1327 1328 1329 1330
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1331 1332
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1333 1334
	 * report that it is still busy, even though we have stopped using it.
	 */
1335
	if (intel_gt_is_wedged(gt))
1336 1337
		return true;

1338
	/* Already parked (and passed an idleness test); must still be idle */
1339
	if (!READ_ONCE(gt->awake))
1340 1341
		return true;

1342
	for_each_engine(engine, gt, id) {
1343 1344 1345 1346 1347 1348 1349
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1374
void intel_engines_reset_default_submission(struct intel_gt *gt)
1375 1376 1377 1378
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1379 1380 1381 1382
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1383
		engine->set_default_submission(engine);
1384
	}
1385 1386
}

1387 1388
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1389
	switch (GRAPHICS_VER(engine->i915)) {
1390 1391 1392 1393 1394
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1395 1396
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1397 1398 1399 1400 1401 1402 1403
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1404 1405 1406 1407 1408
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1409
	 * Even though we are holding the engine->sched_engine->lock here, there
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1469
		drm_printf(m, "[%04zx] %s\n", pos, line);
1470 1471 1472 1473 1474 1475

		prev = buf + pos;
		skip = false;
	}
}

1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1487
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1488
					 struct drm_printer *m)
1489 1490
{
	struct drm_i915_private *dev_priv = engine->i915;
1491
	struct intel_engine_execlists * const execlists = &engine->execlists;
1492 1493
	u64 addr;

1494
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1495
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1496 1497 1498 1499 1500 1501
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1502
	drm_printf(m, "\tRING_START: 0x%08x\n",
1503
		   ENGINE_READ(engine, RING_START));
1504
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1505
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1506
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1507
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1508
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1509 1510
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1511
	if (GRAPHICS_VER(engine->i915) > 2) {
1512
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1513 1514
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1515
	}
1516

1517
	if (GRAPHICS_VER(dev_priv) >= 6) {
1518
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1519
			   ENGINE_READ(engine, RING_IMR));
1520 1521 1522 1523 1524 1525
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1526 1527
	}

1528 1529 1530 1531 1532 1533
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1534
	if (GRAPHICS_VER(dev_priv) >= 8)
1535
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1536
	else if (GRAPHICS_VER(dev_priv) >= 4)
1537
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1538
	else
1539
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1540 1541
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1542
	if (GRAPHICS_VER(dev_priv) >= 4) {
1543
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1544
			   ENGINE_READ(engine, RING_IPEIR));
1545
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1546
			   ENGINE_READ(engine, RING_IPEHR));
1547
	} else {
1548 1549
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1550
	}
1551

1552
	if (intel_engine_uses_guc(engine)) {
1553 1554
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1555
		struct i915_request * const *port, *rq;
1556 1557
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1558
		const u8 num_entries = execlists->csb_size;
1559
		unsigned int idx;
1560
		u8 read, write;
1561

1562
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1563
			   yesno(test_bit(TASKLET_STATE_SCHED,
1564 1565
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1566
			   repr_timer(&engine->execlists.preempt),
1567
			   repr_timer(&engine->execlists.timer));
1568

1569 1570 1571
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1572 1573 1574 1575 1576
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1577
		if (read >= num_entries)
1578
			read = 0;
1579
		if (write >= num_entries)
1580 1581
			write = 0;
		if (read > write)
1582
			write += num_entries;
1583
		while (read < write) {
1584 1585 1586
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1587 1588
		}

1589
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1590
		rcu_read_lock();
1591
		for (port = execlists->active; (rq = *port); port++) {
1592
			char hdr[160];
1593 1594
			int len;

1595
			len = scnprintf(hdr, sizeof(hdr),
1596
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1597
					(int)(port - execlists->active),
1598 1599 1600
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1601
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1602
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1603
			i915_request_show(m, rq, hdr, 0);
1604 1605
		}
		for (port = execlists->pending; (rq = *port); port++) {
1606 1607
			char hdr[160];
			int len;
1608

1609
			len = scnprintf(hdr, sizeof(hdr),
1610
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1611
					(int)(port - execlists->pending),
1612 1613 1614
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1615 1616
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1617
			i915_request_show(m, rq, hdr, 0);
1618
		}
1619
		rcu_read_unlock();
1620
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1621
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1622
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1623
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1624
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1625
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1626
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1627
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1628
	}
1629 1630
}

1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1802 1803 1804 1805 1806
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1807
	struct i915_request *rq;
1808
	intel_wakeref_t wakeref;
1809
	unsigned long flags;
1810
	ktime_t dummy;
1811 1812 1813 1814 1815 1816 1817 1818 1819

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1820
	if (intel_gt_is_wedged(engine->gt))
1821 1822
		drm_printf(m, "*** WEDGED ***\n");

1823
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1824 1825
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1826 1827
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1828 1829 1830 1831
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1832
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1833
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1834 1835 1836 1837 1838 1839 1840

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1841 1842 1843
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1844
	print_properties(engine, m);
1845

1846
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1847
	engine_dump_active_requests(engine, m);
1848

1849 1850 1851
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1852

1853
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1854
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1855
	if (wakeref) {
1856
		intel_engine_print_registers(engine, m);
1857
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1858 1859 1860
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1861

C
Chris Wilson 已提交
1862
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1863

1864
	drm_printf(m, "HWSP:\n");
1865
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1866

1867
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1868 1869

	intel_engine_print_breadcrumbs(engine, m);
1870 1871
}

1872 1873
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1874 1875 1876 1877 1878 1879 1880
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1881
	*now = ktime_get();
1882
	if (READ_ONCE(engine->stats.active))
1883
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1884 1885 1886 1887 1888 1889 1890

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1891
 * @now: monotonic timestamp of sampling
1892 1893 1894
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1895
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1896
{
1897
	unsigned int seq;
1898 1899
	ktime_t total;

1900
	do {
1901
		seq = read_seqcount_begin(&engine->stats.lock);
1902
		total = __intel_engine_get_busy_time(engine, now);
1903
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1904 1905 1906 1907

	return total;
}

1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
			    unsigned int count)
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
	return siblings[0]->cops->create_virtual(siblings, count);
}

1922
struct i915_request *
1923
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1924 1925 1926
{
	struct i915_request *request, *active = NULL;

1927 1928 1929 1930 1931 1932 1933
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1945
	lockdep_assert_held(&engine->sched_engine->lock);
1946 1947 1948 1949 1950 1951 1952

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1953
			if (__i915_request_is_complete(request))
1954 1955 1956 1957 1958 1959 1960 1961 1962
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1963 1964
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
1965
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
1966
			continue;
1967 1968 1969 1970 1971 1972 1973 1974

		active = request;
		break;
	}

	return active;
}

1975
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1976
#include "mock_engine.c"
1977
#include "selftest_engine.c"
1978
#include "selftest_engine_cs.c"
1979
#endif