intel_engine_cs.c 43.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31 32
#include "gt/intel_gt.h"

33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_pool.h"
36
#include "intel_engine_user.h"
37
#include "intel_context.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40

41 42 43 44 45 46 47 48 49
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

50
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
51 52
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
54
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
55 56 57

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

58
#define MAX_MMIO_BASES 3
59
struct engine_info {
60
	unsigned int hw_id;
61 62
	u8 class;
	u8 instance;
63 64 65 66 67
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
68 69 70
};

static const struct engine_info intel_engines[] = {
71 72
	[RCS0] = {
		.hw_id = RCS0_HW,
73 74
		.class = RENDER_CLASS,
		.instance = 0,
75 76 77
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
78
	},
79 80
	[BCS0] = {
		.hw_id = BCS0_HW,
81 82
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
83 84 85
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
86
	},
87 88
	[VCS0] = {
		.hw_id = VCS0_HW,
89 90
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
91 92 93 94 95
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
96
	},
97 98
	[VCS1] = {
		.hw_id = VCS1_HW,
99 100
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
101 102 103 104
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
105
	},
106 107
	[VCS2] = {
		.hw_id = VCS2_HW,
108 109
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
110 111 112
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
113
	},
114 115
	[VCS3] = {
		.hw_id = VCS3_HW,
116 117
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
118 119 120
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
121
	},
122 123
	[VECS0] = {
		.hw_id = VECS0_HW,
124 125
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
126 127 128 129
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
130
	},
131 132
	[VECS1] = {
		.hw_id = VECS1_HW,
133 134
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
135 136 137
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
138
	},
139 140
};

141
/**
142
 * intel_engine_context_size() - return the size of the context for an engine
143 144 145 146 147 148 149 150 151 152 153 154
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
155
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
156 157 158 159 160 161 162 163 164 165
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
166
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
167
		case 12:
168 169
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
170
		case 10:
O
Oscar Mateo 已提交
171
			return GEN10_LR_CONTEXT_RENDER_SIZE;
172 173 174
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
175
			return GEN8_LR_CONTEXT_RENDER_SIZE;
176 177 178 179 180 181 182 183 184 185 186 187
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
188
		case 4:
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
205 206 207 208 209 210 211 212 213
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
214
		/* fall through */
215 216 217 218 219 220 221 222 223
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

239
static void __sprint_engine_name(struct intel_engine_cs *engine)
240
{
241 242 243 244 245 246 247 248
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
249 250
}

251 252 253 254 255 256
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
257
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
258 259
		return;

260 261
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
262
	else
263
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
264 265 266 267 268 269 270 271
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

272
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
273 274
{
	const struct engine_info *info = &intel_engines[id];
275 276
	struct intel_engine_cs *engine;

277 278 279
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

280 281 282
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

283
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
284 285
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
290 291
		return -EINVAL;

292 293 294
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
295

296 297
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

298
	engine->id = id;
299
	engine->legacy_idx = INVALID_ENGINE;
300
	engine->mask = BIT(id);
301 302 303
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
304
	engine->hw_id = engine->guc_id = info->hw_id;
305
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
306

307 308
	engine->class = info->class;
	engine->instance = info->instance;
309
	__sprint_engine_name(engine);
310

311 312 313
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;

314 315 316 317 318 319
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

320
	engine->context_size = intel_engine_context_size(gt->i915,
321
							 engine->class);
322 323
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
324
	if (engine->context_size)
325
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
326

327 328 329
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

330
	seqlock_init(&engine->stats.lock);
331

332 333
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

334 335 336
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

337
	gt->engine_class[info->class][info->instance] = engine;
338
	gt->engine[id] = engine;
339 340 341 342

	intel_engine_add_user(engine);
	gt->i915->engine[id] = engine;

343
	return 0;
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

376
static void intel_setup_engine_capabilities(struct intel_gt *gt)
377 378 379 380
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

381
	for_each_engine(engine, gt, id)
382 383 384
		__setup_engine_capabilities(engine);
}

385 386
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
387
 * @gt: pointer to struct intel_gt
388
 */
389
void intel_engines_cleanup(struct intel_gt *gt)
390 391 392 393
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

394
	for_each_engine(engine, gt, id) {
395
		engine->destroy(engine);
396 397
		gt->engine[id] = NULL;
		gt->i915->engine[id] = NULL;
398 399 400
	}
}

401
/**
402
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
403
 * @gt: pointer to struct intel_gt
404 405 406
 *
 * Return: non-zero if the initialization failed.
 */
407
int intel_engines_init_mmio(struct intel_gt *gt)
408
{
409
	struct drm_i915_private *i915 = gt->i915;
410 411
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
412
	unsigned int mask = 0;
413
	unsigned int i;
414
	int err;
415

416 417
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
418
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
419

420
	if (i915_inject_probe_failure(i915))
421 422
		return -ENODEV;

423
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
424
		if (!HAS_ENGINE(i915, i))
425 426
			continue;

427
		err = intel_engine_setup(gt, i);
428 429 430
		if (err)
			goto cleanup;

431
		mask |= BIT(i);
432 433 434 435 436 437 438
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
439 440
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
441

442
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
443

444
	intel_gt_check_and_clear_faults(gt);
445

446
	intel_setup_engine_capabilities(gt);
447

448 449 450
	return 0;

cleanup:
451
	intel_engines_cleanup(gt);
452 453 454 455
	return err;
}

/**
456
 * intel_engines_init() - init the Engine Command Streamers
457
 * @gt: pointer to struct intel_gt
458 459 460
 *
 * Return: non-zero if the initialization failed.
 */
461
int intel_engines_init(struct intel_gt *gt)
462
{
463
	int (*init)(struct intel_engine_cs *engine);
464
	struct intel_engine_cs *engine;
465
	enum intel_engine_id id;
466
	int err;
467

468
	if (HAS_EXECLISTS(gt->i915))
469 470 471
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
472

473
	for_each_engine(engine, gt, id) {
474
		err = init(engine);
475
		if (err)
476 477 478 479 480 481
			goto cleanup;
	}

	return 0;

cleanup:
482
	intel_engines_cleanup(gt);
483
	return err;
484 485
}

486
void intel_engine_init_execlists(struct intel_engine_cs *engine)
487 488 489
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

490
	execlists->port_mask = 1;
491
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
492 493
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

494 495 496 497
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

498
	execlists->queue_priority_hint = INT_MIN;
499
	execlists->queue = RB_ROOT_CACHED;
500 501
}

502
static void cleanup_status_page(struct intel_engine_cs *engine)
503
{
504 505
	struct i915_vma *vma;

506 507 508
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

509 510 511
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
512

513 514 515 516
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
517
	i915_gem_object_put(vma->obj);
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
541

542
	return i915_vma_pin(vma, 0, 0, flags);
543 544 545 546 547 548 549 550 551
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

552 553 554 555 556 557 558
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
559 560 561 562 563 564
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

565
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
566

567
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
568 569 570 571 572 573 574 575
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
576
		goto err;
577 578
	}

579
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
580
	engine->status_page.vma = vma;
581 582 583 584 585 586 587

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

588 589 590
	return 0;

err_unpin:
591
	i915_gem_object_unpin_map(obj);
592 593 594 595 596
err:
	i915_gem_object_put(obj);
	return ret;
}

597
static int intel_engine_setup_common(struct intel_engine_cs *engine)
598 599 600
{
	int err;

601 602
	init_llist_head(&engine->barrier_tasks);

603 604 605 606
	err = init_status_page(engine);
	if (err)
		return err;

607
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
608
	intel_engine_init_breadcrumbs(engine);
609
	intel_engine_init_execlists(engine);
610 611
	intel_engine_init_hangcheck(engine);
	intel_engine_init_cmd_parser(engine);
612
	intel_engine_init__pm(engine);
613

614 615
	intel_engine_pool_init(&engine->pool);

616 617 618 619
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

620 621 622 623
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

624 625 626
	return 0;
}

627 628
/**
 * intel_engines_setup- setup engine state not requiring hw access
629
 * @gt: pointer to struct intel_gt
630 631 632 633 634 635
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
636
int intel_engines_setup(struct intel_gt *gt)
637 638 639 640 641 642
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

643
	if (HAS_EXECLISTS(gt->i915))
644 645 646 647
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

648
	for_each_engine(engine, gt, id) {
649 650 651 652 653 654 655 656
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

657 658 659
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

660 661 662 663 664 665
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
666
	intel_engines_cleanup(gt);
667 668 669
	return err;
}

670 671
struct measure_breadcrumb {
	struct i915_request rq;
672
	struct intel_timeline timeline;
673 674 675 676
	struct intel_ring ring;
	u32 cs[1024];
};

677
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
678 679
{
	struct measure_breadcrumb *frame;
680
	int dw = -ENOMEM;
681

682
	GEM_BUG_ON(!engine->gt->scratch);
683 684 685 686 687

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

688 689 690
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
691
		goto out_frame;
692

693 694
	mutex_lock(&frame->timeline.mutex);

695 696 697 698 699 700 701 702
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
703
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
704

705
	dw = intel_timeline_pin(&frame->timeline);
706 707 708
	if (dw < 0)
		goto out_timeline;

709
	spin_lock_irq(&engine->active.lock);
710
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
711 712
	spin_unlock_irq(&engine->active.lock);

713
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
714

715
	intel_timeline_unpin(&frame->timeline);
716

717
out_timeline:
718
	mutex_unlock(&frame->timeline.mutex);
719
	intel_timeline_fini(&frame->timeline);
720 721
out_frame:
	kfree(frame);
722 723 724
	return dw;
}

725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

746 747 748
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
749
	static struct lock_class_key kernel;
750 751 752 753 754 755 756
	struct intel_context *ce;
	int err;

	ce = intel_context_create(engine->i915->kernel_context, engine);
	if (IS_ERR(ce))
		return ce;

757 758
	ce->ring = __intel_context_ring_size(SZ_4K);

759 760 761 762 763 764
	err = intel_context_pin(ce);
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

765 766 767 768 769 770 771 772
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

773 774 775
	return ce;
}

776 777 778 779 780 781 782 783 784 785 786 787 788
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
789
	struct intel_context *ce;
790 791
	int ret;

792 793
	engine->set_default_submission(engine);

794 795
	/*
	 * We may need to do things with the shrinker which
796 797 798 799 800 801
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
802 803 804 805 806
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
807

808
	ret = measure_breadcrumb_dw(engine);
809
	if (ret < 0)
810
		goto err_unpin;
811

812
	engine->emit_fini_breadcrumb_dw = ret;
813

814
	return 0;
815

816
err_unpin:
817 818
	intel_context_unpin(ce);
	intel_context_put(ce);
819
	return ret;
820
}
821 822 823 824 825 826 827 828 829 830

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
831 832
	GEM_BUG_ON(!list_empty(&engine->active.requests));

833
	cleanup_status_page(engine);
834

835
	intel_engine_pool_fini(&engine->pool);
836
	intel_engine_fini_breadcrumbs(engine);
837
	intel_engine_cleanup_cmd_parser(engine);
838

839 840 841
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

842 843 844 845
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
846
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
847

848
	intel_wa_list_free(&engine->ctx_wa_list);
849
	intel_wa_list_free(&engine->wa_list);
850
	intel_wa_list_free(&engine->whitelist);
851
}
852

853
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
854
{
855 856
	struct drm_i915_private *i915 = engine->i915;

857 858
	u64 acthd;

859 860 861 862
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
863
	else
864
		acthd = ENGINE_READ(engine, ACTHD);
865 866 867 868

	return acthd;
}

869
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
870 871 872
{
	u64 bbaddr;

873 874
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
875
	else
876
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
877 878 879

	return bbaddr;
}
880

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

896 897
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
898
	struct intel_uncore *uncore = engine->uncore;
899 900 901 902
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

903
	if (INTEL_GEN(engine->i915) < 3)
904 905 906 907
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

908
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
909 910

	err = 0;
911
	if (__intel_wait_for_register_fw(uncore,
912
					 mode, MODE_IDLE, MODE_IDLE,
913
					 1000, stop_timeout(engine),
914 915 916 917 918 919
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
920
	intel_uncore_posting_read_fw(uncore, mode);
921 922 923 924

	return err;
}

925 926 927 928
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

929
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
930 931
}

932 933 934 935 936 937 938 939 940 941 942
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

943 944 945
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
946
{
947 948
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
949
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
950 951
	enum forcewake_domains fw_domains;

952
	if (INTEL_GEN(i915) >= 11) {
953 954
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
955
	} else {
956 957
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
958 959
	}

960
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
961
						    FW_REG_READ);
962
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
963 964 965
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

966 967
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
968

969
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
970

971 972
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
973
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
974

975
	val = intel_uncore_read_fw(uncore, reg);
976

977 978
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
979

980
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
981

982 983
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
984

985
	return val;
986 987 988 989 990 991
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
992
	struct drm_i915_private *i915 = engine->i915;
993
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
994
	struct intel_uncore *uncore = engine->uncore;
995 996 997 998 999 1000
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1001
	switch (INTEL_GEN(i915)) {
1002
	default:
1003 1004
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1005

1006
		if (engine->id != RCS0)
1007 1008
			break;

1009 1010
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1011
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1012
			instdone->sampler[slice][subslice] =
1013
				read_subslice_reg(engine, slice, subslice,
1014 1015
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1016
				read_subslice_reg(engine, slice, subslice,
1017 1018 1019 1020
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1021 1022
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1023

1024
		if (engine->id != RCS0)
1025 1026
			break;

1027 1028 1029 1030 1031 1032
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1033 1034 1035 1036 1037

		break;
	case 6:
	case 5:
	case 4:
1038 1039
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1040
		if (engine->id == RCS0)
1041
			/* HACK: Using the wrong struct member */
1042 1043
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1044 1045 1046
		break;
	case 3:
	case 2:
1047
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1048 1049 1050
		break;
	}
}
1051

1052 1053 1054 1055
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1056 1057 1058
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1059
	if (!intel_engine_pm_get_if_awake(engine))
1060
		return true;
1061

1062
	/* First check that no commands are left in the ring */
1063 1064
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1065
		idle = false;
1066

1067
	/* No bit for gen2, so assume the CS parser is idle */
1068
	if (INTEL_GEN(engine->i915) > 2 &&
1069
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1070 1071
		idle = false;

1072
	intel_engine_pm_put(engine);
1073 1074 1075 1076

	return idle;
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
void intel_engine_flush_submission(struct intel_engine_cs *engine)
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1096 1097 1098 1099 1100 1101 1102 1103 1104
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1105
	/* More white lies, if wedged, hw state is inconsistent */
1106
	if (intel_gt_is_wedged(engine->gt))
1107 1108
		return true;

1109
	if (!intel_engine_pm_is_awake(engine))
1110 1111
		return true;

1112
	/* Waiting to drain ELSP? */
1113
	if (execlists_active(&engine->execlists)) {
1114
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1115

1116
		intel_engine_flush_submission(engine);
1117

1118
		if (execlists_active(&engine->execlists))
1119 1120
			return false;
	}
1121

1122
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1123
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1124 1125
		return false;

1126
	/* Ring stopped? */
1127
	return ring_is_idle(engine);
1128 1129
}

1130
bool intel_engines_are_idle(struct intel_gt *gt)
1131 1132 1133 1134
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1135 1136
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1137 1138
	 * report that it is still busy, even though we have stopped using it.
	 */
1139
	if (intel_gt_is_wedged(gt))
1140 1141
		return true;

1142
	/* Already parked (and passed an idleness test); must still be idle */
1143
	if (!READ_ONCE(gt->awake))
1144 1145
		return true;

1146
	for_each_engine(engine, gt, id) {
1147 1148 1149 1150 1151 1152 1153
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1154
void intel_engines_reset_default_submission(struct intel_gt *gt)
1155 1156 1157 1158
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1159
	for_each_engine(engine, gt, id)
1160 1161 1162
		engine->set_default_submission(engine);
}

1163 1164 1165 1166 1167 1168 1169 1170
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1171 1172
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1173 1174 1175 1176 1177 1178 1179
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1180 1181 1182
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1183 1184
{
	if (attr->priority == I915_PRIORITY_INVALID)
1185 1186 1187 1188
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1189

1190
	return x;
1191 1192
}

1193
static void print_request(struct drm_printer *m,
1194
			  struct i915_request *rq,
1195 1196
			  const char *prefix)
{
1197
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1198
	char buf[80] = "";
1199 1200 1201
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1202

1203
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1204
		   prefix,
1205
		   rq->fence.context, rq->fence.seqno,
1206 1207 1208
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1209 1210
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1211
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1212 1213
			    &rq->fence.flags) ? "-" :
		   "",
1214
		   buf,
1215
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1216
		   name);
1217 1218
}

1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1241
		drm_printf(m, "[%04zx] %s\n", pos, line);
1242 1243 1244 1245 1246 1247

		prev = buf + pos;
		skip = false;
	}
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1280
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1281
					 struct drm_printer *m)
1282 1283
{
	struct drm_i915_private *dev_priv = engine->i915;
1284
	struct intel_engine_execlists * const execlists = &engine->execlists;
1285 1286
	u64 addr;

1287
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1288
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1289
	drm_printf(m, "\tRING_START: 0x%08x\n",
1290
		   ENGINE_READ(engine, RING_START));
1291
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1292
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1293
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1294
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1295
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1296 1297
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1298 1299
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1300 1301
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1302
	}
1303 1304

	if (INTEL_GEN(dev_priv) >= 6) {
1305 1306
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1307 1308
	}

1309 1310 1311 1312 1313 1314
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1315
	if (INTEL_GEN(dev_priv) >= 8)
1316
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1317
	else if (INTEL_GEN(dev_priv) >= 4)
1318
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1319
	else
1320
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1321 1322 1323 1324
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1325
			   ENGINE_READ(engine, RING_IPEIR));
1326
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1327
			   ENGINE_READ(engine, RING_IPEHR));
1328
	} else {
1329 1330
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1331
	}
1332

1333
	if (HAS_EXECLISTS(dev_priv)) {
1334
		struct i915_request * const *port, *rq;
1335 1336
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1337
		const u8 num_entries = execlists->csb_size;
1338
		unsigned int idx;
1339
		u8 read, write;
1340

1341 1342 1343 1344 1345
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), timeslice? %s\n",
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
			   repr_timer(&engine->execlists.timer));
1346

1347 1348 1349
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1350 1351 1352 1353 1354
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1355
		if (read >= num_entries)
1356
			read = 0;
1357
		if (write >= num_entries)
1358 1359
			write = 0;
		if (read > write)
1360
			write += num_entries;
1361
		while (read < write) {
1362 1363 1364
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1365 1366
		}

1367
		execlists_active_lock_bh(execlists);
1368 1369 1370 1371 1372
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1373
				       "\t\tActive[%d]: ",
1374
				       (int)(port - execlists->active));
1375 1376 1377
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1378 1379 1380
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1381
						tl ? tl->hwsp_offset : 0,
1382
						hwsp_seqno(rq));
1383 1384 1385 1386

				if (tl)
					intel_timeline_put(tl);
			}
1387 1388 1389 1390
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1391
			struct intel_timeline *tl = get_timeline(rq);
1392
			char hdr[80];
1393

1394 1395 1396 1397
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1398
				 tl ? tl->hwsp_offset : 0,
1399 1400
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1401 1402 1403

			if (tl)
				intel_timeline_put(tl);
1404
		}
1405
		execlists_active_unlock_bh(execlists);
1406 1407
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1408
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1409
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1410
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1411
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1412
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1413
	}
1414 1415
}

1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1449 1450 1451 1452 1453
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1454
	struct i915_request *rq;
1455
	intel_wakeref_t wakeref;
1456
	unsigned long flags;
1457 1458 1459 1460 1461 1462 1463 1464 1465

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1466
	if (intel_gt_is_wedged(engine->gt))
1467 1468
		drm_printf(m, "*** WEDGED ***\n");

1469
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1470
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1471
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1472 1473 1474 1475 1476 1477
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1478
	spin_lock_irqsave(&engine->active.lock, flags);
1479
	rq = intel_engine_find_active_request(engine);
1480
	if (rq) {
1481 1482
		struct intel_timeline *tl = get_timeline(rq);

1483
		print_request(m, rq, "\t\tactive ");
1484

1485
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1486
			   i915_ggtt_offset(rq->ring->vma));
1487
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1488
			   rq->ring->head);
1489
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1490
			   rq->ring->tail);
1491 1492 1493 1494
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1495 1496 1497 1498 1499 1500

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1501 1502

		print_request_ring(m, rq);
1503 1504 1505 1506 1507

		if (rq->hw_context->lrc_reg_state) {
			drm_printf(m, "Logical Ring Context:\n");
			hexdump(m, rq->hw_context->lrc_reg_state, PAGE_SIZE);
		}
1508
	}
1509
	spin_unlock_irqrestore(&engine->active.lock, flags);
1510

1511
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1512
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1513
	if (wakeref) {
1514
		intel_engine_print_registers(engine, m);
1515
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1516 1517 1518
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1519

1520
	intel_execlists_show_requests(engine, m, print_request, 8);
1521

1522
	drm_printf(m, "HWSP:\n");
1523
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1524

1525
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1526 1527

	intel_engine_print_breadcrumbs(engine, m);
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1540
	struct intel_engine_execlists *execlists = &engine->execlists;
1541
	unsigned long flags;
1542
	int err = 0;
1543

1544
	if (!intel_engine_supports_stats(engine))
1545 1546
		return -ENODEV;

1547 1548
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1549 1550 1551 1552 1553 1554

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1555
	if (engine->stats.enabled++ == 0) {
1556 1557
		struct i915_request * const *port;
		struct i915_request *rq;
1558

1559
		engine->stats.enabled_at = ktime_get();
1560 1561

		/* XXX submission method oblivious? */
1562
		for (port = execlists->active; (rq = *port); port++)
1563
			engine->stats.active++;
1564 1565 1566

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1567
			if (!intel_context_inflight_count(rq->hw_context))
1568
				engine->stats.active++;
1569 1570 1571 1572 1573
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1574

1575
unlock:
1576 1577
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1578

1579
	return err;
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1605
	unsigned int seq;
1606 1607
	ktime_t total;

1608 1609 1610 1611
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1626
	if (!intel_engine_supports_stats(engine))
1627 1628
		return;

1629
	write_seqlock_irqsave(&engine->stats.lock, flags);
1630 1631 1632 1633 1634
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1635
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1636 1637
}

1638 1639
static bool match_ring(struct i915_request *rq)
{
1640
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1661
	lockdep_assert_held(&engine->active.lock);
1662
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1663 1664 1665 1666
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1667
			continue;
1668 1669 1670

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1671
			continue;
1672 1673 1674 1675 1676 1677 1678 1679

		active = request;
		break;
	}

	return active;
}

1680
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1681
#include "mock_engine.c"
1682
#include "selftest_engine.c"
1683
#include "selftest_engine_cs.c"
1684
#endif