intel_engine_cs.c 47.5 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	unsigned int hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56 57
	[RCS0] = {
		.hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64 65
	[BCS0] = {
		.hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72 73
	[VCS0] = {
		.hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82 83
	[VCS1] = {
		.hw_id = VCS1_HW,
84 85
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
86
		.mmio_bases = {
87 88
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89
		},
90
	},
91 92
	[VCS2] = {
		.hw_id = VCS2_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97
		},
98
	},
99 100
	[VCS3] = {
		.hw_id = VCS3_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
103
		.mmio_bases = {
104
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105
		},
106
	},
107 108
	[VECS0] = {
		.hw_id = VECS0_HW,
109 110
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
111
		.mmio_bases = {
112 113
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
114
		},
115
	},
116 117
	[VECS1] = {
		.hw_id = VECS1_HW,
118 119
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
120
		.mmio_bases = {
121
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122
		},
123
	},
124 125
};

126
/**
127
 * intel_engine_context_size() - return the size of the context for an engine
128
 * @gt: the gt
129 130 131 132 133 134 135 136 137 138 139
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
140
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141
{
142
	struct intel_uncore *uncore = gt->uncore;
143 144 145 146 147 148
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
149
		switch (GRAPHICS_VER(gt->i915)) {
150
		default:
151
			MISSING_CASE(GRAPHICS_VER(gt->i915));
152
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153
		case 12:
154 155
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
156
		case 10:
O
Oscar Mateo 已提交
157
			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 159 160
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
161
			return GEN8_LR_CONTEXT_RENDER_SIZE;
162
		case 7:
163
			if (IS_HASWELL(gt->i915))
164 165
				return HSW_CXT_TOTAL_SIZE;

166
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 168 169
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
170
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 172 173
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
174
		case 4:
175 176 177 178 179 180 181 182 183 184
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
185
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186
			drm_dbg(&gt->i915->drm,
187 188
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
189
				cxt_size - 1);
190
			return round_up(cxt_size * 64, PAGE_SIZE);
191 192 193 194 195 196 197 198 199
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
200
		fallthrough;
201 202 203
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
204
		if (GRAPHICS_VER(gt->i915) < 8)
205 206 207 208 209
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

210 211 212 213 214 215
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
216
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217 218 219 220 221 222 223 224
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

225
static void __sprint_engine_name(struct intel_engine_cs *engine)
226
{
227 228 229 230 231 232 233 234
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
235 236
}

237 238 239 240 241 242
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
243
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 245
		return;

246
	if (GRAPHICS_VER(engine->i915) >= 3)
247
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248
	else
249
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 251 252 253 254 255 256 257
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

258 259 260 261 262
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

263
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
264 265
{
	const struct engine_info *info = &intel_engines[id];
266
	struct drm_i915_private *i915 = gt->i915;
267
	struct intel_engine_cs *engine;
268
	u8 guc_class;
269

270 271 272
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

273 274 275
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

276
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 278
		return -EINVAL;

279
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 281
		return -EINVAL;

282
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
283 284
		return -EINVAL;

285 286 287
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
288

289 290
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

291
	engine->id = id;
292
	engine->legacy_idx = INVALID_ENGINE;
293
	engine->mask = BIT(id);
294
	engine->i915 = i915;
295 296
	engine->gt = gt;
	engine->uncore = gt->uncore;
297
	engine->hw_id = info->hw_id;
298 299 300
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
301

302 303
	engine->irq_handler = nop_irq_handler;

304 305
	engine->class = info->class;
	engine->instance = info->instance;
306
	__sprint_engine_name(engine);
307

308 309
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
310 311
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
312 313
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
314 315
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
316 317
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
318

319
	/* Override to uninterruptible for OpenCL workloads. */
320
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
321 322
		engine->props.preempt_timeout_ms = 0;

323 324
	engine->defaults = engine->props; /* never to change again */

325
	engine->context_size = intel_engine_context_size(gt, engine->class);
326 327
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
328
	if (engine->context_size)
329
		DRIVER_CAPS(i915)->has_logical_contexts = true;
330

331
	ewma__engine_latency_init(&engine->latency);
332
	seqcount_init(&engine->stats.lock);
333

334 335
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

336 337 338
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

339
	gt->engine_class[info->class][info->instance] = engine;
340
	gt->engine[id] = engine;
341

342
	return 0;
343 344
}

345 346 347 348 349 350 351 352 353
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
354 355
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
356 357 358 359 360 361 362
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
363
		if ((GRAPHICS_VER(i915) >= 11 &&
364 365
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
366
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
367 368 369
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
370
		if (GRAPHICS_VER(i915) >= 9)
371 372 373 374 375
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

376
static void intel_setup_engine_capabilities(struct intel_gt *gt)
377 378 379 380
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

381
	for_each_engine(engine, gt, id)
382 383 384
		__setup_engine_capabilities(engine);
}

385
/**
386
 * intel_engines_release() - free the resources allocated for Command Streamers
387
 * @gt: pointer to struct intel_gt
388
 */
389
void intel_engines_release(struct intel_gt *gt)
390 391 392 393
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

394 395 396 397 398 399 400 401 402 403 404 405 406
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

407
	/* Decouple the backend; but keep the layout for late GPU resets */
408
	for_each_engine(engine, gt, id) {
409 410 411
		if (!engine->release)
			continue;

412 413 414
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

415 416 417 418
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
419 420 421
	}
}

422 423 424 425 426 427 428 429
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

430 431 432 433 434
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

435 436 437
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

438
	for_each_engine(engine, gt, id) {
439
		intel_engine_free_request_pool(engine);
440 441 442 443 444
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

445 446 447 448 449 450 451 452 453 454 455 456 457
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
458
	struct intel_gt_info *info = &gt->info;
459 460 461 462 463 464 465
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

466 467
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

468
	if (GRAPHICS_VER(i915) < 11)
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
494
		if (GRAPHICS_VER(i915) >= 12 || logical_vdbox++ % 2 == 0)
495
			gt->info.vdbox_sfc_access |= BIT(i);
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

519
/**
520
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
521
 * @gt: pointer to struct intel_gt
522 523 524
 *
 * Return: non-zero if the initialization failed.
 */
525
int intel_engines_init_mmio(struct intel_gt *gt)
526
{
527
	struct drm_i915_private *i915 = gt->i915;
528
	const unsigned int engine_mask = init_engine_mask(gt);
529
	unsigned int mask = 0;
530
	unsigned int i;
531
	int err;
532

533 534 535
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
536

537
	if (i915_inject_probe_failure(i915))
538 539
		return -ENODEV;

540
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
541
		if (!HAS_ENGINE(gt, i))
542 543
			continue;

544
		err = intel_engine_setup(gt, i);
545 546 547
		if (err)
			goto cleanup;

548
		mask |= BIT(i);
549 550 551 552 553 554 555
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
556
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
557
		gt->info.engine_mask = mask;
558

559
	gt->info.num_engines = hweight32(mask);
560

561
	intel_gt_check_and_clear_faults(gt);
562

563
	intel_setup_engine_capabilities(gt);
564

565 566
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

567 568 569
	return 0;

cleanup:
570
	intel_engines_free(gt);
571 572 573
	return err;
}

574
void intel_engine_init_execlists(struct intel_engine_cs *engine)
575 576 577
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

578
	execlists->port_mask = 1;
579
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
580 581
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

582 583 584
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
585 586
}

587
static void cleanup_status_page(struct intel_engine_cs *engine)
588
{
589 590
	struct i915_vma *vma;

591 592 593
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

594 595 596
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
597

598 599 600 601
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
602
	i915_gem_object_put(vma->obj);
603 604 605
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
606
				struct i915_gem_ww_ctx *ww,
607 608 609 610
				struct i915_vma *vma)
{
	unsigned int flags;

611
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
612 613 614 615 616 617 618 619 620 621 622
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
623
		flags = PIN_MAPPABLE;
624
	else
625
		flags = PIN_HIGH;
626

627
	return i915_ggtt_pin(vma, ww, 0, flags);
628 629 630 631 632
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
633
	struct i915_gem_ww_ctx ww;
634 635 636 637
	struct i915_vma *vma;
	void *vaddr;
	int ret;

638 639
	INIT_LIST_HEAD(&engine->status_page.timelines);

640 641 642 643 644 645 646
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
647 648
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
649 650
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
651 652 653
		return PTR_ERR(obj);
	}

654
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
655

656
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
657 658
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
659
		goto err_put;
660 661
	}

662 663 664 665 666 667 668 669
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

670 671 672
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
673
		goto err_unpin;
674 675
	}

676
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
677
	engine->status_page.vma = vma;
678

679
err_unpin:
680 681
	if (ret)
		i915_vma_unpin(vma);
682
err:
683 684 685 686 687 688 689 690 691
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
692 693 694
	return ret;
}

695
static int engine_setup_common(struct intel_engine_cs *engine)
696 697 698
{
	int err;

699 700
	init_llist_head(&engine->barrier_tasks);

701 702 703 704
	err = init_status_page(engine);
	if (err)
		return err;

705 706 707 708 709 710
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

711 712 713 714 715
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
716
	engine->sched_engine->private_data = engine;
717

718 719 720 721
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

722 723
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
724
	intel_engine_init_retire(engine);
725

726 727
	/* Use the whole device by default */
	engine->sseu =
728
		intel_sseu_from_device_info(&engine->gt->info.sseu);
729

730 731 732 733
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

734
	if (GRAPHICS_VER(engine->i915) >= 12)
735 736
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

737
	return 0;
738

739
err_cmd_parser:
740 741
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
742
	intel_breadcrumbs_free(engine->breadcrumbs);
743 744 745
err_status:
	cleanup_status_page(engine);
	return err;
746 747
}

748 749 750
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
751
	u32 cs[2048];
752 753
};

754
static int measure_breadcrumb_dw(struct intel_context *ce)
755
{
756
	struct intel_engine_cs *engine = ce->engine;
757
	struct measure_breadcrumb *frame;
758
	int dw;
759

760
	GEM_BUG_ON(!engine->gt->scratch);
761 762 763 764 765

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

766 767 768
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
769
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
770

771 772
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
773 774
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
775 776 777
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
778

779
	mutex_lock(&ce->timeline->mutex);
780
	spin_lock_irq(&engine->sched_engine->lock);
781

782
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
783

784
	spin_unlock_irq(&engine->sched_engine->lock);
785
	mutex_unlock(&ce->timeline->mutex);
786

787
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
788

789
	kfree(frame);
790 791 792
	return dw;
}

793 794 795 796 797 798 799
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
800 801 802 803
{
	struct intel_context *ce;
	int err;

804
	ce = intel_context_create(engine);
805 806 807
	if (IS_ERR(ce))
		return ce;

808
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
809
	ce->timeline = page_pack_bits(NULL, hwsp);
810 811 812 813
	ce->ring = __intel_context_ring_size(ring_size);

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
814

815
	err = intel_context_pin(ce); /* perma-pin so it is always available */
816 817 818 819 820
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

821 822 823 824 825 826
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
827
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
828

829 830 831
	return ce;
}

832
void intel_engine_destroy_pinned_context(struct intel_context *ce)
833 834 835 836 837 838 839 840 841 842 843 844 845 846
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

847 848 849 850 851
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

852 853 854
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
855 856
}

857 858 859 860 861 862 863 864 865 866 867
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
868
static int engine_init_common(struct intel_engine_cs *engine)
869
{
870
	struct intel_context *ce;
871 872
	int ret;

873 874
	engine->set_default_submission(engine);

875 876
	/*
	 * We may need to do things with the shrinker which
877 878 879 880 881 882
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
883 884 885 886
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

887 888 889 890 891
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
892
	engine->kernel_context = ce;
893

894
	return 0;
895 896

err_context:
897
	intel_engine_destroy_pinned_context(ce);
898
	return ret;
899
}
900

901 902 903 904 905 906 907
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

908 909
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
910
		setup = intel_guc_submission_setup;
911 912
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
913
		setup = intel_execlists_submission_setup;
914 915
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
916
		setup = intel_ring_submission_setup;
917
	}
918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

938 939 940 941 942 943 944 945 946
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
947
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
948

949
	i915_sched_engine_put(engine->sched_engine);
950
	intel_breadcrumbs_free(engine->breadcrumbs);
951

952
	intel_engine_fini_retire(engine);
953
	intel_engine_cleanup_cmd_parser(engine);
954

955
	if (engine->default_state)
956
		fput(engine->default_state);
957

958
	if (engine->kernel_context)
959
		intel_engine_destroy_pinned_context(engine->kernel_context);
960

961
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
962
	cleanup_status_page(engine);
963

964
	intel_wa_list_free(&engine->ctx_wa_list);
965
	intel_wa_list_free(&engine->wa_list);
966
	intel_wa_list_free(&engine->whitelist);
967
}
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

983
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
984
{
985 986
	struct drm_i915_private *i915 = engine->i915;

987 988
	u64 acthd;

989
	if (GRAPHICS_VER(i915) >= 8)
990
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
991
	else if (GRAPHICS_VER(i915) >= 4)
992
		acthd = ENGINE_READ(engine, RING_ACTHD);
993
	else
994
		acthd = ENGINE_READ(engine, ACTHD);
995 996 997 998

	return acthd;
}

999
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1000 1001 1002
{
	u64 bbaddr;

1003
	if (GRAPHICS_VER(engine->i915) >= 8)
1004
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1005
	else
1006
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1007 1008 1009

	return bbaddr;
}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1026 1027 1028
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1029
{
1030
	struct intel_uncore *uncore = engine->uncore;
1031
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1032 1033
	int err;

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1050
	if (GRAPHICS_VER(engine->i915) < 3)
1051 1052
		return -ENODEV;

1053
	ENGINE_TRACE(engine, "\n");
1054
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1068 1069 1070 1071 1072
	}

	return err;
}

1073 1074
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1075
	ENGINE_TRACE(engine, "\n");
1076

1077
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1091
static u32
1092 1093
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1094
{
1095 1096
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1097 1098 1099
}

/* NB: please notice the memset */
1100
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1101 1102
			       struct intel_instdone *instdone)
{
1103
	struct drm_i915_private *i915 = engine->i915;
1104
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1105
	struct intel_uncore *uncore = engine->uncore;
1106 1107 1108 1109 1110 1111
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1112
	switch (GRAPHICS_VER(i915)) {
1113
	default:
1114 1115
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1116

1117
		if (engine->id != RCS0)
1118 1119
			break;

1120 1121
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1122
		if (GRAPHICS_VER(i915) >= 12) {
1123 1124 1125 1126 1127
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1128
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1129
			instdone->sampler[slice][subslice] =
1130
				read_subslice_reg(engine, slice, subslice,
1131 1132
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1133
				read_subslice_reg(engine, slice, subslice,
1134 1135 1136 1137
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1138 1139
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1140

1141
		if (engine->id != RCS0)
1142 1143
			break;

1144 1145 1146 1147 1148 1149
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1150 1151 1152 1153 1154

		break;
	case 6:
	case 5:
	case 4:
1155 1156
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1157
		if (engine->id == RCS0)
1158
			/* HACK: Using the wrong struct member */
1159 1160
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1161 1162 1163
		break;
	case 3:
	case 2:
1164
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1165 1166 1167
		break;
	}
}
1168

1169 1170 1171 1172
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1173 1174 1175
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1176
	if (!intel_engine_pm_get_if_awake(engine))
1177
		return true;
1178

1179
	/* First check that no commands are left in the ring */
1180 1181
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1182
		idle = false;
1183

1184
	/* No bit for gen2, so assume the CS parser is idle */
1185
	if (GRAPHICS_VER(engine->i915) > 2 &&
1186
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1187 1188
		idle = false;

1189
	intel_engine_pm_put(engine);
1190 1191 1192 1193

	return idle;
}

1194
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1195
{
1196
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1197

1198
	if (!t->callback)
1199 1200
		return;

1201 1202 1203 1204
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1205
			t->callback(t);
1206
		tasklet_unlock(t);
1207
	}
1208
	local_bh_enable();
1209 1210 1211 1212

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1213 1214
}

1215 1216 1217 1218 1219 1220 1221 1222 1223
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1224
	/* More white lies, if wedged, hw state is inconsistent */
1225
	if (intel_gt_is_wedged(engine->gt))
1226 1227
		return true;

1228
	if (!intel_engine_pm_is_awake(engine))
1229 1230
		return true;

1231
	/* Waiting to drain ELSP? */
1232 1233
	synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
	intel_engine_flush_submission(engine);
1234

1235
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1236
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1237 1238
		return false;

1239
	/* Ring stopped? */
1240
	return ring_is_idle(engine);
1241 1242
}

1243
bool intel_engines_are_idle(struct intel_gt *gt)
1244 1245 1246 1247
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1248 1249
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1250 1251
	 * report that it is still busy, even though we have stopped using it.
	 */
1252
	if (intel_gt_is_wedged(gt))
1253 1254
		return true;

1255
	/* Already parked (and passed an idleness test); must still be idle */
1256
	if (!READ_ONCE(gt->awake))
1257 1258
		return true;

1259
	for_each_engine(engine, gt, id) {
1260 1261 1262 1263 1264 1265 1266
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1267
void intel_engines_reset_default_submission(struct intel_gt *gt)
1268 1269 1270 1271
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1272 1273 1274 1275
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1276
		engine->set_default_submission(engine);
1277
	}
1278 1279
}

1280 1281
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1282
	switch (GRAPHICS_VER(engine->i915)) {
1283 1284 1285 1286 1287
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1288 1289
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1290 1291 1292 1293 1294 1295 1296
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1297 1298 1299 1300 1301
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1302
	 * Even though we are holding the engine->sched_engine->lock here, there
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1362
		drm_printf(m, "[%04zx] %s\n", pos, line);
1363 1364 1365 1366 1367 1368

		prev = buf + pos;
		skip = false;
	}
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1380
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1381
					 struct drm_printer *m)
1382 1383
{
	struct drm_i915_private *dev_priv = engine->i915;
1384
	struct intel_engine_execlists * const execlists = &engine->execlists;
1385 1386
	u64 addr;

1387
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1388
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1389 1390 1391 1392 1393 1394
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1395
	drm_printf(m, "\tRING_START: 0x%08x\n",
1396
		   ENGINE_READ(engine, RING_START));
1397
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1398
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1399
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1400
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1401
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1402 1403
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1404
	if (GRAPHICS_VER(engine->i915) > 2) {
1405
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1406 1407
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1408
	}
1409

1410
	if (GRAPHICS_VER(dev_priv) >= 6) {
1411
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1412
			   ENGINE_READ(engine, RING_IMR));
1413 1414 1415 1416 1417 1418
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1419 1420
	}

1421 1422 1423 1424 1425 1426
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1427
	if (GRAPHICS_VER(dev_priv) >= 8)
1428
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1429
	else if (GRAPHICS_VER(dev_priv) >= 4)
1430
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1431
	else
1432
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1433 1434
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1435
	if (GRAPHICS_VER(dev_priv) >= 4) {
1436
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1437
			   ENGINE_READ(engine, RING_IPEIR));
1438
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1439
			   ENGINE_READ(engine, RING_IPEHR));
1440
	} else {
1441 1442
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1443
	}
1444

1445
	if (intel_engine_uses_guc(engine)) {
1446 1447
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1448
		struct i915_request * const *port, *rq;
1449 1450
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1451
		const u8 num_entries = execlists->csb_size;
1452
		unsigned int idx;
1453
		u8 read, write;
1454

1455
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1456
			   yesno(test_bit(TASKLET_STATE_SCHED,
1457 1458
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1459
			   repr_timer(&engine->execlists.preempt),
1460
			   repr_timer(&engine->execlists.timer));
1461

1462 1463 1464
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1465 1466 1467 1468 1469
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1470
		if (read >= num_entries)
1471
			read = 0;
1472
		if (write >= num_entries)
1473 1474
			write = 0;
		if (read > write)
1475
			write += num_entries;
1476
		while (read < write) {
1477 1478 1479
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1480 1481
		}

1482
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1483
		rcu_read_lock();
1484
		for (port = execlists->active; (rq = *port); port++) {
1485
			char hdr[160];
1486 1487
			int len;

1488
			len = scnprintf(hdr, sizeof(hdr),
1489
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1490
					(int)(port - execlists->active),
1491 1492 1493
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1494
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1495
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1496
			i915_request_show(m, rq, hdr, 0);
1497 1498
		}
		for (port = execlists->pending; (rq = *port); port++) {
1499 1500
			char hdr[160];
			int len;
1501

1502
			len = scnprintf(hdr, sizeof(hdr),
1503
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1504
					(int)(port - execlists->pending),
1505 1506 1507
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1508 1509
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1510
			i915_request_show(m, rq, hdr, 0);
1511
		}
1512
		rcu_read_unlock();
1513
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1514
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1515
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1516
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1517
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1518
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1519
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1520
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1521
	}
1522 1523
}

1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1603 1604 1605 1606 1607
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1608
	struct i915_request *rq;
1609
	intel_wakeref_t wakeref;
1610
	unsigned long flags;
1611
	ktime_t dummy;
1612 1613 1614 1615 1616 1617 1618 1619 1620

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1621
	if (intel_gt_is_wedged(engine->gt))
1622 1623
		drm_printf(m, "*** WEDGED ***\n");

1624
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1625 1626
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1627 1628
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1629 1630 1631 1632
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1633
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1634
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1635 1636 1637 1638 1639 1640 1641

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1642 1643 1644
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1645
	print_properties(engine, m);
1646 1647 1648

	drm_printf(m, "\tRequests:\n");

1649
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1650
	rq = intel_engine_find_active_request(engine);
1651
	if (rq) {
1652 1653
		struct intel_timeline *tl = get_timeline(rq);

1654
		i915_request_show(m, rq, "\t\tactive ", 0);
1655

1656
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1657
			   i915_ggtt_offset(rq->ring->vma));
1658
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1659
			   rq->ring->head);
1660
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1661
			   rq->ring->tail);
1662 1663 1664 1665
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1666 1667 1668 1669 1670 1671

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1672 1673

		print_request_ring(m, rq);
1674

1675
		if (rq->context->lrc_reg_state) {
1676
			drm_printf(m, "Logical Ring Context:\n");
1677
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1678
		}
1679
	}
1680 1681 1682
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1683

1684
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1685
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1686
	if (wakeref) {
1687
		intel_engine_print_registers(engine, m);
1688
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1689 1690 1691
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1692

C
Chris Wilson 已提交
1693
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1694

1695
	drm_printf(m, "HWSP:\n");
1696
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1697

1698
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1699 1700

	intel_engine_print_breadcrumbs(engine, m);
1701 1702
}

1703 1704
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1705 1706 1707 1708 1709 1710 1711
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1712
	*now = ktime_get();
1713
	if (READ_ONCE(engine->stats.active))
1714
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1715 1716 1717 1718 1719 1720 1721

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1722
 * @now: monotonic timestamp of sampling
1723 1724 1725
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1726
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1727
{
1728
	unsigned int seq;
1729 1730
	ktime_t total;

1731
	do {
1732
		seq = read_seqcount_begin(&engine->stats.lock);
1733
		total = __intel_engine_get_busy_time(engine, now);
1734
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1735 1736 1737 1738

	return total;
}

1739 1740
static bool match_ring(struct i915_request *rq)
{
1741
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1762
	lockdep_assert_held(&engine->sched_engine->lock);
1763 1764 1765 1766 1767 1768 1769

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1770
			if (__i915_request_is_complete(request))
1771 1772 1773 1774 1775 1776 1777 1778 1779
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1780 1781
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
1782
		if (__i915_request_is_complete(request))
1783 1784
			continue;

1785
		if (!__i915_request_has_started(request))
1786
			continue;
1787 1788 1789

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1790
			continue;
1791 1792 1793 1794 1795 1796 1797 1798

		active = request;
		break;
	}

	return active;
}

1799
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1800
#include "mock_engine.c"
1801
#include "selftest_engine.c"
1802
#include "selftest_engine_cs.c"
1803
#endif