intel_engine_cs.c 42.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28 29

#include "intel_engine.h"
30
#include "intel_engine_pm.h"
31
#include "intel_lrc.h"
32
#include "intel_reset.h"
33

34 35 36 37 38 39 40 41 42
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

43
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44 45
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
47
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
48 49 50

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

51
struct engine_class_info {
52
	const char *name;
53 54
	int (*init_legacy)(struct intel_engine_cs *engine);
	int (*init_execlists)(struct intel_engine_cs *engine);
55 56

	u8 uabi_class;
57 58 59 60 61 62 63
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
		.init_execlists = logical_render_ring_init,
		.init_legacy = intel_init_render_ring_buffer,
64
		.uabi_class = I915_ENGINE_CLASS_RENDER,
65 66 67 68 69
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_blt_ring_buffer,
70
		.uabi_class = I915_ENGINE_CLASS_COPY,
71 72 73 74 75
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_bsd_ring_buffer,
76
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
77 78 79 80 81
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
		.init_execlists = logical_xcs_ring_init,
		.init_legacy = intel_init_vebox_ring_buffer,
82
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
83 84 85
	},
};

86
#define MAX_MMIO_BASES 3
87
struct engine_info {
88
	unsigned int hw_id;
89 90
	u8 class;
	u8 instance;
91 92 93 94 95
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
96 97 98
};

static const struct engine_info intel_engines[] = {
99 100
	[RCS0] = {
		.hw_id = RCS0_HW,
101 102
		.class = RENDER_CLASS,
		.instance = 0,
103 104 105
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
106
	},
107 108
	[BCS0] = {
		.hw_id = BCS0_HW,
109 110
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
111 112 113
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
114
	},
115 116
	[VCS0] = {
		.hw_id = VCS0_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
119 120 121 122 123
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
124
	},
125 126
	[VCS1] = {
		.hw_id = VCS1_HW,
127 128
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
129 130 131 132
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
133
	},
134 135
	[VCS2] = {
		.hw_id = VCS2_HW,
136 137
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
138 139 140
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
141
	},
142 143
	[VCS3] = {
		.hw_id = VCS3_HW,
144 145
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
146 147 148
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
149
	},
150 151
	[VECS0] = {
		.hw_id = VECS0_HW,
152 153
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
154 155 156 157
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
158
	},
159 160
	[VECS1] = {
		.hw_id = VECS1_HW,
161 162
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
163 164 165
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
166
	},
167 168
};

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
195
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
196 197
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
198
		case 10:
O
Oscar Mateo 已提交
199
			return GEN10_LR_CONTEXT_RENDER_SIZE;
200 201 202
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
203
			return GEN8_LR_CONTEXT_RENDER_SIZE;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
		case 4:
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
226
		/* fall through */
227 228 229 230 231 232 233 234 235
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

251 252 253 254 255 256 257
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

258 259 260 261 262 263
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
264
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
265 266
		return;

267 268
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
269
	else
270
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
271 272 273 274 275 276 277 278
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

279
static int
280 281 282 283
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
284 285
	struct intel_engine_cs *engine;

286 287
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

288 289 290
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

291
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
292 293
		return -EINVAL;

294
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
295 296
		return -EINVAL;

297
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
298 299
		return -EINVAL;

300 301 302 303
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
304

305 306
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

307
	engine->id = id;
308
	engine->mask = BIT(id);
309
	engine->i915 = dev_priv;
310
	engine->uncore = &dev_priv->uncore;
311
	__sprint_engine_name(engine->name, info);
312
	engine->hw_id = engine->guc_id = info->hw_id;
313
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
314 315
	engine->class = info->class;
	engine->instance = info->instance;
316

317
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
318

319 320 321 322
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
323 324
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
325

326 327 328
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

329
	seqlock_init(&engine->stats.lock);
330

331 332
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

333 334 335
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

336
	dev_priv->engine_class[info->class][info->instance] = engine;
337 338
	dev_priv->engine[id] = engine;
	return 0;
339 340 341
}

/**
342
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
343
 * @dev_priv: i915 device private
344 345 346
 *
 * Return: non-zero if the initialization failed.
 */
347
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
348
{
349
	struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
350
	const unsigned int engine_mask = INTEL_INFO(dev_priv)->engine_mask;
351 352
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
353
	unsigned int mask = 0;
354
	unsigned int i;
355
	int err;
356

357 358
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
359
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
360

361 362 363
	if (i915_inject_load_failure())
		return -ENODEV;

364 365 366 367
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
		if (!HAS_ENGINE(dev_priv, i))
			continue;

368 369 370 371
		err = intel_engine_setup(dev_priv, i);
		if (err)
			goto cleanup;

372
		mask |= BIT(i);
373 374 375 376 377 378 379
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
380 381
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
382

383
	/* We always presume we have at least RCS available for later probing */
384
	if (WARN_ON(!HAS_ENGINE(dev_priv, RCS0))) {
385 386 387 388
		err = -ENODEV;
		goto cleanup;
	}

389
	RUNTIME_INFO(dev_priv)->num_engines = hweight32(mask);
390

391 392
	i915_check_and_clear_faults(dev_priv);

393 394 395 396 397 398 399 400 401
	return 0;

cleanup:
	for_each_engine(engine, dev_priv, id)
		kfree(engine);
	return err;
}

/**
402
 * intel_engines_init() - init the Engine Command Streamers
403 404 405 406 407 408 409 410
 * @dev_priv: i915 device private
 *
 * Return: non-zero if the initialization failed.
 */
int intel_engines_init(struct drm_i915_private *dev_priv)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id, err_id;
411
	int err;
412 413

	for_each_engine(engine, dev_priv, id) {
414 415
		const struct engine_class_info *class_info =
			&intel_engine_classes[engine->class];
416 417
		int (*init)(struct intel_engine_cs *engine);

418
		if (HAS_EXECLISTS(dev_priv))
419
			init = class_info->init_execlists;
420
		else
421
			init = class_info->init_legacy;
422 423 424 425

		err = -EINVAL;
		err_id = id;

426
		if (GEM_DEBUG_WARN_ON(!init))
427
			goto cleanup;
428

429
		err = init(engine);
430
		if (err)
431 432
			goto cleanup;

433
		GEM_BUG_ON(!engine->submit_request);
434 435 436 437 438
	}

	return 0;

cleanup:
439
	for_each_engine(engine, dev_priv, id) {
440
		if (id >= err_id) {
441
			kfree(engine);
442 443
			dev_priv->engine[id] = NULL;
		} else {
444
			dev_priv->gt.cleanup_engine(engine);
445
		}
446
	}
447
	return err;
448 449
}

450 451 452 453 454
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

455
void intel_engine_init_execlists(struct intel_engine_cs *engine)
456 457 458
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

459
	execlists->port_mask = 1;
460
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
461 462
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

463
	execlists->queue_priority_hint = INT_MIN;
464
	execlists->queue = RB_ROOT_CACHED;
465 466
}

467
static void cleanup_status_page(struct intel_engine_cs *engine)
468
{
469 470
	struct i915_vma *vma;

471 472 473
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

474 475 476
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
	__i915_gem_object_release_unless_active(vma->obj);
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
506

507
	return i915_vma_pin(vma, 0, 0, flags);
508 509 510 511 512 513 514 515 516
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

517 518 519 520 521 522 523
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
524 525 526 527 528 529
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

530
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
531

532
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
533 534 535 536 537 538 539 540
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
541
		goto err;
542 543
	}

544
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
545
	engine->status_page.vma = vma;
546 547 548 549 550 551 552

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

553 554 555
	return 0;

err_unpin:
556
	i915_gem_object_unpin_map(obj);
557 558 559 560 561
err:
	i915_gem_object_put(obj);
	return ret;
}

562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
/**
 * intel_engines_setup_common - setup engine state not requiring hw access
 * @engine: Engine to setup.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engine_setup_common(struct intel_engine_cs *engine)
{
	int err;

	err = init_status_page(engine);
	if (err)
		return err;

	err = i915_timeline_init(engine->i915,
				 &engine->timeline,
				 engine->status_page.vma);
	if (err)
		goto err_hwsp;

	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);

587
	intel_engine_init_breadcrumbs(engine);
588
	intel_engine_init_execlists(engine);
589 590 591
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);
592
	intel_engine_init__pm(engine);
593

594 595 596 597
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

598 599 600 601 602 603 604
	return 0;

err_hwsp:
	cleanup_status_page(engine);
	return err;
}

605 606 607 608 609 610 611 612
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
613
		MAP(SEMAPHORES, SEMAPHORES),
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

645 646 647 648 649 650 651
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

652
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
653 654
{
	struct measure_breadcrumb *frame;
655
	int dw = -ENOMEM;
656 657 658 659 660 661 662

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

663
	if (i915_timeline_init(engine->i915,
664
			       &frame->timeline,
665 666
			       engine->status_page.vma))
		goto out_frame;
667 668 669 670 671 672 673 674 675 676 677 678 679

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

680 681 682 683
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

684
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
685

686
	i915_timeline_unpin(&frame->timeline);
687

688 689
out_timeline:
	i915_timeline_fini(&frame->timeline);
690 691
out_frame:
	kfree(frame);
692 693 694
	return dw;
}

695 696 697 698 699 700 701 702 703 704 705 706 707 708
static int pin_context(struct i915_gem_context *ctx,
		       struct intel_engine_cs *engine,
		       struct intel_context **out)
{
	struct intel_context *ce;

	ce = intel_context_pin(ctx, engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	*out = ce;
	return 0;
}

709 710 711 712 713 714 715 716 717 718 719 720 721
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
722
	struct drm_i915_private *i915 = engine->i915;
723 724
	int ret;

725 726 727 728 729 730 731
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
732 733 734 735
	ret = pin_context(i915->kernel_context, engine,
			  &engine->kernel_context);
	if (ret)
		return ret;
736

737 738
	/*
	 * Similarly the preempt context must always be available so that
739 740
	 * we can interrupt the engine at any time. However, as preemption
	 * is optional, we allow it to fail.
741
	 */
742 743 744
	if (i915->preempt_context)
		pin_context(i915->preempt_context, engine,
			    &engine->preempt_context);
745

746
	ret = measure_breadcrumb_dw(engine);
747
	if (ret < 0)
748
		goto err_unpin;
749

750
	engine->emit_fini_breadcrumb_dw = ret;
751

752
	engine->set_default_submission(engine);
753

754
	return 0;
755

756 757 758 759
err_unpin:
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
760
	return ret;
761
}
762 763 764 765 766 767 768 769 770 771

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
772
	cleanup_status_page(engine);
773

774
	intel_engine_fini_breadcrumbs(engine);
775
	intel_engine_cleanup_cmd_parser(engine);
776
	i915_gem_batch_pool_fini(&engine->batch_pool);
777

778 779 780
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

781 782 783
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
784 785

	i915_timeline_fini(&engine->timeline);
786

787
	intel_wa_list_free(&engine->ctx_wa_list);
788
	intel_wa_list_free(&engine->wa_list);
789
	intel_wa_list_free(&engine->whitelist);
790
}
791

792
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
793
{
794 795
	struct drm_i915_private *i915 = engine->i915;

796 797
	u64 acthd;

798 799 800 801
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
802
	else
803
		acthd = ENGINE_READ(engine, ACTHD);
804 805 806 807

	return acthd;
}

808
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
809 810 811
{
	u64 bbaddr;

812 813
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
814
	else
815
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
816 817 818

	return bbaddr;
}
819

820 821
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
822
	struct intel_uncore *uncore = engine->uncore;
823 824 825 826
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

827
	if (INTEL_GEN(engine->i915) < 3)
828 829 830 831
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

832
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
833 834

	err = 0;
835
	if (__intel_wait_for_register_fw(uncore,
836 837 838 839 840 841 842 843
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
844
	intel_uncore_posting_read_fw(uncore, mode);
845 846 847 848

	return err;
}

849 850 851 852
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

853
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
854 855
}

856 857 858 859 860 861 862 863 864 865 866
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

867 868
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
869
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
870 871 872 873
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

874
	if (IS_GEN(dev_priv, 10))
875 876
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
877 878 879
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
880 881 882 883 884 885
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

886
static inline u32
887 888 889
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
890
	struct intel_uncore *uncore = &dev_priv->uncore;
891 892 893 894 895
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
896 897
	enum forcewake_domains fw_domains;

898 899 900 901 902 903 904 905 906 907 908 909
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

910 911
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

912
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
913
						    FW_REG_READ);
914
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
915 916 917
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

918 919
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
920

921
	mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
922 923 924 925

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

926 927
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
928
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
929

930
	ret = intel_uncore_read_fw(uncore, reg);
931

932
	mcr &= ~mcr_slice_subslice_mask;
933 934
	mcr |= default_mcr_s_ss_select;

935
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
936

937 938
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
939 940 941 942 943 944 945 946 947

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
948
	struct intel_uncore *uncore = engine->uncore;
949 950 951 952 953 954 955 956
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
957 958
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
959

960
		if (engine->id != RCS0)
961 962
			break;

963 964
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
965 966 967 968 969 970 971 972 973 974
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
975 976
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
977

978
		if (engine->id != RCS0)
979 980
			break;

981 982 983 984 985 986
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
987 988 989 990 991

		break;
	case 6:
	case 5:
	case 4:
992 993
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
994
		if (engine->id == RCS0)
995
			/* HACK: Using the wrong struct member */
996 997
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
998 999 1000
		break;
	case 3:
	case 2:
1001
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1002 1003 1004
		break;
	}
}
1005

1006 1007 1008
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1009
	intel_wakeref_t wakeref;
1010 1011
	bool idle = true;

1012 1013 1014
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1015
	/* If the whole device is asleep, the engine must be idle */
1016 1017
	wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
	if (!wakeref)
1018
		return true;
1019

1020
	/* First check that no commands are left in the ring */
1021 1022
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1023
		idle = false;
1024

1025
	/* No bit for gen2, so assume the CS parser is idle */
1026 1027
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1028 1029
		idle = false;

1030
	intel_runtime_pm_put(dev_priv, wakeref);
1031 1032 1033 1034

	return idle;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1044
	/* More white lies, if wedged, hw state is inconsistent */
1045
	if (i915_reset_failed(engine->i915))
1046 1047
		return true;

1048
	/* Waiting to drain ELSP? */
1049
	if (READ_ONCE(engine->execlists.active)) {
1050
		struct tasklet_struct *t = &engine->execlists.tasklet;
1051

1052
		local_bh_disable();
1053 1054 1055 1056 1057
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1058
		}
1059
		local_bh_enable();
1060

1061 1062 1063
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1064
		if (READ_ONCE(engine->execlists.active))
1065 1066
			return false;
	}
1067

1068
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1069
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1070 1071
		return false;

1072
	/* Ring stopped? */
1073
	return ring_is_idle(engine);
1074 1075
}

1076
bool intel_engines_are_idle(struct drm_i915_private *i915)
1077 1078 1079 1080
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1081 1082
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1083 1084
	 * report that it is still busy, even though we have stopped using it.
	 */
1085
	if (i915_reset_failed(i915))
1086 1087
		return true;

1088 1089 1090 1091 1092
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1093 1094 1095 1096 1097 1098 1099
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1100 1101 1102 1103 1104 1105 1106 1107 1108
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1120
	struct intel_context *ce;
1121 1122 1123

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1124 1125 1126
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1158 1159 1160
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1161 1162
{
	if (attr->priority == I915_PRIORITY_INVALID)
1163 1164 1165 1166
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1167

1168
	return x;
1169 1170
}

1171
static void print_request(struct drm_printer *m,
1172
			  struct i915_request *rq,
1173 1174
			  const char *prefix)
{
1175
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1176
	char buf[80] = "";
1177 1178 1179
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1180

1181
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1182
		   prefix,
1183
		   rq->fence.context, rq->fence.seqno,
1184 1185 1186
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1187 1188
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
			    &rq->fence.flags) ?  "+" : "",
1189
		   buf,
1190
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1191
		   name);
1192 1193
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1216
		drm_printf(m, "[%04zx] %s\n", pos, line);
1217 1218 1219 1220 1221 1222

		prev = buf + pos;
		skip = false;
	}
}

1223 1224
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1225 1226
{
	struct drm_i915_private *dev_priv = engine->i915;
1227 1228
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1229 1230
	u64 addr;

1231
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1232
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1233
	drm_printf(m, "\tRING_START: 0x%08x\n",
1234
		   ENGINE_READ(engine, RING_START));
1235
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1236
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1237
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1238
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1239
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1240 1241
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1242 1243
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1244 1245
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1246
	}
1247 1248

	if (INTEL_GEN(dev_priv) >= 6) {
1249 1250
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1251 1252
	}

1253 1254 1255 1256 1257 1258
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1259
	if (INTEL_GEN(dev_priv) >= 8)
1260
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1261
	else if (INTEL_GEN(dev_priv) >= 4)
1262
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1263
	else
1264
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1265 1266 1267 1268
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1269
			   ENGINE_READ(engine, RING_IPEIR));
1270
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1271
			   ENGINE_READ(engine, RING_IPEHR));
1272
	} else {
1273 1274
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1275
	}
1276

1277
	if (HAS_EXECLISTS(dev_priv)) {
1278 1279
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1280
		const u8 num_entries = execlists->csb_size;
1281
		unsigned int idx;
1282
		u8 read, write;
1283

1284
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1285
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1286 1287
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1288

1289 1290 1291
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1292
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1293
			   read, write,
1294 1295 1296
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1297
		if (read >= num_entries)
1298
			read = 0;
1299
		if (write >= num_entries)
1300 1301
			write = 0;
		if (read > write)
1302
			write += num_entries;
1303
		while (read < write) {
1304 1305 1306
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1307 1308 1309 1310
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1311
			struct i915_request *rq;
1312 1313 1314 1315
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1316 1317
				char hdr[80];

1318
				snprintf(hdr, sizeof(hdr),
1319
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1320
					 idx, count,
1321
					 i915_ggtt_offset(rq->ring->vma),
1322 1323
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1324
				print_request(m, rq, hdr);
1325
			} else {
1326
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1327 1328
			}
		}
1329
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1330 1331 1332
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1333
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1334
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1335
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1336
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1337
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1338
	}
1339 1340
}

1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1374 1375 1376 1377 1378
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1379
	struct i915_request *rq;
1380
	intel_wakeref_t wakeref;
1381 1382 1383 1384 1385 1386 1387 1388 1389

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1390
	if (i915_reset_failed(engine->i915))
1391 1392
		drm_printf(m, "*** WEDGED ***\n");

1393
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1394
	drm_printf(m, "\tHangcheck %x:%x [%d ms]\n",
1395 1396
		   engine->hangcheck.last_seqno,
		   engine->hangcheck.next_seqno,
1397
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1398 1399 1400 1401 1402 1403 1404 1405
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1406
	rq = list_first_entry(&engine->timeline.requests,
1407
			      struct i915_request, link);
1408
	if (&rq->link != &engine->timeline.requests)
1409 1410
		print_request(m, rq, "\t\tfirst  ");

1411
	rq = list_last_entry(&engine->timeline.requests,
1412
			     struct i915_request, link);
1413
	if (&rq->link != &engine->timeline.requests)
1414 1415
		print_request(m, rq, "\t\tlast   ");

1416
	rq = intel_engine_find_active_request(engine);
1417 1418
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1419

1420
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1421
			   i915_ggtt_offset(rq->ring->vma));
1422
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1423
			   rq->ring->head);
1424
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1425
			   rq->ring->tail);
1426 1427 1428 1429
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1430 1431
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1432 1433

		print_request_ring(m, rq);
1434 1435 1436 1437
	}

	rcu_read_unlock();

1438 1439
	wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
	if (wakeref) {
1440
		intel_engine_print_registers(engine, m);
1441
		intel_runtime_pm_put(engine->i915, wakeref);
1442 1443 1444
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1445

1446
	intel_execlists_show_requests(engine, m, print_request, 8);
1447

1448
	drm_printf(m, "HWSP:\n");
1449
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1450

1451
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1452 1453

	intel_engine_print_breadcrumbs(engine, m);
1454 1455
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1489
	struct intel_engine_execlists *execlists = &engine->execlists;
1490
	unsigned long flags;
1491
	int err = 0;
1492

1493
	if (!intel_engine_supports_stats(engine))
1494 1495
		return -ENODEV;

1496 1497
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1498 1499 1500 1501 1502 1503

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1504 1505 1506 1507
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1508
		engine->stats.enabled_at = ktime_get();
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1519

1520
unlock:
1521 1522
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1523

1524
	return err;
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1550
	unsigned int seq;
1551 1552
	ktime_t total;

1553 1554 1555 1556
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1571
	if (!intel_engine_supports_stats(engine))
1572 1573
		return;

1574
	write_seqlock_irqsave(&engine->stats.lock, flags);
1575 1576 1577 1578 1579
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1580
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1581 1582
}

1583 1584
static bool match_ring(struct i915_request *rq)
{
1585
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;
	unsigned long flags;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
			break;

		/* More than one preemptible request may match! */
		if (!match_ring(request))
			break;

		active = request;
		break;
	}
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	return active;
}

1627
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1628
#include "selftest_engine_cs.c"
1629
#endif