intel_engine_cs.c 48.8 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	unsigned int hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56 57
	[RCS0] = {
		.hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64 65
	[BCS0] = {
		.hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72 73
	[VCS0] = {
		.hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82 83
	[VCS1] = {
		.hw_id = VCS1_HW,
84 85
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
86
		.mmio_bases = {
87 88
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89
		},
90
	},
91 92
	[VCS2] = {
		.hw_id = VCS2_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97
		},
98
	},
99 100
	[VCS3] = {
		.hw_id = VCS3_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
103
		.mmio_bases = {
104
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105
		},
106
	},
107 108
	[VECS0] = {
		.hw_id = VECS0_HW,
109 110
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
111
		.mmio_bases = {
112 113
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
114
		},
115
	},
116 117
	[VECS1] = {
		.hw_id = VECS1_HW,
118 119
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
120
		.mmio_bases = {
121
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122
		},
123
	},
124 125
};

126
/**
127
 * intel_engine_context_size() - return the size of the context for an engine
128
 * @gt: the gt
129 130 131 132 133 134 135 136 137 138 139
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
140
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141
{
142
	struct intel_uncore *uncore = gt->uncore;
143 144 145 146 147 148
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
149
		switch (GRAPHICS_VER(gt->i915)) {
150
		default:
151
			MISSING_CASE(GRAPHICS_VER(gt->i915));
152
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153
		case 12:
154 155
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
156
		case 10:
O
Oscar Mateo 已提交
157
			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 159 160
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
161
			return GEN8_LR_CONTEXT_RENDER_SIZE;
162
		case 7:
163
			if (IS_HASWELL(gt->i915))
164 165
				return HSW_CXT_TOTAL_SIZE;

166
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 168 169
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
170
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 172 173
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
174
		case 4:
175 176 177 178 179 180 181 182 183 184
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
185
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186
			drm_dbg(&gt->i915->drm,
187 188
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
189
				cxt_size - 1);
190
			return round_up(cxt_size * 64, PAGE_SIZE);
191 192 193 194 195 196 197 198 199
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
200
		fallthrough;
201 202 203
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
204
		if (GRAPHICS_VER(gt->i915) < 8)
205 206 207 208 209
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

210 211 212 213 214 215
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
216
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217 218 219 220 221 222 223 224
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

225
static void __sprint_engine_name(struct intel_engine_cs *engine)
226
{
227 228 229 230 231 232 233 234
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
235 236
}

237 238 239 240 241 242
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
243
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 245
		return;

246
	if (GRAPHICS_VER(engine->i915) >= 3)
247
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248
	else
249
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 251 252 253 254 255 256 257
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

258 259 260 261 262
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

263
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
264 265
{
	const struct engine_info *info = &intel_engines[id];
266
	struct drm_i915_private *i915 = gt->i915;
267
	struct intel_engine_cs *engine;
268
	u8 guc_class;
269

270 271 272
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

273 274 275
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

276
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 278
		return -EINVAL;

279
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 281
		return -EINVAL;

282
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
283 284
		return -EINVAL;

285 286 287
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
288

289 290
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

291
	engine->id = id;
292
	engine->legacy_idx = INVALID_ENGINE;
293
	engine->mask = BIT(id);
294
	engine->i915 = i915;
295 296
	engine->gt = gt;
	engine->uncore = gt->uncore;
297
	engine->hw_id = info->hw_id;
298 299 300
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
301

302 303
	engine->irq_handler = nop_irq_handler;

304 305
	engine->class = info->class;
	engine->instance = info->instance;
306
	__sprint_engine_name(engine);
307

308 309
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
310 311
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
312 313
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
314 315
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
316 317
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
318

319
	/* Override to uninterruptible for OpenCL workloads. */
320
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
321 322
		engine->props.preempt_timeout_ms = 0;

323 324
	engine->defaults = engine->props; /* never to change again */

325
	engine->context_size = intel_engine_context_size(gt, engine->class);
326 327
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
328
	if (engine->context_size)
329
		DRIVER_CAPS(i915)->has_logical_contexts = true;
330

331 332 333
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

334
	ewma__engine_latency_init(&engine->latency);
335
	seqcount_init(&engine->stats.lock);
336

337 338
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

339 340 341
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

342
	gt->engine_class[info->class][info->instance] = engine;
343
	gt->engine[id] = engine;
344

345
	return 0;
346 347
}

348 349 350 351 352 353 354 355 356
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
357 358
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
359 360 361 362 363 364 365
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
366
		if ((GRAPHICS_VER(i915) >= 11 &&
367 368
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
369
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
370 371 372
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
373
		if (GRAPHICS_VER(i915) >= 9)
374 375 376 377 378
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

379
static void intel_setup_engine_capabilities(struct intel_gt *gt)
380 381 382 383
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

384
	for_each_engine(engine, gt, id)
385 386 387
		__setup_engine_capabilities(engine);
}

388
/**
389
 * intel_engines_release() - free the resources allocated for Command Streamers
390
 * @gt: pointer to struct intel_gt
391
 */
392
void intel_engines_release(struct intel_gt *gt)
393 394 395 396
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

410
	/* Decouple the backend; but keep the layout for late GPU resets */
411
	for_each_engine(engine, gt, id) {
412 413 414
		if (!engine->release)
			continue;

415 416 417
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

418 419 420 421
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
422 423 424
	}
}

425 426 427 428 429 430 431 432
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

433 434 435 436 437
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

438 439 440
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

441
	for_each_engine(engine, gt, id) {
442
		intel_engine_free_request_pool(engine);
443 444 445 446 447
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

448 449 450 451 452 453 454 455 456 457 458 459 460
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
461
	struct intel_gt_info *info = &gt->info;
462 463 464 465 466 467 468
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

469 470
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

471
	if (GRAPHICS_VER(i915) < 11)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
497
		if (GRAPHICS_VER(i915) >= 12 || logical_vdbox++ % 2 == 0)
498
			gt->info.vdbox_sfc_access |= BIT(i);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

522
/**
523
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
524
 * @gt: pointer to struct intel_gt
525 526 527
 *
 * Return: non-zero if the initialization failed.
 */
528
int intel_engines_init_mmio(struct intel_gt *gt)
529
{
530
	struct drm_i915_private *i915 = gt->i915;
531
	const unsigned int engine_mask = init_engine_mask(gt);
532
	unsigned int mask = 0;
533
	unsigned int i;
534
	int err;
535

536 537 538
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
539

540
	if (i915_inject_probe_failure(i915))
541 542
		return -ENODEV;

543
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
544
		if (!HAS_ENGINE(gt, i))
545 546
			continue;

547
		err = intel_engine_setup(gt, i);
548 549 550
		if (err)
			goto cleanup;

551
		mask |= BIT(i);
552 553 554 555 556 557 558
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
559
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
560
		gt->info.engine_mask = mask;
561

562
	gt->info.num_engines = hweight32(mask);
563

564
	intel_gt_check_and_clear_faults(gt);
565

566
	intel_setup_engine_capabilities(gt);
567

568 569
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

570 571 572
	return 0;

cleanup:
573
	intel_engines_free(gt);
574 575 576
	return err;
}

577
void intel_engine_init_execlists(struct intel_engine_cs *engine)
578 579 580
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

581
	execlists->port_mask = 1;
582
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
583 584
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

585 586 587 588
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

589
	execlists->queue_priority_hint = INT_MIN;
590
	execlists->queue = RB_ROOT_CACHED;
591 592
}

593
static void cleanup_status_page(struct intel_engine_cs *engine)
594
{
595 596
	struct i915_vma *vma;

597 598 599
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

600 601 602
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
603

604 605 606 607
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
608
	i915_gem_object_put(vma->obj);
609 610 611
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
612
				struct i915_gem_ww_ctx *ww,
613 614 615 616
				struct i915_vma *vma)
{
	unsigned int flags;

617
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
618 619 620 621 622 623 624 625 626 627 628
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
629
		flags = PIN_MAPPABLE;
630
	else
631
		flags = PIN_HIGH;
632

633
	return i915_ggtt_pin(vma, ww, 0, flags);
634 635 636 637 638
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
639
	struct i915_gem_ww_ctx ww;
640 641 642 643
	struct i915_vma *vma;
	void *vaddr;
	int ret;

644 645
	INIT_LIST_HEAD(&engine->status_page.timelines);

646 647 648 649 650 651 652
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
653 654
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
655 656
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
657 658 659
		return PTR_ERR(obj);
	}

660
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
661

662
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
663 664
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
665
		goto err_put;
666 667
	}

668 669 670 671 672 673 674 675
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

676 677 678
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
679
		goto err_unpin;
680 681
	}

682
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
683
	engine->status_page.vma = vma;
684

685
err_unpin:
686 687
	if (ret)
		i915_vma_unpin(vma);
688
err:
689 690 691 692 693 694 695 696 697
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
698 699 700
	return ret;
}

701
static int engine_setup_common(struct intel_engine_cs *engine)
702 703 704
{
	int err;

705 706
	init_llist_head(&engine->barrier_tasks);

707 708 709 710
	err = init_status_page(engine);
	if (err)
		return err;

711 712 713 714 715 716
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

717 718 719 720
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

721
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
722 723
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
724
	intel_engine_init_retire(engine);
725

726 727
	/* Use the whole device by default */
	engine->sseu =
728
		intel_sseu_from_device_info(&engine->gt->info.sseu);
729

730 731 732 733
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

734
	if (GRAPHICS_VER(engine->i915) >= 12)
735 736
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

737
	return 0;
738

739 740
err_cmd_parser:
	intel_breadcrumbs_free(engine->breadcrumbs);
741 742 743
err_status:
	cleanup_status_page(engine);
	return err;
744 745
}

746 747 748
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
749
	u32 cs[2048];
750 751
};

752
static int measure_breadcrumb_dw(struct intel_context *ce)
753
{
754
	struct intel_engine_cs *engine = ce->engine;
755
	struct measure_breadcrumb *frame;
756
	int dw;
757

758
	GEM_BUG_ON(!engine->gt->scratch);
759 760 761 762 763

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

764 765 766
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
767
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
768

769 770
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
771 772
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
773 774 775
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
776

777
	mutex_lock(&ce->timeline->mutex);
778
	spin_lock_irq(&engine->active.lock);
779

780
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
781

782
	spin_unlock_irq(&engine->active.lock);
783
	mutex_unlock(&ce->timeline->mutex);
784

785
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
786

787
	kfree(frame);
788 789 790
	return dw;
}

791 792 793 794
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
795
	INIT_LIST_HEAD(&engine->active.hold);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

813
static struct intel_context *
814 815 816 817
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
818 819 820 821
{
	struct intel_context *ce;
	int err;

822
	ce = intel_context_create(engine);
823 824 825
	if (IS_ERR(ce))
		return ce;

826
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
827
	ce->timeline = page_pack_bits(NULL, hwsp);
828

829
	err = intel_context_pin(ce); /* perma-pin so it is always available */
830 831 832 833 834
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

835 836 837 838 839 840
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
841
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
842

843 844 845
	return ce;
}

846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
static void destroy_pinned_context(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

861 862 863 864 865 866 867 868 869
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

870 871 872 873 874 875 876 877 878 879 880
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
881
static int engine_init_common(struct intel_engine_cs *engine)
882
{
883
	struct intel_context *ce;
884 885
	int ret;

886 887
	engine->set_default_submission(engine);

888 889
	/*
	 * We may need to do things with the shrinker which
890 891 892 893 894 895
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
896 897 898 899
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

900 901 902 903 904
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
905
	engine->kernel_context = ce;
906

907
	return 0;
908 909

err_context:
910
	destroy_pinned_context(ce);
911
	return ret;
912
}
913

914 915 916 917 918 919 920
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

921 922
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
923
		setup = intel_guc_submission_setup;
924 925
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
926
		setup = intel_execlists_submission_setup;
927 928
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
929
		setup = intel_ring_submission_setup;
930
	}
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

951 952 953 954 955 956 957 958 959
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
960
	GEM_BUG_ON(!list_empty(&engine->active.requests));
961
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
962

963
	intel_breadcrumbs_free(engine->breadcrumbs);
964

965
	intel_engine_fini_retire(engine);
966
	intel_engine_cleanup_cmd_parser(engine);
967

968
	if (engine->default_state)
969
		fput(engine->default_state);
970

971 972 973
	if (engine->kernel_context)
		destroy_pinned_context(engine->kernel_context);

974
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
975
	cleanup_status_page(engine);
976

977
	intel_wa_list_free(&engine->ctx_wa_list);
978
	intel_wa_list_free(&engine->wa_list);
979
	intel_wa_list_free(&engine->whitelist);
980
}
981

982 983 984 985 986 987 988 989 990 991 992 993 994 995
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

996
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
997
{
998 999
	struct drm_i915_private *i915 = engine->i915;

1000 1001
	u64 acthd;

1002
	if (GRAPHICS_VER(i915) >= 8)
1003
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1004
	else if (GRAPHICS_VER(i915) >= 4)
1005
		acthd = ENGINE_READ(engine, RING_ACTHD);
1006
	else
1007
		acthd = ENGINE_READ(engine, ACTHD);
1008 1009 1010 1011

	return acthd;
}

1012
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1013 1014 1015
{
	u64 bbaddr;

1016
	if (GRAPHICS_VER(engine->i915) >= 8)
1017
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1018
	else
1019
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1020 1021 1022

	return bbaddr;
}
1023

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1039 1040 1041
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1042
{
1043
	struct intel_uncore *uncore = engine->uncore;
1044
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1045 1046
	int err;

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1063
	if (GRAPHICS_VER(engine->i915) < 3)
1064 1065
		return -ENODEV;

1066
	ENGINE_TRACE(engine, "\n");
1067
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1081 1082 1083 1084 1085
	}

	return err;
}

1086 1087
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1088
	ENGINE_TRACE(engine, "\n");
1089

1090
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1091 1092
}

1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1104
static u32
1105 1106
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1107
{
1108 1109
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1110
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1111 1112
	enum forcewake_domains fw_domains;

1113
	if (GRAPHICS_VER(i915) >= 11) {
1114 1115
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1116
	} else {
1117 1118
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1119 1120
	}

1121
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1122
						    FW_REG_READ);
1123
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1124 1125 1126
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1127 1128
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1129

1130
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1131

1132 1133
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1134
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1135

1136
	val = intel_uncore_read_fw(uncore, reg);
1137

1138 1139
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1140

1141
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1142

1143 1144
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1145

1146
	return val;
1147 1148 1149
}

/* NB: please notice the memset */
1150
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1151 1152
			       struct intel_instdone *instdone)
{
1153
	struct drm_i915_private *i915 = engine->i915;
1154
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1155
	struct intel_uncore *uncore = engine->uncore;
1156 1157 1158 1159 1160 1161
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1162
	switch (GRAPHICS_VER(i915)) {
1163
	default:
1164 1165
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1166

1167
		if (engine->id != RCS0)
1168 1169
			break;

1170 1171
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1172
		if (GRAPHICS_VER(i915) >= 12) {
1173 1174 1175 1176 1177
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1178
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1179
			instdone->sampler[slice][subslice] =
1180
				read_subslice_reg(engine, slice, subslice,
1181 1182
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1183
				read_subslice_reg(engine, slice, subslice,
1184 1185 1186 1187
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1188 1189
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1190

1191
		if (engine->id != RCS0)
1192 1193
			break;

1194 1195 1196 1197 1198 1199
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1200 1201 1202 1203 1204

		break;
	case 6:
	case 5:
	case 4:
1205 1206
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1207
		if (engine->id == RCS0)
1208
			/* HACK: Using the wrong struct member */
1209 1210
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1211 1212 1213
		break;
	case 3:
	case 2:
1214
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1215 1216 1217
		break;
	}
}
1218

1219 1220 1221 1222
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1223 1224 1225
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1226
	if (!intel_engine_pm_get_if_awake(engine))
1227
		return true;
1228

1229
	/* First check that no commands are left in the ring */
1230 1231
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1232
		idle = false;
1233

1234
	/* No bit for gen2, so assume the CS parser is idle */
1235
	if (GRAPHICS_VER(engine->i915) > 2 &&
1236
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1237 1238
		idle = false;

1239
	intel_engine_pm_put(engine);
1240 1241 1242 1243

	return idle;
}

1244
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1245 1246 1247
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1248
	if (!t->callback)
1249 1250
		return;

1251 1252 1253 1254
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1255
			t->callback(t);
1256
		tasklet_unlock(t);
1257
	}
1258
	local_bh_enable();
1259 1260 1261 1262

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1263 1264
}

1265 1266 1267 1268 1269 1270 1271 1272 1273
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1274
	/* More white lies, if wedged, hw state is inconsistent */
1275
	if (intel_gt_is_wedged(engine->gt))
1276 1277
		return true;

1278
	if (!intel_engine_pm_is_awake(engine))
1279 1280
		return true;

1281
	/* Waiting to drain ELSP? */
1282 1283
	synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
	intel_engine_flush_submission(engine);
1284

1285
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1286
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1287 1288
		return false;

1289
	/* Ring stopped? */
1290
	return ring_is_idle(engine);
1291 1292
}

1293
bool intel_engines_are_idle(struct intel_gt *gt)
1294 1295 1296 1297
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1298 1299
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1300 1301
	 * report that it is still busy, even though we have stopped using it.
	 */
1302
	if (intel_gt_is_wedged(gt))
1303 1304
		return true;

1305
	/* Already parked (and passed an idleness test); must still be idle */
1306
	if (!READ_ONCE(gt->awake))
1307 1308
		return true;

1309
	for_each_engine(engine, gt, id) {
1310 1311 1312 1313 1314 1315 1316
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1317
void intel_engines_reset_default_submission(struct intel_gt *gt)
1318 1319 1320 1321
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1322 1323 1324 1325
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1326
		engine->set_default_submission(engine);
1327
	}
1328 1329
}

1330 1331
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1332
	switch (GRAPHICS_VER(engine->i915)) {
1333 1334 1335 1336 1337
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1338 1339
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1340 1341 1342 1343 1344 1345 1346
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1412
		drm_printf(m, "[%04zx] %s\n", pos, line);
1413 1414 1415 1416 1417 1418

		prev = buf + pos;
		skip = false;
	}
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1430
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1431
					 struct drm_printer *m)
1432 1433
{
	struct drm_i915_private *dev_priv = engine->i915;
1434
	struct intel_engine_execlists * const execlists = &engine->execlists;
1435 1436
	u64 addr;

1437
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1438
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1439 1440 1441 1442 1443 1444
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1445
	drm_printf(m, "\tRING_START: 0x%08x\n",
1446
		   ENGINE_READ(engine, RING_START));
1447
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1448
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1449
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1450
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1451
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1452 1453
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1454
	if (GRAPHICS_VER(engine->i915) > 2) {
1455
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1456 1457
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1458
	}
1459

1460
	if (GRAPHICS_VER(dev_priv) >= 6) {
1461
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1462
			   ENGINE_READ(engine, RING_IMR));
1463 1464 1465 1466 1467 1468
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1469 1470
	}

1471 1472 1473 1474 1475 1476
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1477
	if (GRAPHICS_VER(dev_priv) >= 8)
1478
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1479
	else if (GRAPHICS_VER(dev_priv) >= 4)
1480
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1481
	else
1482
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1483 1484
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1485
	if (GRAPHICS_VER(dev_priv) >= 4) {
1486
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1487
			   ENGINE_READ(engine, RING_IPEIR));
1488
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1489
			   ENGINE_READ(engine, RING_IPEHR));
1490
	} else {
1491 1492
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1493
	}
1494

1495
	if (intel_engine_uses_guc(engine)) {
1496 1497
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1498
		struct i915_request * const *port, *rq;
1499 1500
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1501
		const u8 num_entries = execlists->csb_size;
1502
		unsigned int idx;
1503
		u8 read, write;
1504

1505
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1506 1507 1508
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1509
			   repr_timer(&engine->execlists.preempt),
1510
			   repr_timer(&engine->execlists.timer));
1511

1512 1513 1514
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1515 1516 1517 1518 1519
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1520
		if (read >= num_entries)
1521
			read = 0;
1522
		if (write >= num_entries)
1523 1524
			write = 0;
		if (read > write)
1525
			write += num_entries;
1526
		while (read < write) {
1527 1528 1529
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1530 1531
		}

1532
		execlists_active_lock_bh(execlists);
1533
		rcu_read_lock();
1534
		for (port = execlists->active; (rq = *port); port++) {
1535
			char hdr[160];
1536 1537
			int len;

1538
			len = scnprintf(hdr, sizeof(hdr),
1539
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1540
					(int)(port - execlists->active),
1541 1542 1543
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1544
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1545
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1546
			i915_request_show(m, rq, hdr, 0);
1547 1548
		}
		for (port = execlists->pending; (rq = *port); port++) {
1549 1550
			char hdr[160];
			int len;
1551

1552
			len = scnprintf(hdr, sizeof(hdr),
1553
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1554
					(int)(port - execlists->pending),
1555 1556 1557
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1558 1559
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1560
			i915_request_show(m, rq, hdr, 0);
1561
		}
1562
		rcu_read_unlock();
1563
		execlists_active_unlock_bh(execlists);
1564
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1565
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1566
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1567
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1568
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1569
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1570
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1571
	}
1572 1573
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1653 1654 1655 1656 1657
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1658
	struct i915_request *rq;
1659
	intel_wakeref_t wakeref;
1660
	unsigned long flags;
1661
	ktime_t dummy;
1662 1663 1664 1665 1666 1667 1668 1669 1670

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1671
	if (intel_gt_is_wedged(engine->gt))
1672 1673
		drm_printf(m, "*** WEDGED ***\n");

1674
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1675 1676
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1677 1678
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1679 1680 1681 1682
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1683
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1684
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1685 1686 1687 1688 1689 1690 1691

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1692 1693 1694
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1695
	print_properties(engine, m);
1696 1697 1698

	drm_printf(m, "\tRequests:\n");

1699
	spin_lock_irqsave(&engine->active.lock, flags);
1700
	rq = intel_engine_find_active_request(engine);
1701
	if (rq) {
1702 1703
		struct intel_timeline *tl = get_timeline(rq);

1704
		i915_request_show(m, rq, "\t\tactive ", 0);
1705

1706
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1707
			   i915_ggtt_offset(rq->ring->vma));
1708
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1709
			   rq->ring->head);
1710
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1711
			   rq->ring->tail);
1712 1713 1714 1715
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1716 1717 1718 1719 1720 1721

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1722 1723

		print_request_ring(m, rq);
1724

1725
		if (rq->context->lrc_reg_state) {
1726
			drm_printf(m, "Logical Ring Context:\n");
1727
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1728
		}
1729
	}
1730
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1731
	spin_unlock_irqrestore(&engine->active.lock, flags);
1732

1733
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1734
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1735
	if (wakeref) {
1736
		intel_engine_print_registers(engine, m);
1737
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1738 1739 1740
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1741

C
Chris Wilson 已提交
1742
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1743

1744
	drm_printf(m, "HWSP:\n");
1745
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1746

1747
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1748 1749

	intel_engine_print_breadcrumbs(engine, m);
1750 1751
}

1752 1753
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1754 1755 1756 1757 1758 1759 1760
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1761
	*now = ktime_get();
1762
	if (READ_ONCE(engine->stats.active))
1763
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1764 1765 1766 1767 1768 1769 1770

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1771
 * @now: monotonic timestamp of sampling
1772 1773 1774
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1775
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1776
{
1777
	unsigned int seq;
1778 1779
	ktime_t total;

1780
	do {
1781
		seq = read_seqcount_begin(&engine->stats.lock);
1782
		total = __intel_engine_get_busy_time(engine, now);
1783
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1784 1785 1786 1787

	return total;
}

1788 1789
static bool match_ring(struct i915_request *rq)
{
1790
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1811
	lockdep_assert_held(&engine->active.lock);
1812 1813 1814 1815 1816 1817 1818

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1819
			if (__i915_request_is_complete(request))
1820 1821 1822 1823 1824 1825 1826 1827 1828
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1829
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1830
		if (__i915_request_is_complete(request))
1831 1832
			continue;

1833
		if (!__i915_request_has_started(request))
1834
			continue;
1835 1836 1837

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1838
			continue;
1839 1840 1841 1842 1843 1844 1845 1846

		active = request;
		break;
	}

	return active;
}

1847
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1848
#include "mock_engine.c"
1849
#include "selftest_engine.c"
1850
#include "selftest_engine_cs.c"
1851
#endif