intel_engine_cs.c 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40
#include "intel_ring.h"
41

42 43 44 45 46 47 48 49 50
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

51
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
52 53
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
55
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
56 57 58

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

59
#define MAX_MMIO_BASES 3
60
struct engine_info {
61
	unsigned int hw_id;
62 63
	u8 class;
	u8 instance;
64 65 66 67 68
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
69 70 71
};

static const struct engine_info intel_engines[] = {
72 73
	[RCS0] = {
		.hw_id = RCS0_HW,
74 75
		.class = RENDER_CLASS,
		.instance = 0,
76 77 78
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
79
	},
80 81
	[BCS0] = {
		.hw_id = BCS0_HW,
82 83
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
84 85 86
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
87
	},
88 89
	[VCS0] = {
		.hw_id = VCS0_HW,
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
92 93 94 95 96
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
97
	},
98 99
	[VCS1] = {
		.hw_id = VCS1_HW,
100 101
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
102 103 104 105
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
106
	},
107 108
	[VCS2] = {
		.hw_id = VCS2_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
111 112 113
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
114
	},
115 116
	[VCS3] = {
		.hw_id = VCS3_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
122
	},
123 124
	[VECS0] = {
		.hw_id = VECS0_HW,
125 126
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
131
	},
132 133
	[VECS1] = {
		.hw_id = VECS1_HW,
134 135
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
139
	},
140 141
};

142
/**
143
 * intel_engine_context_size() - return the size of the context for an engine
144
 * @gt: the gt
145 146 147 148 149 150 151 152 153 154 155
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
156
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157
{
158
	struct intel_uncore *uncore = gt->uncore;
159 160 161 162 163 164
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
165
		switch (INTEL_GEN(gt->i915)) {
166
		default:
167
			MISSING_CASE(INTEL_GEN(gt->i915));
168
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169
		case 12:
170 171
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
172
		case 10:
O
Oscar Mateo 已提交
173
			return GEN10_LR_CONTEXT_RENDER_SIZE;
174 175 176
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
177
			return GEN8_LR_CONTEXT_RENDER_SIZE;
178
		case 7:
179
			if (IS_HASWELL(gt->i915))
180 181
				return HSW_CXT_TOTAL_SIZE;

182
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183 184 185
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
186
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187 188 189
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
190
		case 4:
191 192 193 194 195 196 197 198 199 200
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
201
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
203
					 INTEL_GEN(gt->i915),
204 205 206
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
207 208 209 210 211 212 213 214 215
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
216
		/* fall through */
217 218 219
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
220
		if (INTEL_GEN(gt->i915) < 8)
221 222 223 224 225
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

241
static void __sprint_engine_name(struct intel_engine_cs *engine)
242
{
243 244 245 246 247 248 249 250
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
251 252
}

253 254 255 256 257 258
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
259
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260 261
		return;

262 263
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
264
	else
265
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 267 268 269 270 271 272 273
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

274
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 276
{
	const struct engine_info *info = &intel_engines[id];
277 278
	struct intel_engine_cs *engine;

279 280 281
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

282 283 284
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

285
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
286 287
		return -EINVAL;

288
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
289 290
		return -EINVAL;

291
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
292 293
		return -EINVAL;

294 295 296
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
297

298 299
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

300
	engine->id = id;
301
	engine->legacy_idx = INVALID_ENGINE;
302
	engine->mask = BIT(id);
303 304 305
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
306
	engine->hw_id = engine->guc_id = info->hw_id;
307
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
308

309 310
	engine->class = info->class;
	engine->instance = info->instance;
311
	__sprint_engine_name(engine);
312

313 314
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
315 316
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
317 318
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
319 320
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
321

322
	engine->context_size = intel_engine_context_size(gt, engine->class);
323 324
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
325
	if (engine->context_size)
326
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
327

328 329 330
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

331
	ewma__engine_latency_init(&engine->latency);
332
	seqlock_init(&engine->stats.lock);
333

334 335
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

336 337 338
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

339
	gt->engine_class[info->class][info->instance] = engine;
340
	gt->engine[id] = engine;
341 342 343

	gt->i915->engine[id] = engine;

344
	return 0;
345 346
}

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

377
static void intel_setup_engine_capabilities(struct intel_gt *gt)
378 379 380 381
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

382
	for_each_engine(engine, gt, id)
383 384 385
		__setup_engine_capabilities(engine);
}

386
/**
387
 * intel_engines_release() - free the resources allocated for Command Streamers
388
 * @gt: pointer to struct intel_gt
389
 */
390
void intel_engines_release(struct intel_gt *gt)
391 392 393 394
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

395
	/* Decouple the backend; but keep the layout for late GPU resets */
396
	for_each_engine(engine, gt, id) {
397 398 399 400 401 402 403 404
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));

405
		gt->i915->engine[id] = NULL;
406 407 408
	}
}

409 410 411 412 413 414 415 416 417 418 419
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, gt, id) {
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

420
/**
421
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
422
 * @gt: pointer to struct intel_gt
423 424 425
 *
 * Return: non-zero if the initialization failed.
 */
426
int intel_engines_init_mmio(struct intel_gt *gt)
427
{
428
	struct drm_i915_private *i915 = gt->i915;
429 430
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
431
	unsigned int mask = 0;
432
	unsigned int i;
433
	int err;
434

435 436
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
437
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
438

439
	if (i915_inject_probe_failure(i915))
440 441
		return -ENODEV;

442
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
443
		if (!HAS_ENGINE(i915, i))
444 445
			continue;

446
		err = intel_engine_setup(gt, i);
447 448 449
		if (err)
			goto cleanup;

450
		mask |= BIT(i);
451 452 453 454 455 456 457
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
458 459
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
460

461
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
462

463
	intel_gt_check_and_clear_faults(gt);
464

465
	intel_setup_engine_capabilities(gt);
466

467 468 469
	return 0;

cleanup:
470
	intel_engines_free(gt);
471 472 473
	return err;
}

474
void intel_engine_init_execlists(struct intel_engine_cs *engine)
475 476 477
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

478
	execlists->port_mask = 1;
479
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
480 481
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

482 483 484 485
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

486
	execlists->queue_priority_hint = INT_MIN;
487
	execlists->queue = RB_ROOT_CACHED;
488 489
}

490
static void cleanup_status_page(struct intel_engine_cs *engine)
491
{
492 493
	struct i915_vma *vma;

494 495 496
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

497 498 499
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
500

501 502 503 504
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
505
	i915_gem_object_put(vma->obj);
506 507 508 509 510 511 512 513
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
514
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
515 516 517 518 519 520 521 522 523 524 525 526 527 528
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
529

530
	return i915_vma_pin(vma, 0, 0, flags);
531 532 533 534 535 536 537 538 539
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

540 541 542 543 544 545 546
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
547 548 549 550 551 552
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

553
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
554

555
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
556 557 558 559 560 561 562 563
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
564
		goto err;
565 566
	}

567
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
568
	engine->status_page.vma = vma;
569 570 571 572 573 574 575

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

576 577 578
	return 0;

err_unpin:
579
	i915_gem_object_unpin_map(obj);
580 581 582 583 584
err:
	i915_gem_object_put(obj);
	return ret;
}

585
static int engine_setup_common(struct intel_engine_cs *engine)
586 587 588
{
	int err;

589 590
	init_llist_head(&engine->barrier_tasks);

591 592 593 594
	err = init_status_page(engine);
	if (err)
		return err;

595
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
596
	intel_engine_init_breadcrumbs(engine);
597
	intel_engine_init_execlists(engine);
598
	intel_engine_init_cmd_parser(engine);
599
	intel_engine_init__pm(engine);
600
	intel_engine_init_retire(engine);
601

602 603
	intel_engine_pool_init(&engine->pool);

604 605 606 607
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

608 609 610 611
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

612 613 614
	return 0;
}

615 616
struct measure_breadcrumb {
	struct i915_request rq;
617
	struct intel_timeline timeline;
618 619 620 621
	struct intel_ring ring;
	u32 cs[1024];
};

622
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
623 624
{
	struct measure_breadcrumb *frame;
625
	int dw = -ENOMEM;
626

627
	GEM_BUG_ON(!engine->gt->scratch);
628 629 630 631 632

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

633 634 635
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
636
		goto out_frame;
637

638 639
	mutex_lock(&frame->timeline.mutex);

640 641 642 643 644 645 646 647
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
648
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
649

650
	dw = intel_timeline_pin(&frame->timeline);
651 652 653
	if (dw < 0)
		goto out_timeline;

654
	spin_lock_irq(&engine->active.lock);
655
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
656 657
	spin_unlock_irq(&engine->active.lock);

658
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
659

660
	intel_timeline_unpin(&frame->timeline);
661

662
out_timeline:
663
	mutex_unlock(&frame->timeline.mutex);
664
	intel_timeline_fini(&frame->timeline);
665 666
out_frame:
	kfree(frame);
667 668 669
	return dw;
}

670 671 672 673
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
674
	INIT_LIST_HEAD(&engine->active.hold);
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

692 693 694
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
695
	static struct lock_class_key kernel;
696 697 698
	struct intel_context *ce;
	int err;

699
	ce = intel_context_create(engine);
700 701 702
	if (IS_ERR(ce))
		return ce;

703
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
704

705
	err = intel_context_pin(ce); /* perma-pin so it is always available */
706 707 708 709 710
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

711 712 713 714 715 716 717 718
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

719 720 721
	return ce;
}

722 723 724 725 726 727 728 729 730 731 732
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
733
static int engine_init_common(struct intel_engine_cs *engine)
734
{
735
	struct intel_context *ce;
736 737
	int ret;

738 739
	engine->set_default_submission(engine);

740 741 742 743 744 745
	ret = measure_breadcrumb_dw(engine);
	if (ret < 0)
		return ret;

	engine->emit_fini_breadcrumb_dw = ret;

746 747
	/*
	 * We may need to do things with the shrinker which
748 749 750 751 752 753
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
754 755 756 757 758
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
759

760
	return 0;
761
}
762

763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

794 795 796 797 798 799 800 801 802
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
803
	GEM_BUG_ON(!list_empty(&engine->active.requests));
804
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
805

806
	cleanup_status_page(engine);
807

808
	intel_engine_fini_retire(engine);
809
	intel_engine_pool_fini(&engine->pool);
810
	intel_engine_fini_breadcrumbs(engine);
811
	intel_engine_cleanup_cmd_parser(engine);
812

813 814 815
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

816 817 818 819
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
820
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
821

822
	intel_wa_list_free(&engine->ctx_wa_list);
823
	intel_wa_list_free(&engine->wa_list);
824
	intel_wa_list_free(&engine->whitelist);
825
}
826

827
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
828
{
829 830
	struct drm_i915_private *i915 = engine->i915;

831 832
	u64 acthd;

833 834 835 836
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
837
	else
838
		acthd = ENGINE_READ(engine, ACTHD);
839 840 841 842

	return acthd;
}

843
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
844 845 846
{
	u64 bbaddr;

847 848
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
849
	else
850
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
851 852 853

	return bbaddr;
}
854

855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

870 871
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
872
	struct intel_uncore *uncore = engine->uncore;
873 874 875 876
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

877
	if (INTEL_GEN(engine->i915) < 3)
878 879
		return -ENODEV;

880
	ENGINE_TRACE(engine, "\n");
881

882
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
883 884

	err = 0;
885
	if (__intel_wait_for_register_fw(uncore,
886
					 mode, MODE_IDLE, MODE_IDLE,
887
					 1000, stop_timeout(engine),
888
					 NULL)) {
889
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
890 891 892 893
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
894
	intel_uncore_posting_read_fw(uncore, mode);
895 896 897 898

	return err;
}

899 900
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
901
	ENGINE_TRACE(engine, "\n");
902

903
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
904 905
}

906 907 908 909 910 911 912 913 914 915 916
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

917
static u32
918 919
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
920
{
921 922
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
923
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
924 925
	enum forcewake_domains fw_domains;

926
	if (INTEL_GEN(i915) >= 11) {
927 928
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
929
	} else {
930 931
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
932 933
	}

934
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
935
						    FW_REG_READ);
936
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
937 938 939
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

940 941
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
942

943
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
944

945 946
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
947
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
948

949
	val = intel_uncore_read_fw(uncore, reg);
950

951 952
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
953

954
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
955

956 957
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
958

959
	return val;
960 961 962
}

/* NB: please notice the memset */
963
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
964 965
			       struct intel_instdone *instdone)
{
966
	struct drm_i915_private *i915 = engine->i915;
967
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
968
	struct intel_uncore *uncore = engine->uncore;
969 970 971 972 973 974
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

975
	switch (INTEL_GEN(i915)) {
976
	default:
977 978
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
979

980
		if (engine->id != RCS0)
981 982
			break;

983 984
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
985
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
986
			instdone->sampler[slice][subslice] =
987
				read_subslice_reg(engine, slice, subslice,
988 989
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
990
				read_subslice_reg(engine, slice, subslice,
991 992 993 994
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
995 996
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
997

998
		if (engine->id != RCS0)
999 1000
			break;

1001 1002 1003 1004 1005 1006
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1007 1008 1009 1010 1011

		break;
	case 6:
	case 5:
	case 4:
1012 1013
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1014
		if (engine->id == RCS0)
1015
			/* HACK: Using the wrong struct member */
1016 1017
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1018 1019 1020
		break;
	case 3:
	case 2:
1021
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1022 1023 1024
		break;
	}
}
1025

1026 1027 1028 1029
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1030 1031 1032
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1033
	if (!intel_engine_pm_get_if_awake(engine))
1034
		return true;
1035

1036
	/* First check that no commands are left in the ring */
1037 1038
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1039
		idle = false;
1040

1041
	/* No bit for gen2, so assume the CS parser is idle */
1042
	if (INTEL_GEN(engine->i915) > 2 &&
1043
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1044 1045
		idle = false;

1046
	intel_engine_pm_put(engine);
1047 1048 1049 1050

	return idle;
}

1051
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1079
	/* More white lies, if wedged, hw state is inconsistent */
1080
	if (intel_gt_is_wedged(engine->gt))
1081 1082
		return true;

1083
	if (!intel_engine_pm_is_awake(engine))
1084 1085
		return true;

1086
	/* Waiting to drain ELSP? */
1087
	if (execlists_active(&engine->execlists)) {
1088
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1089

1090
		intel_engine_flush_submission(engine);
1091

1092
		if (execlists_active(&engine->execlists))
1093 1094
			return false;
	}
1095

1096
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1097
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1098 1099
		return false;

1100
	/* Ring stopped? */
1101
	return ring_is_idle(engine);
1102 1103
}

1104
bool intel_engines_are_idle(struct intel_gt *gt)
1105 1106 1107 1108
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1109 1110
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1111 1112
	 * report that it is still busy, even though we have stopped using it.
	 */
1113
	if (intel_gt_is_wedged(gt))
1114 1115
		return true;

1116
	/* Already parked (and passed an idleness test); must still be idle */
1117
	if (!READ_ONCE(gt->awake))
1118 1119
		return true;

1120
	for_each_engine(engine, gt, id) {
1121 1122 1123 1124 1125 1126 1127
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1128
void intel_engines_reset_default_submission(struct intel_gt *gt)
1129 1130 1131 1132
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1133
	for_each_engine(engine, gt, id)
1134 1135 1136
		engine->set_default_submission(engine);
}

1137 1138 1139 1140 1141 1142 1143 1144
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1145 1146
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1147 1148 1149 1150 1151 1152 1153
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1154 1155 1156
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1157 1158
{
	if (attr->priority == I915_PRIORITY_INVALID)
1159 1160 1161 1162
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1163

1164
	return x;
1165 1166
}

1167
static void print_request(struct drm_printer *m,
1168
			  struct i915_request *rq,
1169 1170
			  const char *prefix)
{
1171
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1172
	char buf[80] = "";
1173 1174 1175
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1176

1177
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1178
		   prefix,
1179
		   rq->fence.context, rq->fence.seqno,
1180 1181 1182
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1183 1184
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1185
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1186 1187
			    &rq->fence.flags) ? "-" :
		   "",
1188
		   buf,
1189
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1190
		   name);
1191 1192
}

1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1215
		drm_printf(m, "[%04zx] %s\n", pos, line);
1216 1217 1218 1219 1220 1221

		prev = buf + pos;
		skip = false;
	}
}

1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1254
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1255
					 struct drm_printer *m)
1256 1257
{
	struct drm_i915_private *dev_priv = engine->i915;
1258
	struct intel_engine_execlists * const execlists = &engine->execlists;
1259 1260
	u64 addr;

1261
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1262
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1263
	drm_printf(m, "\tRING_START: 0x%08x\n",
1264
		   ENGINE_READ(engine, RING_START));
1265
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1266
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1267
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1268
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1269
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1270 1271
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1272 1273
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1274 1275
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1276
	}
1277 1278

	if (INTEL_GEN(dev_priv) >= 6) {
1279 1280
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1281 1282
	}

1283 1284 1285 1286 1287 1288
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1289
	if (INTEL_GEN(dev_priv) >= 8)
1290
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1291
	else if (INTEL_GEN(dev_priv) >= 4)
1292
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1293
	else
1294
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1295 1296 1297 1298
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1299
			   ENGINE_READ(engine, RING_IPEIR));
1300
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1301
			   ENGINE_READ(engine, RING_IPEHR));
1302
	} else {
1303 1304
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1305
	}
1306

1307
	if (HAS_EXECLISTS(dev_priv)) {
1308
		struct i915_request * const *port, *rq;
1309 1310
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1311
		const u8 num_entries = execlists->csb_size;
1312
		unsigned int idx;
1313
		u8 read, write;
1314

1315
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1316 1317 1318
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1319
			   repr_timer(&engine->execlists.preempt),
1320
			   repr_timer(&engine->execlists.timer));
1321

1322 1323 1324
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1325 1326 1327 1328 1329
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1330
		if (read >= num_entries)
1331
			read = 0;
1332
		if (write >= num_entries)
1333 1334
			write = 0;
		if (read > write)
1335
			write += num_entries;
1336
		while (read < write) {
1337 1338 1339
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1340 1341
		}

1342
		execlists_active_lock_bh(execlists);
1343
		rcu_read_lock();
1344 1345 1346 1347 1348
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1349
				       "\t\tActive[%d]: ",
1350
				       (int)(port - execlists->active));
1351 1352 1353
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1354 1355 1356
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1357
						tl ? tl->hwsp_offset : 0,
1358
						hwsp_seqno(rq));
1359 1360 1361 1362

				if (tl)
					intel_timeline_put(tl);
			}
1363 1364 1365 1366
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1367
			struct intel_timeline *tl = get_timeline(rq);
1368
			char hdr[80];
1369

1370 1371 1372 1373
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1374
				 tl ? tl->hwsp_offset : 0,
1375 1376
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1377 1378 1379

			if (tl)
				intel_timeline_put(tl);
1380
		}
1381
		rcu_read_unlock();
1382
		execlists_active_unlock_bh(execlists);
1383 1384
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1385
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1386
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1387
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1388
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1389
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1390
	}
1391 1392
}

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1437 1438 1439 1440 1441
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1442
	struct i915_request *rq;
1443
	intel_wakeref_t wakeref;
1444
	unsigned long flags;
1445 1446 1447 1448 1449 1450 1451 1452 1453

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1454
	if (intel_gt_is_wedged(engine->gt))
1455 1456
		drm_printf(m, "*** WEDGED ***\n");

1457
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1458 1459
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1460 1461
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1462 1463 1464 1465 1466 1467 1468

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1469 1470 1471 1472 1473 1474
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1475
	spin_lock_irqsave(&engine->active.lock, flags);
1476
	rq = intel_engine_find_active_request(engine);
1477
	if (rq) {
1478 1479
		struct intel_timeline *tl = get_timeline(rq);

1480
		print_request(m, rq, "\t\tactive ");
1481

1482
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1483
			   i915_ggtt_offset(rq->ring->vma));
1484
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1485
			   rq->ring->head);
1486
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1487
			   rq->ring->tail);
1488 1489 1490 1491
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1492 1493 1494 1495 1496 1497

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1498 1499

		print_request_ring(m, rq);
1500

1501
		if (rq->context->lrc_reg_state) {
1502
			drm_printf(m, "Logical Ring Context:\n");
1503
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1504
		}
1505
	}
1506
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1507
	spin_unlock_irqrestore(&engine->active.lock, flags);
1508

1509
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1510
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1511
	if (wakeref) {
1512
		intel_engine_print_registers(engine, m);
1513
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1514 1515 1516
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1517

1518
	intel_execlists_show_requests(engine, m, print_request, 8);
1519

1520
	drm_printf(m, "HWSP:\n");
1521
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1522

1523
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1524 1525

	intel_engine_print_breadcrumbs(engine, m);
1526 1527
}

1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1538
	struct intel_engine_execlists *execlists = &engine->execlists;
1539
	unsigned long flags;
1540
	int err = 0;
1541

1542
	if (!intel_engine_supports_stats(engine))
1543 1544
		return -ENODEV;

1545 1546
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1547 1548 1549 1550 1551 1552

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1553
	if (engine->stats.enabled++ == 0) {
1554 1555
		struct i915_request * const *port;
		struct i915_request *rq;
1556

1557
		engine->stats.enabled_at = ktime_get();
1558 1559

		/* XXX submission method oblivious? */
1560
		for (port = execlists->active; (rq = *port); port++)
1561
			engine->stats.active++;
1562 1563 1564

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1565
			if (!intel_context_inflight_count(rq->context))
1566
				engine->stats.active++;
1567 1568 1569 1570 1571
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1572

1573
unlock:
1574 1575
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1576

1577
	return err;
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1603
	unsigned int seq;
1604 1605
	ktime_t total;

1606 1607 1608 1609
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1624
	if (!intel_engine_supports_stats(engine))
1625 1626
		return;

1627
	write_seqlock_irqsave(&engine->stats.lock, flags);
1628 1629 1630 1631 1632
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1633
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1634 1635
}

1636 1637
static bool match_ring(struct i915_request *rq)
{
1638
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1659
	lockdep_assert_held(&engine->active.lock);
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1677
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1678 1679 1680 1681
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1682
			continue;
1683 1684 1685

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1686
			continue;
1687 1688 1689 1690 1691 1692 1693 1694

		active = request;
		break;
	}

	return active;
}

1695
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1696
#include "mock_engine.c"
1697
#include "selftest_engine.c"
1698
#include "selftest_engine_cs.c"
1699
#endif