intel_engine_cs.c 48.0 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	unsigned int hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56 57
	[RCS0] = {
		.hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64 65
	[BCS0] = {
		.hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72 73
	[VCS0] = {
		.hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82 83
	[VCS1] = {
		.hw_id = VCS1_HW,
84 85
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
86
		.mmio_bases = {
87 88
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89
		},
90
	},
91 92
	[VCS2] = {
		.hw_id = VCS2_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97
		},
98
	},
99 100
	[VCS3] = {
		.hw_id = VCS3_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
103
		.mmio_bases = {
104
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105
		},
106
	},
107 108
	[VECS0] = {
		.hw_id = VECS0_HW,
109 110
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
111
		.mmio_bases = {
112 113
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
114
		},
115
	},
116 117
	[VECS1] = {
		.hw_id = VECS1_HW,
118 119
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
120
		.mmio_bases = {
121
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122
		},
123
	},
124 125
};

126
/**
127
 * intel_engine_context_size() - return the size of the context for an engine
128
 * @gt: the gt
129 130 131 132 133 134 135 136 137 138 139
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
140
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141
{
142
	struct intel_uncore *uncore = gt->uncore;
143 144 145 146 147 148
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
149
		switch (GRAPHICS_VER(gt->i915)) {
150
		default:
151
			MISSING_CASE(GRAPHICS_VER(gt->i915));
152
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153
		case 12:
154 155
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
156
		case 10:
O
Oscar Mateo 已提交
157
			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 159 160
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
161
			return GEN8_LR_CONTEXT_RENDER_SIZE;
162
		case 7:
163
			if (IS_HASWELL(gt->i915))
164 165
				return HSW_CXT_TOTAL_SIZE;

166
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 168 169
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
170
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 172 173
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
174
		case 4:
175 176 177 178 179 180 181 182 183 184
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
185
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186
			drm_dbg(&gt->i915->drm,
187 188
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
189
				cxt_size - 1);
190
			return round_up(cxt_size * 64, PAGE_SIZE);
191 192 193 194 195 196 197 198 199
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
200
		fallthrough;
201 202 203
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
204
		if (GRAPHICS_VER(gt->i915) < 8)
205 206 207 208 209
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

210 211 212 213 214 215
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
216
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217 218 219 220 221 222 223 224
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

225
static void __sprint_engine_name(struct intel_engine_cs *engine)
226
{
227 228 229 230 231 232 233 234
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
235 236
}

237 238 239 240 241 242
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
243
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 245
		return;

246
	if (GRAPHICS_VER(engine->i915) >= 3)
247
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248
	else
249
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 251 252 253 254 255 256 257
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

258 259 260 261 262
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

263
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
264 265
{
	const struct engine_info *info = &intel_engines[id];
266
	struct drm_i915_private *i915 = gt->i915;
267
	struct intel_engine_cs *engine;
268
	u8 guc_class;
269

270 271 272
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

273 274 275
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

276
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 278
		return -EINVAL;

279
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 281
		return -EINVAL;

282
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
283 284
		return -EINVAL;

285 286 287
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
288

289 290
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

291
	engine->id = id;
292
	engine->legacy_idx = INVALID_ENGINE;
293
	engine->mask = BIT(id);
294
	engine->i915 = i915;
295 296
	engine->gt = gt;
	engine->uncore = gt->uncore;
297
	engine->hw_id = info->hw_id;
298 299 300
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
301

302 303
	engine->irq_handler = nop_irq_handler;

304 305
	engine->class = info->class;
	engine->instance = info->instance;
306
	__sprint_engine_name(engine);
307

308 309
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
310 311
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
312 313
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
314 315
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
316 317
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
318

319
	/* Override to uninterruptible for OpenCL workloads. */
320
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
321 322
		engine->props.preempt_timeout_ms = 0;

323 324
	engine->defaults = engine->props; /* never to change again */

325
	engine->context_size = intel_engine_context_size(gt, engine->class);
326 327
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
328
	if (engine->context_size)
329
		DRIVER_CAPS(i915)->has_logical_contexts = true;
330

331 332 333
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

334
	ewma__engine_latency_init(&engine->latency);
335
	seqcount_init(&engine->stats.lock);
336

337 338
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

339 340 341
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

342
	gt->engine_class[info->class][info->instance] = engine;
343
	gt->engine[id] = engine;
344

345
	return 0;
346 347
}

348 349 350 351 352 353 354 355 356
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
357 358
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
359 360 361 362 363 364 365
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
366
		if ((GRAPHICS_VER(i915) >= 11 &&
367 368
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
369
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
370 371 372
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
373
		if (GRAPHICS_VER(i915) >= 9)
374 375 376 377 378
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

379
static void intel_setup_engine_capabilities(struct intel_gt *gt)
380 381 382 383
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

384
	for_each_engine(engine, gt, id)
385 386 387
		__setup_engine_capabilities(engine);
}

388
/**
389
 * intel_engines_release() - free the resources allocated for Command Streamers
390
 * @gt: pointer to struct intel_gt
391
 */
392
void intel_engines_release(struct intel_gt *gt)
393 394 395 396
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

410
	/* Decouple the backend; but keep the layout for late GPU resets */
411
	for_each_engine(engine, gt, id) {
412 413 414
		if (!engine->release)
			continue;

415 416 417
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

418 419 420 421
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
422 423 424
	}
}

425 426 427 428 429 430 431 432
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

433 434 435 436 437
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

438 439 440
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

441
	for_each_engine(engine, gt, id) {
442
		intel_engine_free_request_pool(engine);
443 444 445 446 447
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

448 449 450 451 452 453 454 455 456 457 458 459 460
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
461
	struct intel_gt_info *info = &gt->info;
462 463 464 465 466 467 468
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

469 470
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

471
	if (GRAPHICS_VER(i915) < 11)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
497
		if (GRAPHICS_VER(i915) >= 12 || logical_vdbox++ % 2 == 0)
498
			gt->info.vdbox_sfc_access |= BIT(i);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

522
/**
523
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
524
 * @gt: pointer to struct intel_gt
525 526 527
 *
 * Return: non-zero if the initialization failed.
 */
528
int intel_engines_init_mmio(struct intel_gt *gt)
529
{
530
	struct drm_i915_private *i915 = gt->i915;
531
	const unsigned int engine_mask = init_engine_mask(gt);
532
	unsigned int mask = 0;
533
	unsigned int i;
534
	int err;
535

536 537 538
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
539

540
	if (i915_inject_probe_failure(i915))
541 542
		return -ENODEV;

543
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
544
		if (!HAS_ENGINE(gt, i))
545 546
			continue;

547
		err = intel_engine_setup(gt, i);
548 549 550
		if (err)
			goto cleanup;

551
		mask |= BIT(i);
552 553 554 555 556 557 558
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
559
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
560
		gt->info.engine_mask = mask;
561

562
	gt->info.num_engines = hweight32(mask);
563

564
	intel_gt_check_and_clear_faults(gt);
565

566
	intel_setup_engine_capabilities(gt);
567

568 569
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

570 571 572
	return 0;

cleanup:
573
	intel_engines_free(gt);
574 575 576
	return err;
}

577
void intel_engine_init_execlists(struct intel_engine_cs *engine)
578 579 580
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

581
	execlists->port_mask = 1;
582
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
583 584
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

585 586 587 588
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

589
	execlists->queue_priority_hint = INT_MIN;
590
	execlists->queue = RB_ROOT_CACHED;
591 592
}

593
static void cleanup_status_page(struct intel_engine_cs *engine)
594
{
595 596
	struct i915_vma *vma;

597 598 599
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

600 601 602
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
603

604 605 606 607
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
608
	i915_gem_object_put(vma->obj);
609 610 611
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
612
				struct i915_gem_ww_ctx *ww,
613 614 615 616
				struct i915_vma *vma)
{
	unsigned int flags;

617
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
618 619 620 621 622 623 624 625 626 627 628
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
629
		flags = PIN_MAPPABLE;
630
	else
631
		flags = PIN_HIGH;
632

633
	return i915_ggtt_pin(vma, ww, 0, flags);
634 635 636 637 638
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
639
	struct i915_gem_ww_ctx ww;
640 641 642 643
	struct i915_vma *vma;
	void *vaddr;
	int ret;

644 645
	INIT_LIST_HEAD(&engine->status_page.timelines);

646 647 648 649 650 651 652
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
653 654
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
655 656
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
657 658 659
		return PTR_ERR(obj);
	}

660
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
661

662
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
663 664
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
665
		goto err_put;
666 667
	}

668 669 670 671 672 673 674 675
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

676 677 678
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
679
		goto err_unpin;
680 681
	}

682
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
683
	engine->status_page.vma = vma;
684

685
err_unpin:
686 687
	if (ret)
		i915_vma_unpin(vma);
688
err:
689 690 691 692 693 694 695 696 697
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
698 699 700
	return ret;
}

701
static int engine_setup_common(struct intel_engine_cs *engine)
702 703 704
{
	int err;

705 706
	init_llist_head(&engine->barrier_tasks);

707 708 709 710
	err = init_status_page(engine);
	if (err)
		return err;

711 712 713 714 715 716
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

717 718 719 720
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

721
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
722 723
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
724
	intel_engine_init_retire(engine);
725

726 727
	/* Use the whole device by default */
	engine->sseu =
728
		intel_sseu_from_device_info(&engine->gt->info.sseu);
729

730 731 732 733
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

734
	if (GRAPHICS_VER(engine->i915) >= 12)
735 736
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

737
	return 0;
738

739 740
err_cmd_parser:
	intel_breadcrumbs_free(engine->breadcrumbs);
741 742 743
err_status:
	cleanup_status_page(engine);
	return err;
744 745
}

746 747 748
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
749
	u32 cs[2048];
750 751
};

752
static int measure_breadcrumb_dw(struct intel_context *ce)
753
{
754
	struct intel_engine_cs *engine = ce->engine;
755
	struct measure_breadcrumb *frame;
756
	int dw;
757

758
	GEM_BUG_ON(!engine->gt->scratch);
759 760 761 762 763

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

764 765 766
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
767
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
768

769 770
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
771 772
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
773 774 775
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
776

777
	mutex_lock(&ce->timeline->mutex);
778
	spin_lock_irq(&engine->active.lock);
779

780
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
781

782
	spin_unlock_irq(&engine->active.lock);
783
	mutex_unlock(&ce->timeline->mutex);
784

785
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
786

787
	kfree(frame);
788 789 790
	return dw;
}

791 792 793 794
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
795
	INIT_LIST_HEAD(&engine->active.hold);
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

813 814 815 816 817 818 819
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
820 821 822 823
{
	struct intel_context *ce;
	int err;

824
	ce = intel_context_create(engine);
825 826 827
	if (IS_ERR(ce))
		return ce;

828
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
829
	ce->timeline = page_pack_bits(NULL, hwsp);
830 831 832 833
	ce->ring = __intel_context_ring_size(ring_size);

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
834

835
	err = intel_context_pin(ce); /* perma-pin so it is always available */
836 837 838 839 840
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

841 842 843 844 845 846
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
847
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
848

849 850 851
	return ce;
}

852
void intel_engine_destroy_pinned_context(struct intel_context *ce)
853 854 855 856 857 858 859 860 861 862 863 864 865 866
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

867 868 869 870 871
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

872 873 874
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
875 876
}

877 878 879 880 881 882 883 884 885 886 887
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
888
static int engine_init_common(struct intel_engine_cs *engine)
889
{
890
	struct intel_context *ce;
891 892
	int ret;

893 894
	engine->set_default_submission(engine);

895 896
	/*
	 * We may need to do things with the shrinker which
897 898 899 900 901 902
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
903 904 905 906
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

907 908 909 910 911
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
912
	engine->kernel_context = ce;
913

914
	return 0;
915 916

err_context:
917
	intel_engine_destroy_pinned_context(ce);
918
	return ret;
919
}
920

921 922 923 924 925 926 927
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

928 929
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
930
		setup = intel_guc_submission_setup;
931 932
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
933
		setup = intel_execlists_submission_setup;
934 935
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
936
		setup = intel_ring_submission_setup;
937
	}
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

958 959 960 961 962 963 964 965 966
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
967
	GEM_BUG_ON(!list_empty(&engine->active.requests));
968
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
969

970
	intel_breadcrumbs_free(engine->breadcrumbs);
971

972
	intel_engine_fini_retire(engine);
973
	intel_engine_cleanup_cmd_parser(engine);
974

975
	if (engine->default_state)
976
		fput(engine->default_state);
977

978
	if (engine->kernel_context)
979
		intel_engine_destroy_pinned_context(engine->kernel_context);
980

981
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
982
	cleanup_status_page(engine);
983

984
	intel_wa_list_free(&engine->ctx_wa_list);
985
	intel_wa_list_free(&engine->wa_list);
986
	intel_wa_list_free(&engine->whitelist);
987
}
988

989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1003
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1004
{
1005 1006
	struct drm_i915_private *i915 = engine->i915;

1007 1008
	u64 acthd;

1009
	if (GRAPHICS_VER(i915) >= 8)
1010
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1011
	else if (GRAPHICS_VER(i915) >= 4)
1012
		acthd = ENGINE_READ(engine, RING_ACTHD);
1013
	else
1014
		acthd = ENGINE_READ(engine, ACTHD);
1015 1016 1017 1018

	return acthd;
}

1019
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1020 1021 1022
{
	u64 bbaddr;

1023
	if (GRAPHICS_VER(engine->i915) >= 8)
1024
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1025
	else
1026
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1027 1028 1029

	return bbaddr;
}
1030

1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1046 1047 1048
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1049
{
1050
	struct intel_uncore *uncore = engine->uncore;
1051
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1052 1053
	int err;

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1070
	if (GRAPHICS_VER(engine->i915) < 3)
1071 1072
		return -ENODEV;

1073
	ENGINE_TRACE(engine, "\n");
1074
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1088 1089 1090 1091 1092
	}

	return err;
}

1093 1094
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1095
	ENGINE_TRACE(engine, "\n");
1096

1097
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1098 1099
}

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1111
static u32
1112 1113
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1114
{
1115 1116
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1117 1118 1119
}

/* NB: please notice the memset */
1120
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1121 1122
			       struct intel_instdone *instdone)
{
1123
	struct drm_i915_private *i915 = engine->i915;
1124
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1125
	struct intel_uncore *uncore = engine->uncore;
1126 1127 1128 1129 1130 1131
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1132
	switch (GRAPHICS_VER(i915)) {
1133
	default:
1134 1135
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1136

1137
		if (engine->id != RCS0)
1138 1139
			break;

1140 1141
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1142
		if (GRAPHICS_VER(i915) >= 12) {
1143 1144 1145 1146 1147
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1148
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1149
			instdone->sampler[slice][subslice] =
1150
				read_subslice_reg(engine, slice, subslice,
1151 1152
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1153
				read_subslice_reg(engine, slice, subslice,
1154 1155 1156 1157
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1158 1159
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1160

1161
		if (engine->id != RCS0)
1162 1163
			break;

1164 1165 1166 1167 1168 1169
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1170 1171 1172 1173 1174

		break;
	case 6:
	case 5:
	case 4:
1175 1176
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1177
		if (engine->id == RCS0)
1178
			/* HACK: Using the wrong struct member */
1179 1180
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1181 1182 1183
		break;
	case 3:
	case 2:
1184
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1185 1186 1187
		break;
	}
}
1188

1189 1190 1191 1192
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1193 1194 1195
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1196
	if (!intel_engine_pm_get_if_awake(engine))
1197
		return true;
1198

1199
	/* First check that no commands are left in the ring */
1200 1201
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1202
		idle = false;
1203

1204
	/* No bit for gen2, so assume the CS parser is idle */
1205
	if (GRAPHICS_VER(engine->i915) > 2 &&
1206
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1207 1208
		idle = false;

1209
	intel_engine_pm_put(engine);
1210 1211 1212 1213

	return idle;
}

1214
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1215 1216 1217
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1218
	if (!t->callback)
1219 1220
		return;

1221 1222 1223 1224
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1225
			t->callback(t);
1226
		tasklet_unlock(t);
1227
	}
1228
	local_bh_enable();
1229 1230 1231 1232

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1233 1234
}

1235 1236 1237 1238 1239 1240 1241 1242 1243
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1244
	/* More white lies, if wedged, hw state is inconsistent */
1245
	if (intel_gt_is_wedged(engine->gt))
1246 1247
		return true;

1248
	if (!intel_engine_pm_is_awake(engine))
1249 1250
		return true;

1251
	/* Waiting to drain ELSP? */
1252 1253
	synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
	intel_engine_flush_submission(engine);
1254

1255
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1256
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1257 1258
		return false;

1259
	/* Ring stopped? */
1260
	return ring_is_idle(engine);
1261 1262
}

1263
bool intel_engines_are_idle(struct intel_gt *gt)
1264 1265 1266 1267
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1268 1269
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1270 1271
	 * report that it is still busy, even though we have stopped using it.
	 */
1272
	if (intel_gt_is_wedged(gt))
1273 1274
		return true;

1275
	/* Already parked (and passed an idleness test); must still be idle */
1276
	if (!READ_ONCE(gt->awake))
1277 1278
		return true;

1279
	for_each_engine(engine, gt, id) {
1280 1281 1282 1283 1284 1285 1286
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1287
void intel_engines_reset_default_submission(struct intel_gt *gt)
1288 1289 1290 1291
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1292 1293 1294 1295
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1296
		engine->set_default_submission(engine);
1297
	}
1298 1299
}

1300 1301
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1302
	switch (GRAPHICS_VER(engine->i915)) {
1303 1304 1305 1306 1307
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1308 1309
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1310 1311 1312 1313 1314 1315 1316
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1382
		drm_printf(m, "[%04zx] %s\n", pos, line);
1383 1384 1385 1386 1387 1388

		prev = buf + pos;
		skip = false;
	}
}

1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1400
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1401
					 struct drm_printer *m)
1402 1403
{
	struct drm_i915_private *dev_priv = engine->i915;
1404
	struct intel_engine_execlists * const execlists = &engine->execlists;
1405 1406
	u64 addr;

1407
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1408
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1409 1410 1411 1412 1413 1414
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1415
	drm_printf(m, "\tRING_START: 0x%08x\n",
1416
		   ENGINE_READ(engine, RING_START));
1417
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1418
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1419
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1420
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1421
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1422 1423
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1424
	if (GRAPHICS_VER(engine->i915) > 2) {
1425
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1426 1427
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1428
	}
1429

1430
	if (GRAPHICS_VER(dev_priv) >= 6) {
1431
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1432
			   ENGINE_READ(engine, RING_IMR));
1433 1434 1435 1436 1437 1438
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1439 1440
	}

1441 1442 1443 1444 1445 1446
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1447
	if (GRAPHICS_VER(dev_priv) >= 8)
1448
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1449
	else if (GRAPHICS_VER(dev_priv) >= 4)
1450
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1451
	else
1452
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1453 1454
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1455
	if (GRAPHICS_VER(dev_priv) >= 4) {
1456
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1457
			   ENGINE_READ(engine, RING_IPEIR));
1458
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1459
			   ENGINE_READ(engine, RING_IPEHR));
1460
	} else {
1461 1462
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1463
	}
1464

1465
	if (intel_engine_uses_guc(engine)) {
1466 1467
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1468
		struct i915_request * const *port, *rq;
1469 1470
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1471
		const u8 num_entries = execlists->csb_size;
1472
		unsigned int idx;
1473
		u8 read, write;
1474

1475
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1476 1477 1478
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1479
			   repr_timer(&engine->execlists.preempt),
1480
			   repr_timer(&engine->execlists.timer));
1481

1482 1483 1484
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1485 1486 1487 1488 1489
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1490
		if (read >= num_entries)
1491
			read = 0;
1492
		if (write >= num_entries)
1493 1494
			write = 0;
		if (read > write)
1495
			write += num_entries;
1496
		while (read < write) {
1497 1498 1499
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1500 1501
		}

1502
		execlists_active_lock_bh(execlists);
1503
		rcu_read_lock();
1504
		for (port = execlists->active; (rq = *port); port++) {
1505
			char hdr[160];
1506 1507
			int len;

1508
			len = scnprintf(hdr, sizeof(hdr),
1509
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1510
					(int)(port - execlists->active),
1511 1512 1513
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1514
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1515
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1516
			i915_request_show(m, rq, hdr, 0);
1517 1518
		}
		for (port = execlists->pending; (rq = *port); port++) {
1519 1520
			char hdr[160];
			int len;
1521

1522
			len = scnprintf(hdr, sizeof(hdr),
1523
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1524
					(int)(port - execlists->pending),
1525 1526 1527
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1528 1529
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1530
			i915_request_show(m, rq, hdr, 0);
1531
		}
1532
		rcu_read_unlock();
1533
		execlists_active_unlock_bh(execlists);
1534
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1535
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1536
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1537
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1538
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1539
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1540
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1541
	}
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1623 1624 1625 1626 1627
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1628
	struct i915_request *rq;
1629
	intel_wakeref_t wakeref;
1630
	unsigned long flags;
1631
	ktime_t dummy;
1632 1633 1634 1635 1636 1637 1638 1639 1640

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1641
	if (intel_gt_is_wedged(engine->gt))
1642 1643
		drm_printf(m, "*** WEDGED ***\n");

1644
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1645 1646
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1647 1648
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1649 1650 1651 1652
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1653
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1654
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1655 1656 1657 1658 1659 1660 1661

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1662 1663 1664
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1665
	print_properties(engine, m);
1666 1667 1668

	drm_printf(m, "\tRequests:\n");

1669
	spin_lock_irqsave(&engine->active.lock, flags);
1670
	rq = intel_engine_find_active_request(engine);
1671
	if (rq) {
1672 1673
		struct intel_timeline *tl = get_timeline(rq);

1674
		i915_request_show(m, rq, "\t\tactive ", 0);
1675

1676
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1677
			   i915_ggtt_offset(rq->ring->vma));
1678
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1679
			   rq->ring->head);
1680
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1681
			   rq->ring->tail);
1682 1683 1684 1685
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1686 1687 1688 1689 1690 1691

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1692 1693

		print_request_ring(m, rq);
1694

1695
		if (rq->context->lrc_reg_state) {
1696
			drm_printf(m, "Logical Ring Context:\n");
1697
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1698
		}
1699
	}
1700
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1701
	spin_unlock_irqrestore(&engine->active.lock, flags);
1702

1703
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1704
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1705
	if (wakeref) {
1706
		intel_engine_print_registers(engine, m);
1707
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1708 1709 1710
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1711

C
Chris Wilson 已提交
1712
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1713

1714
	drm_printf(m, "HWSP:\n");
1715
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1716

1717
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1718 1719

	intel_engine_print_breadcrumbs(engine, m);
1720 1721
}

1722 1723
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1724 1725 1726 1727 1728 1729 1730
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1731
	*now = ktime_get();
1732
	if (READ_ONCE(engine->stats.active))
1733
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1734 1735 1736 1737 1738 1739 1740

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1741
 * @now: monotonic timestamp of sampling
1742 1743 1744
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1745
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1746
{
1747
	unsigned int seq;
1748 1749
	ktime_t total;

1750
	do {
1751
		seq = read_seqcount_begin(&engine->stats.lock);
1752
		total = __intel_engine_get_busy_time(engine, now);
1753
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1754 1755 1756 1757

	return total;
}

1758 1759
static bool match_ring(struct i915_request *rq)
{
1760
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1781
	lockdep_assert_held(&engine->active.lock);
1782 1783 1784 1785 1786 1787 1788

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1789
			if (__i915_request_is_complete(request))
1790 1791 1792 1793 1794 1795 1796 1797 1798
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1799
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1800
		if (__i915_request_is_complete(request))
1801 1802
			continue;

1803
		if (!__i915_request_has_started(request))
1804
			continue;
1805 1806 1807

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1808
			continue;
1809 1810 1811 1812 1813 1814 1815 1816

		active = request;
		break;
	}

	return active;
}

1817
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1818
#include "mock_engine.c"
1819
#include "selftest_engine.c"
1820
#include "selftest_engine_cs.c"
1821
#endif