intel_engine_cs.c 42.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28 29

#include "intel_engine.h"
30
#include "intel_engine_pm.h"
31
#include "intel_lrc.h"
32
#include "intel_reset.h"
33

34 35 36 37 38 39 40 41 42
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

43
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44 45
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
47
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
48 49 50

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

51
struct engine_class_info {
52
	const char *name;
53
	u8 uabi_class;
54 55 56 57 58
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
59
		.uabi_class = I915_ENGINE_CLASS_RENDER,
60 61 62
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
63
		.uabi_class = I915_ENGINE_CLASS_COPY,
64 65 66
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
67
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
68 69 70
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
71
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
72 73 74
	},
};

75
#define MAX_MMIO_BASES 3
76
struct engine_info {
77
	unsigned int hw_id;
78 79
	u8 class;
	u8 instance;
80 81 82 83 84
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
85 86 87
};

static const struct engine_info intel_engines[] = {
88 89
	[RCS0] = {
		.hw_id = RCS0_HW,
90 91
		.class = RENDER_CLASS,
		.instance = 0,
92 93 94
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
95
	},
96 97
	[BCS0] = {
		.hw_id = BCS0_HW,
98 99
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
100 101 102
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
103
	},
104 105
	[VCS0] = {
		.hw_id = VCS0_HW,
106 107
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
108 109 110 111 112
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
113
	},
114 115
	[VCS1] = {
		.hw_id = VCS1_HW,
116 117
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
118 119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
122
	},
123 124
	[VCS2] = {
		.hw_id = VCS2_HW,
125 126
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
127 128 129
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
130
	},
131 132
	[VCS3] = {
		.hw_id = VCS3_HW,
133 134
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
135 136 137
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
138
	},
139 140
	[VECS0] = {
		.hw_id = VECS0_HW,
141 142
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
143 144 145 146
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
147
	},
148 149
	[VECS1] = {
		.hw_id = VECS1_HW,
150 151
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
152 153 154
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
155
	},
156 157
};

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
184
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185 186
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
187
		case 10:
O
Oscar Mateo 已提交
188
			return GEN10_LR_CONTEXT_RENDER_SIZE;
189 190 191
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
192
			return GEN8_LR_CONTEXT_RENDER_SIZE;
193 194 195 196 197 198 199 200 201 202 203 204
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
205
		case 4:
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
222 223 224 225 226 227 228 229 230
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
231
		/* fall through */
232 233 234 235 236 237 238 239 240
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

256 257 258 259 260 261 262
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

263 264 265 266 267 268
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
269
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
270 271
		return;

272 273
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
274
	else
275
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
276 277 278 279 280 281 282 283
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

284
static int
285 286 287 288
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
289 290
	struct intel_engine_cs *engine;

291 292
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

293 294 295
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

296
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
297 298
		return -EINVAL;

299
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
300 301
		return -EINVAL;

302
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
303 304
		return -EINVAL;

305 306 307 308
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
309

310 311
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

312
	engine->id = id;
313
	engine->mask = BIT(id);
314
	engine->i915 = dev_priv;
315
	engine->uncore = &dev_priv->uncore;
316
	__sprint_engine_name(engine->name, info);
317
	engine->hw_id = engine->guc_id = info->hw_id;
318
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
319 320
	engine->class = info->class;
	engine->instance = info->instance;
321

322
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
323

324 325 326 327
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
328 329
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
330

331 332 333
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

334
	seqlock_init(&engine->stats.lock);
335

336 337
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

338 339 340
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

341
	dev_priv->engine_class[info->class][info->instance] = engine;
342 343
	dev_priv->engine[id] = engine;
	return 0;
344 345 346
}

/**
347
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
348
 * @dev_priv: i915 device private
349 350 351
 *
 * Return: non-zero if the initialization failed.
 */
352
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
353
{
354
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
355
	const unsigned int engine_mask = INTEL_INFO(dev_priv)->engine_mask;
356 357
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
358
	unsigned int mask = 0;
359
	unsigned int i;
360
	int err;
361

362 363
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
364
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
365

366 367 368
	if (i915_inject_load_failure())
		return -ENODEV;

369 370 371 372
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

373 374 375 376
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

377
		mask |= BIT(i);
378 379 380 381 382 383 384
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
385 386
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
387

388
	/* We always presume we have at least RCS available for later probing */
389
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS0))) {
390 391 392 393
		err = -ENODEV;
		goto cleanup;
	}

394
	RUNTIME_INFO(dev_priv)->num_engines = hweight32(mask);
395

396 397
	i915_check_and_clear_faults(dev_priv);

398 399 400 401 402 403 404 405 406
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
407
 * intel_engines_init() - init the Engine Command Streamers
408
 * @i915: i915 device private
409 410 411
 *
 * Return: non-zero if the initialization failed.
 */
412
int intel_engines_init(struct drm_i915_private *i915)
413
{
414
	int (*init)(struct intel_engine_cs *engine);
415 416
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
417
	int err;
418

419 420 421 422
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
423

424
	for_each_engine(engine, i915, id) {
425 426
		err_id = id;

427
		err = init(engine);
428
		if (err)
429 430 431 432 433 434
			goto cleanup;
	}

	return 0;

cleanup:
435
	for_each_engine(engine, i915, id) {
436
		if (id >= err_id) {
437
			kfree(engine);
438
			i915->engine[id] = NULL;
439
		} else {
440
			i915->gt.cleanup_engine(engine);
441
		}
442
	}
443
	return err;
444 445
}

446 447 448 449 450
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

451
void intel_engine_init_execlists(struct intel_engine_cs *engine)
452 453 454
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

455
	execlists->port_mask = 1;
456
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
457 458
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

459
	execlists->queue_priority_hint = INT_MIN;
460
	execlists->queue = RB_ROOT_CACHED;
461 462
}

463
static void cleanup_status_page(struct intel_engine_cs *engine)
464
{
465 466
	struct i915_vma *vma;

467 468 469
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

470 471 472
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
473

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
	__i915_gem_object_release_unless_active(vma->obj);
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
502

503
	return i915_vma_pin(vma, 0, 0, flags);
504 505 506 507 508 509 510 511 512
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

513 514 515 516 517 518 519
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
520 521 522 523 524 525
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

526
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
527

528
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
529 530 531 532 533 534 535 536
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
537
		goto err;
538 539
	}

540
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
541
	engine->status_page.vma = vma;
542 543 544 545 546 547 548

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

549 550 551
	return 0;

err_unpin:
552
	i915_gem_object_unpin_map(obj);
553 554 555 556 557
err:
	i915_gem_object_put(obj);
	return ret;
}

558
static int intel_engine_setup_common(struct intel_engine_cs *engine)
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
{
	int err;

	err = init_status_page(engine);
	if (err)
		return err;

	err = i915_timeline_init(engine->i915,
				 &engine->timeline,
				 engine->status_page.vma);
	if (err)
		goto err_hwsp;

	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);

574
	intel_engine_init_breadcrumbs(engine);
575
	intel_engine_init_execlists(engine);
576 577 578
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);
579
	intel_engine_init__pm(engine);
580

581 582 583 584
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

585 586 587 588 589 590 591
	return 0;

err_hwsp:
	cleanup_status_page(engine);
	return err;
}

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
	for_each_engine(engine, i915, id) {
		if (engine->cops)
			i915->gt.cleanup_engine(engine);
		else
			kfree(engine);
		i915->engine[id] = NULL;
	}
	return err;
}

638 639 640 641 642 643 644 645
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
646
		MAP(SEMAPHORES, SEMAPHORES),
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

678 679 680 681 682 683 684
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

685
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
686 687
{
	struct measure_breadcrumb *frame;
688
	int dw = -ENOMEM;
689 690 691 692 693 694 695

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

696
	if (i915_timeline_init(engine->i915,
697
			       &frame->timeline,
698 699
			       engine->status_page.vma))
		goto out_frame;
700 701 702 703 704 705 706 707 708 709 710 711 712

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

713 714 715 716
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

717
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
718

719
	i915_timeline_unpin(&frame->timeline);
720

721 722
out_timeline:
	i915_timeline_fini(&frame->timeline);
723 724
out_frame:
	kfree(frame);
725 726 727
	return dw;
}

728 729 730 731 732
static int pin_context(struct i915_gem_context *ctx,
		       struct intel_engine_cs *engine,
		       struct intel_context **out)
{
	struct intel_context *ce;
733
	int err;
734

735
	ce = i915_gem_context_get_engine(ctx, engine->id);
736 737 738
	if (IS_ERR(ce))
		return PTR_ERR(ce);

739 740 741 742 743
	err = intel_context_pin(ce);
	intel_context_put(ce);
	if (err)
		return err;

744 745 746 747
	*out = ce;
	return 0;
}

748 749 750 751 752 753 754 755 756 757 758 759 760
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
761
	struct drm_i915_private *i915 = engine->i915;
762 763
	int ret;

764 765 766 767 768 769 770
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
771 772 773 774
	ret = pin_context(i915->kernel_context, engine,
			  &engine->kernel_context);
	if (ret)
		return ret;
775

776 777
	/*
	 * Similarly the preempt context must always be available so that
778 779
	 * we can interrupt the engine at any time. However, as preemption
	 * is optional, we allow it to fail.
780
	 */
781 782 783
	if (i915->preempt_context)
		pin_context(i915->preempt_context, engine,
			    &engine->preempt_context);
784

785
	ret = measure_breadcrumb_dw(engine);
786
	if (ret < 0)
787
		goto err_unpin;
788

789
	engine->emit_fini_breadcrumb_dw = ret;
790

791
	engine->set_default_submission(engine);
792

793
	return 0;
794

795 796 797 798
err_unpin:
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
799
	return ret;
800
}
801 802 803 804 805 806 807 808 809 810

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
811
	cleanup_status_page(engine);
812

813
	intel_engine_fini_breadcrumbs(engine);
814
	intel_engine_cleanup_cmd_parser(engine);
815
	i915_gem_batch_pool_fini(&engine->batch_pool);
816

817 818 819
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

820 821 822
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
823 824

	i915_timeline_fini(&engine->timeline);
825

826
	intel_wa_list_free(&engine->ctx_wa_list);
827
	intel_wa_list_free(&engine->wa_list);
828
	intel_wa_list_free(&engine->whitelist);
829
}
830

831
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
832
{
833 834
	struct drm_i915_private *i915 = engine->i915;

835 836
	u64 acthd;

837 838 839 840
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
841
	else
842
		acthd = ENGINE_READ(engine, ACTHD);
843 844 845 846

	return acthd;
}

847
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
848 849 850
{
	u64 bbaddr;

851 852
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
853
	else
854
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
855 856 857

	return bbaddr;
}
858

859 860
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
861
	struct intel_uncore *uncore = engine->uncore;
862 863 864 865
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

866
	if (INTEL_GEN(engine->i915) < 3)
867 868 869 870
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

871
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
872 873

	err = 0;
874
	if (__intel_wait_for_register_fw(uncore,
875 876 877 878 879 880 881 882
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
883
	intel_uncore_posting_read_fw(uncore, mode);
884 885 886 887

	return err;
}

888 889 890 891
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

892
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
893 894
}

895 896 897 898 899 900 901 902 903 904 905
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

906 907
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
908
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
909 910 911 912
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

913
	if (IS_GEN(dev_priv, 10))
914 915
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
916 917 918
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
919 920 921 922 923 924
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

925
static inline u32
926 927 928
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
929
	struct intel_uncore *uncore = &dev_priv->uncore;
930 931 932 933 934
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
935 936
	enum forcewake_domains fw_domains;

937 938 939 940 941 942 943 944 945 946 947 948
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

949 950
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

951
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
952
						    FW_REG_READ);
953
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
954 955 956
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

957 958
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
959

960
	mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
961 962 963 964

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

965 966
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
967
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
968

969
	ret = intel_uncore_read_fw(uncore, reg);
970

971
	mcr &= ~mcr_slice_subslice_mask;
972 973
	mcr |= default_mcr_s_ss_select;

974
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
975

976 977
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
978 979 980 981 982 983 984 985 986

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
987
	struct intel_uncore *uncore = engine->uncore;
988 989 990 991 992 993 994 995
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
996 997
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
998

999
		if (engine->id != RCS0)
1000 1001
			break;

1002 1003
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1014 1015
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1016

1017
		if (engine->id != RCS0)
1018 1019
			break;

1020 1021 1022 1023 1024 1025
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1026 1027 1028 1029 1030

		break;
	case 6:
	case 5:
	case 4:
1031 1032
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1033
		if (engine->id == RCS0)
1034
			/* HACK: Using the wrong struct member */
1035 1036
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1037 1038 1039
		break;
	case 3:
	case 2:
1040
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1041 1042 1043
		break;
	}
}
1044

1045 1046 1047
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1048
	intel_wakeref_t wakeref;
1049 1050
	bool idle = true;

1051 1052 1053
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1054
	/* If the whole device is asleep, the engine must be idle */
1055 1056
	wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
	if (!wakeref)
1057
		return true;
1058

1059
	/* First check that no commands are left in the ring */
1060 1061
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1062
		idle = false;
1063

1064
	/* No bit for gen2, so assume the CS parser is idle */
1065 1066
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1067 1068
		idle = false;

1069
	intel_runtime_pm_put(dev_priv, wakeref);
1070 1071 1072 1073

	return idle;
}

1074 1075 1076 1077 1078 1079 1080 1081 1082
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1083
	/* More white lies, if wedged, hw state is inconsistent */
1084
	if (i915_reset_failed(engine->i915))
1085 1086
		return true;

1087
	/* Waiting to drain ELSP? */
1088
	if (READ_ONCE(engine->execlists.active)) {
1089
		struct tasklet_struct *t = &engine->execlists.tasklet;
1090

1091
		local_bh_disable();
1092 1093 1094 1095 1096
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1097
		}
1098
		local_bh_enable();
1099

1100 1101 1102
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1103
		if (READ_ONCE(engine->execlists.active))
1104 1105
			return false;
	}
1106

1107
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1108
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1109 1110
		return false;

1111
	/* Ring stopped? */
1112
	return ring_is_idle(engine);
1113 1114
}

1115
bool intel_engines_are_idle(struct drm_i915_private *i915)
1116 1117 1118 1119
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1120 1121
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1122 1123
	 * report that it is still busy, even though we have stopped using it.
	 */
1124
	if (i915_reset_failed(i915))
1125 1126
		return true;

1127 1128 1129 1130 1131
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1132 1133 1134 1135 1136 1137 1138
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1139 1140 1141 1142 1143 1144 1145 1146 1147
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1159
	struct intel_context *ce;
1160 1161 1162

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1163 1164 1165
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1197 1198 1199
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1200 1201
{
	if (attr->priority == I915_PRIORITY_INVALID)
1202 1203 1204 1205
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1206

1207
	return x;
1208 1209
}

1210
static void print_request(struct drm_printer *m,
1211
			  struct i915_request *rq,
1212 1213
			  const char *prefix)
{
1214
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1215
	char buf[80] = "";
1216 1217 1218
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1219

1220
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1221
		   prefix,
1222
		   rq->fence.context, rq->fence.seqno,
1223 1224 1225
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1226 1227
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			    &rq->fence.flags) ?  "+" : "",
1228
		   buf,
1229
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1230
		   name);
1231 1232
}

1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1255
		drm_printf(m, "[%04zx] %s\n", pos, line);
1256 1257 1258 1259 1260 1261

		prev = buf + pos;
		skip = false;
	}
}

1262 1263
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1264 1265
{
	struct drm_i915_private *dev_priv = engine->i915;
1266 1267
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1268 1269
	u64 addr;

1270
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1271
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1272
	drm_printf(m, "\tRING_START: 0x%08x\n",
1273
		   ENGINE_READ(engine, RING_START));
1274
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1275
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1276
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1277
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1278
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1279 1280
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1281 1282
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1283 1284
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1285
	}
1286 1287

	if (INTEL_GEN(dev_priv) >= 6) {
1288 1289
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1290 1291
	}

1292 1293 1294 1295 1296 1297
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1298
	if (INTEL_GEN(dev_priv) >= 8)
1299
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1300
	else if (INTEL_GEN(dev_priv) >= 4)
1301
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1302
	else
1303
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1304 1305 1306 1307
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1308
			   ENGINE_READ(engine, RING_IPEIR));
1309
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1310
			   ENGINE_READ(engine, RING_IPEHR));
1311
	} else {
1312 1313
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1314
	}
1315

1316
	if (HAS_EXECLISTS(dev_priv)) {
1317 1318
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1319
		const u8 num_entries = execlists->csb_size;
1320
		unsigned int idx;
1321
		u8 read, write;
1322

1323
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1324
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1325 1326
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1327

1328 1329 1330
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1331
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1332
			   read, write,
1333 1334 1335
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1336
		if (read >= num_entries)
1337
			read = 0;
1338
		if (write >= num_entries)
1339 1340
			write = 0;
		if (read > write)
1341
			write += num_entries;
1342
		while (read < write) {
1343 1344 1345
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1346 1347 1348 1349
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1350
			struct i915_request *rq;
1351 1352 1353 1354
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1355 1356
				char hdr[80];

1357
				snprintf(hdr, sizeof(hdr),
1358
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1359
					 idx, count,
1360
					 i915_ggtt_offset(rq->ring->vma),
1361 1362
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1363
				print_request(m, rq, hdr);
1364
			} else {
1365
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1366 1367
			}
		}
1368
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1369 1370 1371
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1372
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1373
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1374
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1375
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1376
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1377
	}
1378 1379
}

1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1413 1414 1415 1416 1417
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1418
	struct i915_request *rq;
1419
	intel_wakeref_t wakeref;
1420 1421 1422 1423 1424 1425 1426 1427 1428

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1429
	if (i915_reset_failed(engine->i915))
1430 1431
		drm_printf(m, "*** WEDGED ***\n");

1432
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1433
	drm_printf(m, "\tHangcheck %x:%x [%d ms]\n",
1434 1435
		   engine->hangcheck.last_seqno,
		   engine->hangcheck.next_seqno,
1436
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1437 1438 1439 1440 1441 1442 1443 1444
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1445
	rq = list_first_entry(&engine->timeline.requests,
1446
			      struct i915_request, link);
1447
	if (&rq->link != &engine->timeline.requests)
1448 1449
		print_request(m, rq, "\t\tfirst  ");

1450
	rq = list_last_entry(&engine->timeline.requests,
1451
			     struct i915_request, link);
1452
	if (&rq->link != &engine->timeline.requests)
1453 1454
		print_request(m, rq, "\t\tlast   ");

1455
	rq = intel_engine_find_active_request(engine);
1456 1457
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1458

1459
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1460
			   i915_ggtt_offset(rq->ring->vma));
1461
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1462
			   rq->ring->head);
1463
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1464
			   rq->ring->tail);
1465 1466 1467 1468
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1469 1470
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1471 1472

		print_request_ring(m, rq);
1473 1474 1475 1476
	}

	rcu_read_unlock();

1477 1478
	wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
	if (wakeref) {
1479
		intel_engine_print_registers(engine, m);
1480
		intel_runtime_pm_put(engine->i915, wakeref);
1481 1482 1483
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1484

1485
	intel_execlists_show_requests(engine, m, print_request, 8);
1486

1487
	drm_printf(m, "HWSP:\n");
1488
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1489

1490
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1491 1492

	intel_engine_print_breadcrumbs(engine, m);
1493 1494
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1528
	struct intel_engine_execlists *execlists = &engine->execlists;
1529
	unsigned long flags;
1530
	int err = 0;
1531

1532
	if (!intel_engine_supports_stats(engine))
1533 1534
		return -ENODEV;

1535 1536
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1537 1538 1539 1540 1541 1542

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1543 1544 1545 1546
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1547
		engine->stats.enabled_at = ktime_get();
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1558

1559
unlock:
1560 1561
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1562

1563
	return err;
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1589
	unsigned int seq;
1590 1591
	ktime_t total;

1592 1593 1594 1595
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1610
	if (!intel_engine_supports_stats(engine))
1611 1612
		return;

1613
	write_seqlock_irqsave(&engine->stats.lock, flags);
1614 1615 1616 1617 1618
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1619
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1620 1621
}

1622 1623
static bool match_ring(struct i915_request *rq)
{
1624
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;
	unsigned long flags;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
			break;

		/* More than one preemptible request may match! */
		if (!match_ring(request))
			break;

		active = request;
		break;
	}
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	return active;
}

1666
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1667
#include "selftest_engine_cs.c"
1668
#endif