intel_engine_cs.c 51.9 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
39 40 41

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

42
#define MAX_MMIO_BASES 3
43
struct engine_info {
44 45
	u8 class;
	u8 instance;
46
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
47
	struct engine_mmio_base {
48
		u32 graphics_ver : 8;
49 50
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
51 52 53
};

static const struct engine_info intel_engines[] = {
54
	[RCS0] = {
55 56
		.class = RENDER_CLASS,
		.instance = 0,
57
		.mmio_bases = {
58
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
59
		},
60
	},
61
	[BCS0] = {
62 63
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
64
		.mmio_bases = {
65
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
66
		},
67
	},
68
	[VCS0] = {
69 70
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
71
		.mmio_bases = {
72 73 74
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
75
		},
76
	},
77
	[VCS1] = {
78 79
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
80
		.mmio_bases = {
81 82
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
83
		},
84
	},
85
	[VCS2] = {
86 87
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
88
		.mmio_bases = {
89
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
90
		},
91
	},
92
	[VCS3] = {
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
97
		},
98
	},
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
127
	[VECS0] = {
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130
		.mmio_bases = {
131 132
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
133
		},
134
	},
135
	[VECS1] = {
136 137
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
138
		.mmio_bases = {
139
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
140
		},
141
	},
142 143 144 145 146 147 148 149 150 151 152 153 154 155
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
156 157
};

158
/**
159
 * intel_engine_context_size() - return the size of the context for an engine
160
 * @gt: the gt
161 162 163 164 165 166 167 168 169 170 171
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
172
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
173
{
174
	struct intel_uncore *uncore = gt->uncore;
175 176 177 178 179 180
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
181
		switch (GRAPHICS_VER(gt->i915)) {
182
		default:
183
			MISSING_CASE(GRAPHICS_VER(gt->i915));
184
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185
		case 12:
186 187
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
188 189 190
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
191
			return GEN8_LR_CONTEXT_RENDER_SIZE;
192
		case 7:
193
			if (IS_HASWELL(gt->i915))
194 195
				return HSW_CXT_TOTAL_SIZE;

196
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
197 198 199
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
200
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
201 202 203
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
204
		case 4:
205 206 207 208 209 210 211 212 213 214
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
215
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
216
			drm_dbg(&gt->i915->drm,
217 218
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
219
				cxt_size - 1);
220
			return round_up(cxt_size * 64, PAGE_SIZE);
221 222 223 224 225 226 227 228 229
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
230
		fallthrough;
231 232 233
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
234
		if (GRAPHICS_VER(gt->i915) < 8)
235 236 237 238 239
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

240 241 242 243 244 245
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
246
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
247 248 249 250 251 252 253 254
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

255
static void __sprint_engine_name(struct intel_engine_cs *engine)
256
{
257 258 259 260 261 262 263 264
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
265 266
}

267 268 269 270 271 272
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
273
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
274 275
		return;

276
	if (GRAPHICS_VER(engine->i915) >= 3)
277
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
278
	else
279
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
280 281 282 283 284 285 286 287
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

288 289 290 291 292
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

293
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
294 295
{
	const struct engine_info *info = &intel_engines[id];
296
	struct drm_i915_private *i915 = gt->i915;
297
	struct intel_engine_cs *engine;
298
	u8 guc_class;
299

300 301
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
302 303
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
304

305 306 307
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

308
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
309 310
		return -EINVAL;

311
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
312 313
		return -EINVAL;

314
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
315 316
		return -EINVAL;

317 318 319
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
320

321 322
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

323
	engine->id = id;
324
	engine->legacy_idx = INVALID_ENGINE;
325
	engine->mask = BIT(id);
326
	engine->i915 = i915;
327 328
	engine->gt = gt;
	engine->uncore = gt->uncore;
329 330 331
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
332

333 334
	engine->irq_handler = nop_irq_handler;

335 336
	engine->class = info->class;
	engine->instance = info->instance;
337
	__sprint_engine_name(engine);
338

339 340
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
341 342
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
343 344
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
345 346
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
347 348
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
349

350
	/* Override to uninterruptible for OpenCL workloads. */
351
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
352 353
		engine->props.preempt_timeout_ms = 0;

354 355
	engine->defaults = engine->props; /* never to change again */

356
	engine->context_size = intel_engine_context_size(gt, engine->class);
357 358
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
359
	if (engine->context_size)
360
		DRIVER_CAPS(i915)->has_logical_contexts = true;
361

362
	ewma__engine_latency_init(&engine->latency);
363
	seqcount_init(&engine->stats.lock);
364

365 366
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

367 368 369
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

370
	gt->engine_class[info->class][info->instance] = engine;
371
	gt->engine[id] = engine;
372

373
	return 0;
374 375
}

376 377 378 379 380 381 382 383 384
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
385 386
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
387 388 389 390 391 392 393
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
394
		if ((GRAPHICS_VER(i915) >= 11 &&
395 396
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
397
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
398 399 400
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
401
		if (GRAPHICS_VER(i915) >= 9)
402 403 404 405 406
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

407
static void intel_setup_engine_capabilities(struct intel_gt *gt)
408 409 410 411
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

412
	for_each_engine(engine, gt, id)
413 414 415
		__setup_engine_capabilities(engine);
}

416
/**
417
 * intel_engines_release() - free the resources allocated for Command Streamers
418
 * @gt: pointer to struct intel_gt
419
 */
420
void intel_engines_release(struct intel_gt *gt)
421 422 423 424
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

425 426 427 428 429 430 431 432 433 434 435 436 437
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

438
	/* Decouple the backend; but keep the layout for late GPU resets */
439
	for_each_engine(engine, gt, id) {
440 441 442
		if (!engine->release)
			continue;

443 444 445
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

446 447 448 449
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
450 451 452
	}
}

453 454 455 456 457 458 459 460
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

461 462 463 464 465
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

466 467 468
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

469
	for_each_engine(engine, gt, id) {
470
		intel_engine_free_request_pool(engine);
471 472 473 474 475
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
static
bool gen11_vdbox_has_sfc(struct drm_i915_private *i915,
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
	 */
	if (GRAPHICS_VER(i915) == 12)
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

498 499 500 501 502 503 504 505 506 507 508 509 510
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
511
	struct intel_gt_info *info = &gt->info;
512 513 514 515 516 517 518
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

519 520
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

521
	if (GRAPHICS_VER(i915) < 11)
522 523
		return info->engine_mask;

524 525 526 527 528 529 530 531
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

549
		if (gen11_vdbox_has_sfc(i915, i, logical_vdbox, vdbox_mask))
550
			gt->info.vdbox_sfc_access |= BIT(i);
551
		logical_vdbox++;
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

575
/**
576
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
577
 * @gt: pointer to struct intel_gt
578 579 580
 *
 * Return: non-zero if the initialization failed.
 */
581
int intel_engines_init_mmio(struct intel_gt *gt)
582
{
583
	struct drm_i915_private *i915 = gt->i915;
584
	const unsigned int engine_mask = init_engine_mask(gt);
585
	unsigned int mask = 0;
586
	unsigned int i;
587
	int err;
588

589 590 591
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
592

593
	if (i915_inject_probe_failure(i915))
594 595
		return -ENODEV;

596
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
597
		if (!HAS_ENGINE(gt, i))
598 599
			continue;

600
		err = intel_engine_setup(gt, i);
601 602 603
		if (err)
			goto cleanup;

604
		mask |= BIT(i);
605 606 607 608 609 610 611
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
612
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
613
		gt->info.engine_mask = mask;
614

615
	gt->info.num_engines = hweight32(mask);
616

617
	intel_gt_check_and_clear_faults(gt);
618

619
	intel_setup_engine_capabilities(gt);
620

621 622
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

623 624 625
	return 0;

cleanup:
626
	intel_engines_free(gt);
627 628 629
	return err;
}

630
void intel_engine_init_execlists(struct intel_engine_cs *engine)
631 632 633
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

634
	execlists->port_mask = 1;
635
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
636 637
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

638 639 640
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
641 642
}

643
static void cleanup_status_page(struct intel_engine_cs *engine)
644
{
645 646
	struct i915_vma *vma;

647 648 649
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

650 651 652
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
653

654 655 656 657
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
658
	i915_gem_object_put(vma->obj);
659 660 661
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
662
				struct i915_gem_ww_ctx *ww,
663 664 665 666
				struct i915_vma *vma)
{
	unsigned int flags;

667
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
668 669 670 671 672 673 674 675 676 677 678
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
679
		flags = PIN_MAPPABLE;
680
	else
681
		flags = PIN_HIGH;
682

683
	return i915_ggtt_pin(vma, ww, 0, flags);
684 685 686 687 688
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
689
	struct i915_gem_ww_ctx ww;
690 691 692 693
	struct i915_vma *vma;
	void *vaddr;
	int ret;

694 695
	INIT_LIST_HEAD(&engine->status_page.timelines);

696 697 698 699 700 701 702
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
703 704
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
705 706
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
707 708 709
		return PTR_ERR(obj);
	}

710
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
711

712
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
713 714
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
715
		goto err_put;
716 717
	}

718 719 720 721 722 723 724 725
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

726 727 728
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
729
		goto err_unpin;
730 731
	}

732
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
733
	engine->status_page.vma = vma;
734

735
err_unpin:
736 737
	if (ret)
		i915_vma_unpin(vma);
738
err:
739 740 741 742 743 744 745 746 747
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
748 749 750
	return ret;
}

751
static int engine_setup_common(struct intel_engine_cs *engine)
752 753 754
{
	int err;

755 756
	init_llist_head(&engine->barrier_tasks);

757 758 759 760
	err = init_status_page(engine);
	if (err)
		return err;

761 762 763 764 765 766
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

767 768 769 770 771
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
772
	engine->sched_engine->private_data = engine;
773

774 775 776 777
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

778 779
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
780
	intel_engine_init_retire(engine);
781

782 783
	/* Use the whole device by default */
	engine->sseu =
784
		intel_sseu_from_device_info(&engine->gt->info.sseu);
785

786 787 788 789
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

790
	if (GRAPHICS_VER(engine->i915) >= 12)
791 792
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

793
	return 0;
794

795
err_cmd_parser:
796 797
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
798
	intel_breadcrumbs_put(engine->breadcrumbs);
799 800 801
err_status:
	cleanup_status_page(engine);
	return err;
802 803
}

804 805 806
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
807
	u32 cs[2048];
808 809
};

810
static int measure_breadcrumb_dw(struct intel_context *ce)
811
{
812
	struct intel_engine_cs *engine = ce->engine;
813
	struct measure_breadcrumb *frame;
814
	int dw;
815

816
	GEM_BUG_ON(!engine->gt->scratch);
817 818 819 820 821

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

822 823 824
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
825
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
826

827 828
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
829 830
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
831 832 833
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
834

835
	mutex_lock(&ce->timeline->mutex);
836
	spin_lock_irq(&engine->sched_engine->lock);
837

838
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
839

840
	spin_unlock_irq(&engine->sched_engine->lock);
841
	mutex_unlock(&ce->timeline->mutex);
842

843
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
844

845
	kfree(frame);
846 847 848
	return dw;
}

849 850 851 852 853 854 855
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
856 857 858 859
{
	struct intel_context *ce;
	int err;

860
	ce = intel_context_create(engine);
861 862 863
	if (IS_ERR(ce))
		return ce;

864
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
865
	ce->timeline = page_pack_bits(NULL, hwsp);
866 867
	ce->ring = NULL;
	ce->ring_size = ring_size;
868 869 870

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
871

872
	err = intel_context_pin(ce); /* perma-pin so it is always available */
873 874 875 876 877
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

878 879 880 881 882 883
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
884
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
885

886 887 888
	return ce;
}

889
void intel_engine_destroy_pinned_context(struct intel_context *ce)
890 891 892 893 894 895 896 897 898 899 900 901 902 903
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

904 905 906 907 908
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

909 910 911
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
912 913
}

914 915 916 917 918 919 920 921 922 923 924
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
925
static int engine_init_common(struct intel_engine_cs *engine)
926
{
927
	struct intel_context *ce;
928 929
	int ret;

930 931
	engine->set_default_submission(engine);

932 933
	/*
	 * We may need to do things with the shrinker which
934 935 936 937 938 939
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
940 941 942 943
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

944 945 946 947 948
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
949
	engine->kernel_context = ce;
950

951
	return 0;
952 953

err_context:
954
	intel_engine_destroy_pinned_context(ce);
955
	return ret;
956
}
957

958 959 960 961 962 963 964
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

965 966
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
967
		setup = intel_guc_submission_setup;
968 969
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
970
		setup = intel_execlists_submission_setup;
971 972
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
973
		setup = intel_ring_submission_setup;
974
	}
975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

995 996 997 998 999 1000 1001 1002 1003
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1004
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1005

1006
	i915_sched_engine_put(engine->sched_engine);
1007
	intel_breadcrumbs_put(engine->breadcrumbs);
1008

1009
	intel_engine_fini_retire(engine);
1010
	intel_engine_cleanup_cmd_parser(engine);
1011

1012
	if (engine->default_state)
1013
		fput(engine->default_state);
1014

1015
	if (engine->kernel_context)
1016
		intel_engine_destroy_pinned_context(engine->kernel_context);
1017

1018
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1019
	cleanup_status_page(engine);
1020

1021
	intel_wa_list_free(&engine->ctx_wa_list);
1022
	intel_wa_list_free(&engine->wa_list);
1023
	intel_wa_list_free(&engine->whitelist);
1024
}
1025

1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1040
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1041
{
1042 1043
	struct drm_i915_private *i915 = engine->i915;

1044 1045
	u64 acthd;

1046
	if (GRAPHICS_VER(i915) >= 8)
1047
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1048
	else if (GRAPHICS_VER(i915) >= 4)
1049
		acthd = ENGINE_READ(engine, RING_ACTHD);
1050
	else
1051
		acthd = ENGINE_READ(engine, ACTHD);
1052 1053 1054 1055

	return acthd;
}

1056
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1057 1058 1059
{
	u64 bbaddr;

1060
	if (GRAPHICS_VER(engine->i915) >= 8)
1061
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1062
	else
1063
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1064 1065 1066

	return bbaddr;
}
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1083 1084 1085
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1086
{
1087
	struct intel_uncore *uncore = engine->uncore;
1088
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1089 1090
	int err;

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1107
	if (GRAPHICS_VER(engine->i915) < 3)
1108 1109
		return -ENODEV;

1110
	ENGINE_TRACE(engine, "\n");
1111
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1125 1126 1127 1128 1129
	}

	return err;
}

1130 1131
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1132
	ENGINE_TRACE(engine, "\n");
1133

1134
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1135 1136
}

1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1148
static u32
1149 1150
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1151
{
1152 1153
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1154 1155 1156
}

/* NB: please notice the memset */
1157
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1158 1159
			       struct intel_instdone *instdone)
{
1160
	struct drm_i915_private *i915 = engine->i915;
1161
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1162
	struct intel_uncore *uncore = engine->uncore;
1163 1164 1165
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1166
	int iter;
1167 1168 1169

	memset(instdone, 0, sizeof(*instdone));

1170
	if (GRAPHICS_VER(i915) >= 8) {
1171 1172
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1173

1174
		if (engine->id != RCS0)
1175
			return;
1176

1177 1178
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1179
		if (GRAPHICS_VER(i915) >= 12) {
1180 1181 1182 1183 1184
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1204
		}
1205 1206 1207 1208 1209 1210 1211

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1212
	} else if (GRAPHICS_VER(i915) >= 7) {
1213 1214
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1215

1216
		if (engine->id != RCS0)
1217
			return;
1218

1219 1220 1221 1222 1223 1224
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1225
	} else if (GRAPHICS_VER(i915) >= 4) {
1226 1227
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1228
		if (engine->id == RCS0)
1229
			/* HACK: Using the wrong struct member */
1230 1231
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1232
	} else {
1233
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1234 1235
	}
}
1236

1237 1238 1239 1240
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1241 1242 1243
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1244
	if (!intel_engine_pm_get_if_awake(engine))
1245
		return true;
1246

1247
	/* First check that no commands are left in the ring */
1248 1249
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1250
		idle = false;
1251

1252
	/* No bit for gen2, so assume the CS parser is idle */
1253
	if (GRAPHICS_VER(engine->i915) > 2 &&
1254
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1255 1256
		idle = false;

1257
	intel_engine_pm_put(engine);
1258 1259 1260 1261

	return idle;
}

1262
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1263
{
1264
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1265

1266
	if (!t->callback)
1267 1268
		return;

1269 1270 1271 1272
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1273
			t->callback(t);
1274
		tasklet_unlock(t);
1275
	}
1276
	local_bh_enable();
1277 1278 1279 1280

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1281 1282
}

1283 1284 1285 1286 1287 1288 1289 1290 1291
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1292
	/* More white lies, if wedged, hw state is inconsistent */
1293
	if (intel_gt_is_wedged(engine->gt))
1294 1295
		return true;

1296
	if (!intel_engine_pm_is_awake(engine))
1297 1298
		return true;

1299
	/* Waiting to drain ELSP? */
1300
	intel_synchronize_hardirq(engine->i915);
1301
	intel_engine_flush_submission(engine);
1302

1303
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1304
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1305 1306
		return false;

1307
	/* Ring stopped? */
1308
	return ring_is_idle(engine);
1309 1310
}

1311
bool intel_engines_are_idle(struct intel_gt *gt)
1312 1313 1314 1315
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1316 1317
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1318 1319
	 * report that it is still busy, even though we have stopped using it.
	 */
1320
	if (intel_gt_is_wedged(gt))
1321 1322
		return true;

1323
	/* Already parked (and passed an idleness test); must still be idle */
1324
	if (!READ_ONCE(gt->awake))
1325 1326
		return true;

1327
	for_each_engine(engine, gt, id) {
1328 1329 1330 1331 1332 1333 1334
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1359
void intel_engines_reset_default_submission(struct intel_gt *gt)
1360 1361 1362 1363
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1364 1365 1366 1367
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1368
		engine->set_default_submission(engine);
1369
	}
1370 1371
}

1372 1373
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1374
	switch (GRAPHICS_VER(engine->i915)) {
1375 1376 1377 1378 1379
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1380 1381
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1382 1383 1384 1385 1386 1387 1388
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1389 1390 1391 1392 1393
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1394
	 * Even though we are holding the engine->sched_engine->lock here, there
1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1454
		drm_printf(m, "[%04zx] %s\n", pos, line);
1455 1456 1457 1458 1459 1460

		prev = buf + pos;
		skip = false;
	}
}

1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1472
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1473
					 struct drm_printer *m)
1474 1475
{
	struct drm_i915_private *dev_priv = engine->i915;
1476
	struct intel_engine_execlists * const execlists = &engine->execlists;
1477 1478
	u64 addr;

1479
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1480
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1481 1482 1483 1484 1485 1486
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1487
	drm_printf(m, "\tRING_START: 0x%08x\n",
1488
		   ENGINE_READ(engine, RING_START));
1489
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1490
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1491
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1492
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1493
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1494 1495
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1496
	if (GRAPHICS_VER(engine->i915) > 2) {
1497
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1498 1499
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1500
	}
1501

1502
	if (GRAPHICS_VER(dev_priv) >= 6) {
1503
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1504
			   ENGINE_READ(engine, RING_IMR));
1505 1506 1507 1508 1509 1510
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1511 1512
	}

1513 1514 1515 1516 1517 1518
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1519
	if (GRAPHICS_VER(dev_priv) >= 8)
1520
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1521
	else if (GRAPHICS_VER(dev_priv) >= 4)
1522
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1523
	else
1524
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1525 1526
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1527
	if (GRAPHICS_VER(dev_priv) >= 4) {
1528
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1529
			   ENGINE_READ(engine, RING_IPEIR));
1530
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1531
			   ENGINE_READ(engine, RING_IPEHR));
1532
	} else {
1533 1534
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1535
	}
1536

1537
	if (intel_engine_uses_guc(engine)) {
1538 1539
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1540
		struct i915_request * const *port, *rq;
1541 1542
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1543
		const u8 num_entries = execlists->csb_size;
1544
		unsigned int idx;
1545
		u8 read, write;
1546

1547
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1548
			   yesno(test_bit(TASKLET_STATE_SCHED,
1549 1550
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1551
			   repr_timer(&engine->execlists.preempt),
1552
			   repr_timer(&engine->execlists.timer));
1553

1554 1555 1556
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1557 1558 1559 1560 1561
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1562
		if (read >= num_entries)
1563
			read = 0;
1564
		if (write >= num_entries)
1565 1566
			write = 0;
		if (read > write)
1567
			write += num_entries;
1568
		while (read < write) {
1569 1570 1571
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1572 1573
		}

1574
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1575
		rcu_read_lock();
1576
		for (port = execlists->active; (rq = *port); port++) {
1577
			char hdr[160];
1578 1579
			int len;

1580
			len = scnprintf(hdr, sizeof(hdr),
1581
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1582
					(int)(port - execlists->active),
1583 1584 1585
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1586
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1587
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1588
			i915_request_show(m, rq, hdr, 0);
1589 1590
		}
		for (port = execlists->pending; (rq = *port); port++) {
1591 1592
			char hdr[160];
			int len;
1593

1594
			len = scnprintf(hdr, sizeof(hdr),
1595
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1596
					(int)(port - execlists->pending),
1597 1598 1599
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1600 1601
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1602
			i915_request_show(m, rq, hdr, 0);
1603
		}
1604
		rcu_read_unlock();
1605
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1606
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1607
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1608
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1609
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1610
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1611
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1612
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1613
	}
1614 1615
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1787 1788 1789 1790 1791
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1792
	struct i915_request *rq;
1793
	intel_wakeref_t wakeref;
1794
	unsigned long flags;
1795
	ktime_t dummy;
1796 1797 1798 1799 1800 1801 1802 1803 1804

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1805
	if (intel_gt_is_wedged(engine->gt))
1806 1807
		drm_printf(m, "*** WEDGED ***\n");

1808
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1809 1810
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1811 1812
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1813 1814 1815 1816
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1817
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1818
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1819 1820 1821 1822 1823 1824 1825

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1826 1827 1828
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1829
	print_properties(engine, m);
1830

1831
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1832
	engine_dump_active_requests(engine, m);
1833

1834 1835 1836
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1837

1838
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1839
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1840
	if (wakeref) {
1841
		intel_engine_print_registers(engine, m);
1842
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1843 1844 1845
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1846

C
Chris Wilson 已提交
1847
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1848

1849
	drm_printf(m, "HWSP:\n");
1850
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1851

1852
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1853 1854

	intel_engine_print_breadcrumbs(engine, m);
1855 1856
}

1857 1858
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1859 1860 1861 1862 1863 1864 1865
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1866
	*now = ktime_get();
1867
	if (READ_ONCE(engine->stats.active))
1868
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1869 1870 1871 1872 1873 1874 1875

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1876
 * @now: monotonic timestamp of sampling
1877 1878 1879
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1880
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1881
{
1882
	unsigned int seq;
1883 1884
	ktime_t total;

1885
	do {
1886
		seq = read_seqcount_begin(&engine->stats.lock);
1887
		total = __intel_engine_get_busy_time(engine, now);
1888
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1889 1890 1891 1892

	return total;
}

1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
			    unsigned int count)
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
	return siblings[0]->cops->create_virtual(siblings, count);
}

1907
struct i915_request *
1908
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1909 1910 1911
{
	struct i915_request *request, *active = NULL;

1912 1913 1914 1915 1916 1917 1918
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1930
	lockdep_assert_held(&engine->sched_engine->lock);
1931 1932 1933 1934 1935 1936 1937

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1938
			if (__i915_request_is_complete(request))
1939 1940 1941 1942 1943 1944 1945 1946 1947
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1948 1949
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
1950
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
1951
			continue;
1952 1953 1954 1955 1956 1957 1958 1959

		active = request;
		break;
	}

	return active;
}

1960
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1961
#include "mock_engine.c"
1962
#include "selftest_engine.c"
1963
#include "selftest_engine_cs.c"
1964
#endif