intel_engine_cs.c 42.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28 29

#include "intel_engine.h"
30
#include "intel_engine_pm.h"
31
#include "intel_lrc.h"
32
#include "intel_reset.h"
33

34 35 36 37 38 39 40 41 42
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

43
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44 45
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
47
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
48 49 50

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

51
struct engine_class_info {
52
	const char *name;
53 54
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
55 56

	u8 uabi_class;
57 58 59 60 61 62 63
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
64
		.uabi_class = I915_ENGINE_CLASS_RENDER,
65 66 67 68 69
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
70
		.uabi_class = I915_ENGINE_CLASS_COPY,
71 72 73 74 75
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
76
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
77 78 79 80 81
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
82
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
83 84 85
	},
};

86
#define MAX_MMIO_BASES 3
87
struct engine_info {
88
	unsigned int hw_id;
89 90
	u8 class;
	u8 instance;
91 92 93 94 95
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
96 97 98
};

static const struct engine_info intel_engines[] = {
99 100
	[RCS0] = {
		.hw_id = RCS0_HW,
101 102
		.class = RENDER_CLASS,
		.instance = 0,
103 104 105
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
106
	},
107 108
	[BCS0] = {
		.hw_id = BCS0_HW,
109 110
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
111 112 113
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
114
	},
115 116
	[VCS0] = {
		.hw_id = VCS0_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
119 120 121 122 123
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
124
	},
125 126
	[VCS1] = {
		.hw_id = VCS1_HW,
127 128
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
129 130 131 132
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
133
	},
134 135
	[VCS2] = {
		.hw_id = VCS2_HW,
136 137
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
138 139 140
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
141
	},
142 143
	[VCS3] = {
		.hw_id = VCS3_HW,
144 145
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
146 147 148
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
149
	},
150 151
	[VECS0] = {
		.hw_id = VECS0_HW,
152 153
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
154 155 156 157
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
158
	},
159 160
	[VECS1] = {
		.hw_id = VECS1_HW,
161 162
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
163 164 165
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
166
	},
167 168
};

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
195
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
196 197
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
198
		case 10:
O
Oscar Mateo 已提交
199
			return GEN10_LR_CONTEXT_RENDER_SIZE;
200 201 202
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
203
			return GEN8_LR_CONTEXT_RENDER_SIZE;
204 205 206 207 208 209 210 211 212 213 214 215
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
232 233 234 235 236 237 238 239 240 241
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
242
		/* fall through */
243 244 245 246 247 248 249 250 251
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

267 268 269 270 271 272 273
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

274 275 276 277 278 279
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
280
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
281 282
		return;

283 284
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
285
	else
286
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
287 288 289 290 291 292 293 294
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

295
static int
296 297 298 299
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
300 301
	struct intel_engine_cs *engine;

302 303
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

304 305 306
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

307
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
308 309
		return -EINVAL;

310
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
311 312
		return -EINVAL;

313
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
314 315
		return -EINVAL;

316 317 318 319
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
320

321 322
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

323
	engine->id = id;
324
	engine->mask = BIT(id);
325
	engine->i915 = dev_priv;
326
	engine->uncore = &dev_priv->uncore;
327
	__sprint_engine_name(engine->name, info);
328
	engine->hw_id = engine->guc_id = info->hw_id;
329
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
330 331
	engine->class = info->class;
	engine->instance = info->instance;
332

333
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
334

335 336 337 338
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
339 340
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
341

342 343 344
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

345
	seqlock_init(&engine->stats.lock);
346

347 348
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

349 350 351
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

352
	dev_priv->engine_class[info->class][info->instance] = engine;
353 354
	dev_priv->engine[id] = engine;
	return 0;
355 356 357
}

/**
358
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
359
 * @dev_priv: i915 device private
360 361 362
 *
 * Return: non-zero if the initialization failed.
 */
363
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
364
{
365
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
366
	const unsigned int engine_mask = INTEL_INFO(dev_priv)->engine_mask;
367 368
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
369
	unsigned int mask = 0;
370
	unsigned int i;
371
	int err;
372

373 374
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
375
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
376

377 378 379
	if (i915_inject_load_failure())
		return -ENODEV;

380 381 382 383
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

384 385 386 387
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

388
		mask |= BIT(i);
389 390 391 392 393 394 395
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
396 397
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
398

399
	/* We always presume we have at least RCS available for later probing */
400
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS0))) {
401 402 403 404
		err = -ENODEV;
		goto cleanup;
	}

405
	RUNTIME_INFO(dev_priv)->num_engines = hweight32(mask);
406

407 408
	i915_check_and_clear_faults(dev_priv);

409 410 411 412 413 414 415 416 417
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
418
 * intel_engines_init() - init the Engine Command Streamers
419 420 421 422 423 424 425 426
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
427
	int err;
428 429

	for_each_engine(engine, dev_priv, id) {
430 431
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
432 433
		int (*init)(struct intel_engine_cs *engine);

434
		if (HAS_EXECLISTS(dev_priv))
435
			init = class_info->init_execlists;
436
		else
437
			init = class_info->init_legacy;
438 439 440 441

		err = -EINVAL;
		err_id = id;

442
		if (GEM_DEBUG_WARN_ON(!init))
443
			goto cleanup;
444

445
		err = init(engine);
446
		if (err)
447 448
			goto cleanup;

449
		GEM_BUG_ON(!engine->submit_request);
450 451 452 453 454
	}

	return 0;

cleanup:
455
	for_each_engine(engine, dev_priv, id) {
456
		if (id >= err_id) {
457
			kfree(engine);
458 459
			dev_priv->engine[id] = NULL;
		} else {
460
			dev_priv->gt.cleanup_engine(engine);
461
		}
462
	}
463
	return err;
464 465
}

466 467 468 469 470
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

471
void intel_engine_init_execlists(struct intel_engine_cs *engine)
472 473 474
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

475
	execlists->port_mask = 1;
476
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
477 478
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

479
	execlists->queue_priority_hint = INT_MIN;
480
	execlists->queue = RB_ROOT_CACHED;
481 482
}

483
static void cleanup_status_page(struct intel_engine_cs *engine)
484
{
485 486
	struct i915_vma *vma;

487 488 489
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

490 491 492
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
493

494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
	__i915_gem_object_release_unless_active(vma->obj);
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
522

523
	return i915_vma_pin(vma, 0, 0, flags);
524 525 526 527 528 529 530 531 532
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

533 534 535 536 537 538 539
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
540 541 542 543 544 545
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

546
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
547

548
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
549 550 551 552 553 554 555 556
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
557
		goto err;
558 559
	}

560
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
561
	engine->status_page.vma = vma;
562 563 564 565 566 567 568

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

569 570 571
	return 0;

err_unpin:
572
	i915_gem_object_unpin_map(obj);
573 574 575 576 577
err:
	i915_gem_object_put(obj);
	return ret;
}

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engine_setup_common(struct intel_engine_cs *engine)
{
	int err;

	err = init_status_page(engine);
	if (err)
		return err;

	err = i915_timeline_init(engine->i915,
				 &engine->timeline,
				 engine->status_page.vma);
	if (err)
		goto err_hwsp;

	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);

603
	intel_engine_init_breadcrumbs(engine);
604
	intel_engine_init_execlists(engine);
605 606 607
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);
608
	intel_engine_init__pm(engine);
609

610 611 612 613
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

614 615 616 617 618 619 620
	return 0;

err_hwsp:
	cleanup_status_page(engine);
	return err;
}

621 622 623 624 625 626 627 628
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
629
		MAP(SEMAPHORES, SEMAPHORES),
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

661 662 663 664 665 666 667
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

668
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
669 670
{
	struct measure_breadcrumb *frame;
671
	int dw = -ENOMEM;
672 673 674 675 676 677 678

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

679
	if (i915_timeline_init(engine->i915,
680
			       &frame->timeline,
681 682
			       engine->status_page.vma))
		goto out_frame;
683 684 685 686 687 688 689 690 691 692 693 694 695

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

696 697 698 699
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

700
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
701

702
	i915_timeline_unpin(&frame->timeline);
703

704 705
out_timeline:
	i915_timeline_fini(&frame->timeline);
706 707
out_frame:
	kfree(frame);
708 709 710
	return dw;
}

711 712 713 714 715 716 717 718 719 720 721 722 723 724
static int pin_context(struct i915_gem_context *ctx,
		       struct intel_engine_cs *engine,
		       struct intel_context **out)
{
	struct intel_context *ce;

	ce = intel_context_pin(ctx, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	*out = ce;
	return 0;
}

725 726 727 728 729 730 731 732 733 734 735 736 737
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
738
	struct drm_i915_private *i915 = engine->i915;
739 740
	int ret;

741 742 743 744 745 746 747
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
748 749 750 751
	ret = pin_context(i915->kernel_context, engine,
			  &engine->kernel_context);
	if (ret)
		return ret;
752

753 754
	/*
	 * Similarly the preempt context must always be available so that
755 756
	 * we can interrupt the engine at any time. However, as preemption
	 * is optional, we allow it to fail.
757
	 */
758 759 760
	if (i915->preempt_context)
		pin_context(i915->preempt_context, engine,
			    &engine->preempt_context);
761

762
	ret = measure_breadcrumb_dw(engine);
763
	if (ret < 0)
764
		goto err_unpin;
765

766
	engine->emit_fini_breadcrumb_dw = ret;
767

768
	engine->set_default_submission(engine);
769

770
	return 0;
771

772 773 774 775
err_unpin:
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
776
	return ret;
777
}
778 779 780 781 782 783 784 785 786 787

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
788
	cleanup_status_page(engine);
789

790
	intel_engine_fini_breadcrumbs(engine);
791
	intel_engine_cleanup_cmd_parser(engine);
792
	i915_gem_batch_pool_fini(&engine->batch_pool);
793

794 795 796
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

797 798 799
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
800 801

	i915_timeline_fini(&engine->timeline);
802

803
	intel_wa_list_free(&engine->ctx_wa_list);
804
	intel_wa_list_free(&engine->wa_list);
805
	intel_wa_list_free(&engine->whitelist);
806
}
807

808
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
809
{
810 811
	struct drm_i915_private *i915 = engine->i915;

812 813
	u64 acthd;

814 815 816 817
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
818
	else
819
		acthd = ENGINE_READ(engine, ACTHD);
820 821 822 823

	return acthd;
}

824
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
825 826 827
{
	u64 bbaddr;

828 829
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
830
	else
831
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
832 833 834

	return bbaddr;
}
835

836 837
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
838
	struct intel_uncore *uncore = engine->uncore;
839 840 841 842
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

843
	if (INTEL_GEN(engine->i915) < 3)
844 845 846 847
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

848
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
849 850

	err = 0;
851
	if (__intel_wait_for_register_fw(uncore,
852 853 854 855 856 857 858 859
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
860
	intel_uncore_posting_read_fw(uncore, mode);
861 862 863 864

	return err;
}

865 866 867 868
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

869
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
870 871
}

872 873 874 875 876 877 878 879 880 881 882
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

883 884
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
885
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
886 887 888 889
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

890
	if (IS_GEN(dev_priv, 10))
891 892
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
893 894 895
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
896 897 898 899 900 901
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

902
static inline u32
903 904 905
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
906
	struct intel_uncore *uncore = &dev_priv->uncore;
907 908 909 910 911
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
912 913
	enum forcewake_domains fw_domains;

914 915 916 917 918 919 920 921 922 923 924 925
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

926 927
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

928
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
929
						    FW_REG_READ);
930
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
931 932 933
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

934 935
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
936

937
	mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
938 939 940 941

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

942 943
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
944
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
945

946
	ret = intel_uncore_read_fw(uncore, reg);
947

948
	mcr &= ~mcr_slice_subslice_mask;
949 950
	mcr |= default_mcr_s_ss_select;

951
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
952

953 954
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
955 956 957 958 959 960 961 962 963

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
964
	struct intel_uncore *uncore = engine->uncore;
965 966 967 968 969 970 971 972
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
973 974
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
975

976
		if (engine->id != RCS0)
977 978
			break;

979 980
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
981 982 983 984 985 986 987 988 989 990
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
991 992
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
993

994
		if (engine->id != RCS0)
995 996
			break;

997 998 999 1000 1001 1002
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1003 1004 1005 1006 1007

		break;
	case 6:
	case 5:
	case 4:
1008 1009
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1010
		if (engine->id == RCS0)
1011
			/* HACK: Using the wrong struct member */
1012 1013
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1014 1015 1016
		break;
	case 3:
	case 2:
1017
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1018 1019 1020
		break;
	}
}
1021

1022 1023 1024
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1025
	intel_wakeref_t wakeref;
1026 1027
	bool idle = true;

1028 1029 1030
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1031
	/* If the whole device is asleep, the engine must be idle */
1032 1033
	wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
	if (!wakeref)
1034
		return true;
1035

1036
	/* First check that no commands are left in the ring */
1037 1038
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1039
		idle = false;
1040

1041
	/* No bit for gen2, so assume the CS parser is idle */
1042 1043
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1044 1045
		idle = false;

1046
	intel_runtime_pm_put(dev_priv, wakeref);
1047 1048 1049 1050

	return idle;
}

1051 1052 1053 1054 1055 1056 1057 1058 1059
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1060
	/* More white lies, if wedged, hw state is inconsistent */
1061
	if (i915_reset_failed(engine->i915))
1062 1063
		return true;

1064
	/* Waiting to drain ELSP? */
1065
	if (READ_ONCE(engine->execlists.active)) {
1066
		struct tasklet_struct *t = &engine->execlists.tasklet;
1067

1068
		local_bh_disable();
1069 1070 1071 1072 1073
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1074
		}
1075
		local_bh_enable();
1076

1077 1078 1079
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1080
		if (READ_ONCE(engine->execlists.active))
1081 1082
			return false;
	}
1083

1084
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1085
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1086 1087
		return false;

1088
	/* Ring stopped? */
1089
	return ring_is_idle(engine);
1090 1091
}

1092
bool intel_engines_are_idle(struct drm_i915_private *i915)
1093 1094 1095 1096
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1097 1098
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1099 1100
	 * report that it is still busy, even though we have stopped using it.
	 */
1101
	if (i915_reset_failed(i915))
1102 1103
		return true;

1104 1105 1106 1107 1108
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1109 1110 1111 1112 1113 1114 1115
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1116 1117 1118 1119 1120 1121 1122 1123 1124
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1136
	struct intel_context *ce;
1137 1138 1139

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1140 1141 1142
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1143 1144
}

1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1174 1175 1176
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1177 1178
{
	if (attr->priority == I915_PRIORITY_INVALID)
1179 1180 1181 1182
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1183

1184
	return x;
1185 1186
}

1187
static void print_request(struct drm_printer *m,
1188
			  struct i915_request *rq,
1189 1190
			  const char *prefix)
{
1191
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1192
	char buf[80] = "";
1193 1194 1195
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1196

1197
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1198
		   prefix,
1199
		   rq->fence.context, rq->fence.seqno,
1200 1201 1202
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1203 1204
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			    &rq->fence.flags) ?  "+" : "",
1205
		   buf,
1206
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1207
		   name);
1208 1209
}

1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1232
		drm_printf(m, "[%04zx] %s\n", pos, line);
1233 1234 1235 1236 1237 1238

		prev = buf + pos;
		skip = false;
	}
}

1239 1240
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1241 1242
{
	struct drm_i915_private *dev_priv = engine->i915;
1243 1244
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1245 1246
	u64 addr;

1247
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1248
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1249
	drm_printf(m, "\tRING_START: 0x%08x\n",
1250
		   ENGINE_READ(engine, RING_START));
1251
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1252
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1253
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1254
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1255
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1256 1257
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1258 1259
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1260 1261
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1262
	}
1263 1264

	if (INTEL_GEN(dev_priv) >= 6) {
1265 1266
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1267 1268
	}

1269 1270 1271 1272 1273 1274
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1275
	if (INTEL_GEN(dev_priv) >= 8)
1276
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1277
	else if (INTEL_GEN(dev_priv) >= 4)
1278
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1279
	else
1280
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1281 1282 1283 1284
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1285
			   ENGINE_READ(engine, RING_IPEIR));
1286
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1287
			   ENGINE_READ(engine, RING_IPEHR));
1288
	} else {
1289 1290
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1291
	}
1292

1293
	if (HAS_EXECLISTS(dev_priv)) {
1294 1295
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1296
		const u8 num_entries = execlists->csb_size;
1297
		unsigned int idx;
1298
		u8 read, write;
1299

1300
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1301
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1302 1303
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1304

1305 1306 1307
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1308
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1309
			   read, write,
1310 1311 1312
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1313
		if (read >= num_entries)
1314
			read = 0;
1315
		if (write >= num_entries)
1316 1317
			write = 0;
		if (read > write)
1318
			write += num_entries;
1319
		while (read < write) {
1320 1321 1322
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1323 1324 1325 1326
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1327
			struct i915_request *rq;
1328 1329 1330 1331
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1332 1333
				char hdr[80];

1334
				snprintf(hdr, sizeof(hdr),
1335
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1336
					 idx, count,
1337
					 i915_ggtt_offset(rq->ring->vma),
1338 1339
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1340
				print_request(m, rq, hdr);
1341
			} else {
1342
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1343 1344
			}
		}
1345
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1346 1347 1348
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1349
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1350
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1351
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1352
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1353
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1354
	}
1355 1356
}

1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1390 1391 1392 1393 1394
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1395
	struct i915_request *rq;
1396
	intel_wakeref_t wakeref;
1397 1398 1399 1400 1401 1402 1403 1404 1405

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1406
	if (i915_reset_failed(engine->i915))
1407 1408
		drm_printf(m, "*** WEDGED ***\n");

1409
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1410
	drm_printf(m, "\tHangcheck %x:%x [%d ms]\n",
1411 1412
		   engine->hangcheck.last_seqno,
		   engine->hangcheck.next_seqno,
1413
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1414 1415 1416 1417 1418 1419 1420 1421
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1422
	rq = list_first_entry(&engine->timeline.requests,
1423
			      struct i915_request, link);
1424
	if (&rq->link != &engine->timeline.requests)
1425 1426
		print_request(m, rq, "\t\tfirst  ");

1427
	rq = list_last_entry(&engine->timeline.requests,
1428
			     struct i915_request, link);
1429
	if (&rq->link != &engine->timeline.requests)
1430 1431
		print_request(m, rq, "\t\tlast   ");

1432
	rq = intel_engine_find_active_request(engine);
1433 1434
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1435

1436
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1437
			   i915_ggtt_offset(rq->ring->vma));
1438
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1439
			   rq->ring->head);
1440
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1441
			   rq->ring->tail);
1442 1443 1444 1445
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1446 1447
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1448 1449

		print_request_ring(m, rq);
1450 1451 1452 1453
	}

	rcu_read_unlock();

1454 1455
	wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
	if (wakeref) {
1456
		intel_engine_print_registers(engine, m);
1457
		intel_runtime_pm_put(engine->i915, wakeref);
1458 1459 1460
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1461

1462
	intel_execlists_show_requests(engine, m, print_request, 8);
1463

1464
	drm_printf(m, "HWSP:\n");
1465
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1466

1467
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1468 1469

	intel_engine_print_breadcrumbs(engine, m);
1470 1471
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1505
	struct intel_engine_execlists *execlists = &engine->execlists;
1506
	unsigned long flags;
1507
	int err = 0;
1508

1509
	if (!intel_engine_supports_stats(engine))
1510 1511
		return -ENODEV;

1512 1513
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1514 1515 1516 1517 1518 1519

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1520 1521 1522 1523
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1524
		engine->stats.enabled_at = ktime_get();
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1535

1536
unlock:
1537 1538
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1539

1540
	return err;
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1566
	unsigned int seq;
1567 1568
	ktime_t total;

1569 1570 1571 1572
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1587
	if (!intel_engine_supports_stats(engine))
1588 1589
		return;

1590
	write_seqlock_irqsave(&engine->stats.lock, flags);
1591 1592 1593 1594 1595
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1596
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1597 1598
}

1599 1600
static bool match_ring(struct i915_request *rq)
{
1601
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;
	unsigned long flags;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
			break;

		/* More than one preemptible request may match! */
		if (!match_ring(request))
			break;

		active = request;
		break;
	}
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	return active;
}

1643
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1644
#include "selftest_engine_cs.c"
1645
#endif