intel_engine_cs.c 48.4 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	unsigned int hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56 57
	[RCS0] = {
		.hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64 65
	[BCS0] = {
		.hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72 73
	[VCS0] = {
		.hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82 83
	[VCS1] = {
		.hw_id = VCS1_HW,
84 85
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
86
		.mmio_bases = {
87 88
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89
		},
90
	},
91 92
	[VCS2] = {
		.hw_id = VCS2_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97
		},
98
	},
99 100
	[VCS3] = {
		.hw_id = VCS3_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
103
		.mmio_bases = {
104
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105
		},
106
	},
107 108
	[VECS0] = {
		.hw_id = VECS0_HW,
109 110
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
111
		.mmio_bases = {
112 113
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
114
		},
115
	},
116 117
	[VECS1] = {
		.hw_id = VECS1_HW,
118 119
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
120
		.mmio_bases = {
121
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122
		},
123
	},
124 125
};

126
/**
127
 * intel_engine_context_size() - return the size of the context for an engine
128
 * @gt: the gt
129 130 131 132 133 134 135 136 137 138 139
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
140
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141
{
142
	struct intel_uncore *uncore = gt->uncore;
143 144 145 146 147 148
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
149
		switch (GRAPHICS_VER(gt->i915)) {
150
		default:
151
			MISSING_CASE(GRAPHICS_VER(gt->i915));
152
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153
		case 12:
154 155
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
156
		case 10:
O
Oscar Mateo 已提交
157
			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 159 160
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
161
			return GEN8_LR_CONTEXT_RENDER_SIZE;
162
		case 7:
163
			if (IS_HASWELL(gt->i915))
164 165
				return HSW_CXT_TOTAL_SIZE;

166
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 168 169
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
170
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 172 173
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
174
		case 4:
175 176 177 178 179 180 181 182 183 184
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
185
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186
			drm_dbg(&gt->i915->drm,
187 188
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
189
				cxt_size - 1);
190
			return round_up(cxt_size * 64, PAGE_SIZE);
191 192 193 194 195 196 197 198 199
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
200
		fallthrough;
201 202 203
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
204
		if (GRAPHICS_VER(gt->i915) < 8)
205 206 207 208 209
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

210 211 212 213 214 215
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
216
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217 218 219 220 221 222 223 224
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

225
static void __sprint_engine_name(struct intel_engine_cs *engine)
226
{
227 228 229 230 231 232 233 234
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
235 236
}

237 238 239 240 241 242
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
243
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 245
		return;

246 247
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248
	else
249
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 251 252 253 254 255 256 257
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

258
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
259 260
{
	const struct engine_info *info = &intel_engines[id];
261
	struct drm_i915_private *i915 = gt->i915;
262 263
	struct intel_engine_cs *engine;

264 265 266
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

267 268 269
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

270
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
271 272
		return -EINVAL;

273
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
274 275
		return -EINVAL;

276
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
277 278
		return -EINVAL;

279 280 281
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
282

283 284
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

285
	engine->id = id;
286
	engine->legacy_idx = INVALID_ENGINE;
287
	engine->mask = BIT(id);
288
	engine->i915 = i915;
289 290
	engine->gt = gt;
	engine->uncore = gt->uncore;
291
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
292 293
	engine->hw_id = info->hw_id;
	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
294

295 296
	engine->class = info->class;
	engine->instance = info->instance;
297
	__sprint_engine_name(engine);
298

299 300
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
301 302
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
303 304
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
305 306
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
307 308
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
309

310 311 312 313
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

314 315
	engine->defaults = engine->props; /* never to change again */

316
	engine->context_size = intel_engine_context_size(gt, engine->class);
317 318
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
319
	if (engine->context_size)
320
		DRIVER_CAPS(i915)->has_logical_contexts = true;
321

322 323 324
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

325
	ewma__engine_latency_init(&engine->latency);
326
	seqcount_init(&engine->stats.lock);
327

328 329
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

330 331 332
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

333
	gt->engine_class[info->class][info->instance] = engine;
334
	gt->engine[id] = engine;
335

336
	return 0;
337 338
}

339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
358 359
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
360 361 362 363 364 365 366 367 368 369
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

370
static void intel_setup_engine_capabilities(struct intel_gt *gt)
371 372 373 374
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

375
	for_each_engine(engine, gt, id)
376 377 378
		__setup_engine_capabilities(engine);
}

379
/**
380
 * intel_engines_release() - free the resources allocated for Command Streamers
381
 * @gt: pointer to struct intel_gt
382
 */
383
void intel_engines_release(struct intel_gt *gt)
384 385 386 387
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

388 389 390 391 392 393 394 395 396 397 398 399 400
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

401
	/* Decouple the backend; but keep the layout for late GPU resets */
402
	for_each_engine(engine, gt, id) {
403 404 405
		if (!engine->release)
			continue;

406 407 408
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

409 410 411 412
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
413 414 415
	}
}

416 417 418 419 420 421 422 423
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

424 425 426 427 428
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

429 430 431
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

432
	for_each_engine(engine, gt, id) {
433
		intel_engine_free_request_pool(engine);
434 435 436 437 438
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

439 440 441 442 443 444 445 446 447 448 449 450 451
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
452
	struct intel_gt_info *info = &gt->info;
453 454 455 456 457 458 459
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

460 461
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
489
			gt->info.vdbox_sfc_access |= BIT(i);
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

513
/**
514
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
515
 * @gt: pointer to struct intel_gt
516 517 518
 *
 * Return: non-zero if the initialization failed.
 */
519
int intel_engines_init_mmio(struct intel_gt *gt)
520
{
521
	struct drm_i915_private *i915 = gt->i915;
522
	const unsigned int engine_mask = init_engine_mask(gt);
523
	unsigned int mask = 0;
524
	unsigned int i;
525
	int err;
526

527 528 529
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
530

531
	if (i915_inject_probe_failure(i915))
532 533
		return -ENODEV;

534
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
535
		if (!HAS_ENGINE(gt, i))
536 537
			continue;

538
		err = intel_engine_setup(gt, i);
539 540 541
		if (err)
			goto cleanup;

542
		mask |= BIT(i);
543 544 545 546 547 548 549
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
550
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
551
		gt->info.engine_mask = mask;
552

553
	gt->info.num_engines = hweight32(mask);
554

555
	intel_gt_check_and_clear_faults(gt);
556

557
	intel_setup_engine_capabilities(gt);
558

559 560
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

561 562 563
	return 0;

cleanup:
564
	intel_engines_free(gt);
565 566 567
	return err;
}

568
void intel_engine_init_execlists(struct intel_engine_cs *engine)
569 570 571
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

572
	execlists->port_mask = 1;
573
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
574 575
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

576 577 578 579
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

580
	execlists->queue_priority_hint = INT_MIN;
581
	execlists->queue = RB_ROOT_CACHED;
582 583
}

584
static void cleanup_status_page(struct intel_engine_cs *engine)
585
{
586 587
	struct i915_vma *vma;

588 589 590
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

591 592 593
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
594

595 596 597 598
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
599
	i915_gem_object_put(vma->obj);
600 601 602
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
603
				struct i915_gem_ww_ctx *ww,
604 605 606 607
				struct i915_vma *vma)
{
	unsigned int flags;

608
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
609 610 611 612 613 614 615 616 617 618 619
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
620
		flags = PIN_MAPPABLE;
621
	else
622
		flags = PIN_HIGH;
623

624
	return i915_ggtt_pin(vma, ww, 0, flags);
625 626 627 628 629
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
630
	struct i915_gem_ww_ctx ww;
631 632 633 634
	struct i915_vma *vma;
	void *vaddr;
	int ret;

635 636
	INIT_LIST_HEAD(&engine->status_page.timelines);

637 638 639 640 641 642 643
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
644 645
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
646 647
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
648 649 650
		return PTR_ERR(obj);
	}

651
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
652

653
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
654 655
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
656
		goto err_put;
657 658
	}

659 660 661 662 663 664 665 666
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

667 668 669
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
670
		goto err_unpin;
671 672
	}

673
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
674
	engine->status_page.vma = vma;
675

676
err_unpin:
677 678
	if (ret)
		i915_vma_unpin(vma);
679
err:
680 681 682 683 684 685 686 687 688
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
689 690 691
	return ret;
}

692
static int engine_setup_common(struct intel_engine_cs *engine)
693 694 695
{
	int err;

696 697
	init_llist_head(&engine->barrier_tasks);

698 699 700 701
	err = init_status_page(engine);
	if (err)
		return err;

702 703 704 705 706 707
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

708 709 710 711
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

712
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
713 714
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
715
	intel_engine_init_retire(engine);
716

717 718
	/* Use the whole device by default */
	engine->sseu =
719
		intel_sseu_from_device_info(&engine->gt->info.sseu);
720

721 722 723 724
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

725 726 727
	if (INTEL_GEN(engine->i915) >= 12)
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

728
	return 0;
729

730 731
err_cmd_parser:
	intel_breadcrumbs_free(engine->breadcrumbs);
732 733 734
err_status:
	cleanup_status_page(engine);
	return err;
735 736
}

737 738 739
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
740
	u32 cs[2048];
741 742
};

743
static int measure_breadcrumb_dw(struct intel_context *ce)
744
{
745
	struct intel_engine_cs *engine = ce->engine;
746
	struct measure_breadcrumb *frame;
747
	int dw;
748

749
	GEM_BUG_ON(!engine->gt->scratch);
750 751 752 753 754

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

755 756 757
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
758
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
759

760 761
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
762 763
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
764 765 766
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
767

768
	mutex_lock(&ce->timeline->mutex);
769
	spin_lock_irq(&engine->active.lock);
770

771
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
772

773
	spin_unlock_irq(&engine->active.lock);
774
	mutex_unlock(&ce->timeline->mutex);
775

776
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
777

778
	kfree(frame);
779 780 781
	return dw;
}

782 783 784 785
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
786
	INIT_LIST_HEAD(&engine->active.hold);
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

804
static struct intel_context *
805 806 807 808
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
809 810 811 812
{
	struct intel_context *ce;
	int err;

813
	ce = intel_context_create(engine);
814 815 816
	if (IS_ERR(ce))
		return ce;

817
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
818
	ce->timeline = page_pack_bits(NULL, hwsp);
819

820
	err = intel_context_pin(ce); /* perma-pin so it is always available */
821 822 823 824 825
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

826 827 828 829 830 831
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
832
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
833

834 835 836
	return ce;
}

837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
static void destroy_pinned_context(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

852 853 854 855 856 857 858 859 860
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

861 862 863 864 865 866 867 868 869 870 871
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
872
static int engine_init_common(struct intel_engine_cs *engine)
873
{
874
	struct intel_context *ce;
875 876
	int ret;

877 878
	engine->set_default_submission(engine);

879 880
	/*
	 * We may need to do things with the shrinker which
881 882 883 884 885 886
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
887 888 889 890
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

891 892 893 894 895
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
896
	engine->kernel_context = ce;
897

898
	return 0;
899 900

err_context:
901
	destroy_pinned_context(ce);
902
	return ret;
903
}
904

905 906 907 908 909 910 911
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

912 913 914
	if (intel_uc_uses_guc_submission(&gt->uc))
		setup = intel_guc_submission_setup;
	else if (HAS_EXECLISTS(gt->i915))
915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

938 939 940 941 942 943 944 945 946
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
947
	GEM_BUG_ON(!list_empty(&engine->active.requests));
948
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
949

950
	intel_breadcrumbs_free(engine->breadcrumbs);
951

952
	intel_engine_fini_retire(engine);
953
	intel_engine_cleanup_cmd_parser(engine);
954

955
	if (engine->default_state)
956
		fput(engine->default_state);
957

958 959 960
	if (engine->kernel_context)
		destroy_pinned_context(engine->kernel_context);

961
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
962
	cleanup_status_page(engine);
963

964
	intel_wa_list_free(&engine->ctx_wa_list);
965
	intel_wa_list_free(&engine->wa_list);
966
	intel_wa_list_free(&engine->whitelist);
967
}
968

969 970 971 972 973 974 975 976 977 978 979 980 981 982
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

983
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
984
{
985 986
	struct drm_i915_private *i915 = engine->i915;

987 988
	u64 acthd;

989 990 991 992
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
993
	else
994
		acthd = ENGINE_READ(engine, ACTHD);
995 996 997 998

	return acthd;
}

999
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1000 1001 1002
{
	u64 bbaddr;

1003 1004
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1005
	else
1006
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1007 1008 1009

	return bbaddr;
}
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1026 1027 1028
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1029
{
1030
	struct intel_uncore *uncore = engine->uncore;
1031
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1032 1033
	int err;

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1050
	if (INTEL_GEN(engine->i915) < 3)
1051 1052
		return -ENODEV;

1053
	ENGINE_TRACE(engine, "\n");
1054
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1068 1069 1070 1071 1072
	}

	return err;
}

1073 1074
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1075
	ENGINE_TRACE(engine, "\n");
1076

1077
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1078 1079
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1091
static u32
1092 1093
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1094
{
1095 1096
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1097
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1098 1099
	enum forcewake_domains fw_domains;

1100
	if (INTEL_GEN(i915) >= 11) {
1101 1102
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1103
	} else {
1104 1105
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1106 1107
	}

1108
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1109
						    FW_REG_READ);
1110
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1111 1112 1113
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1114 1115
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1116

1117
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1118

1119 1120
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1121
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1122

1123
	val = intel_uncore_read_fw(uncore, reg);
1124

1125 1126
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1127

1128
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1129

1130 1131
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1132

1133
	return val;
1134 1135 1136
}

/* NB: please notice the memset */
1137
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1138 1139
			       struct intel_instdone *instdone)
{
1140
	struct drm_i915_private *i915 = engine->i915;
1141
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1142
	struct intel_uncore *uncore = engine->uncore;
1143 1144 1145 1146 1147 1148
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1149
	switch (INTEL_GEN(i915)) {
1150
	default:
1151 1152
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1153

1154
		if (engine->id != RCS0)
1155 1156
			break;

1157 1158
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1159 1160 1161 1162 1163 1164
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1165
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1166
			instdone->sampler[slice][subslice] =
1167
				read_subslice_reg(engine, slice, subslice,
1168 1169
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1170
				read_subslice_reg(engine, slice, subslice,
1171 1172 1173 1174
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1175 1176
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1177

1178
		if (engine->id != RCS0)
1179 1180
			break;

1181 1182 1183 1184 1185 1186
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1187 1188 1189 1190 1191

		break;
	case 6:
	case 5:
	case 4:
1192 1193
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1194
		if (engine->id == RCS0)
1195
			/* HACK: Using the wrong struct member */
1196 1197
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1198 1199 1200
		break;
	case 3:
	case 2:
1201
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1202 1203 1204
		break;
	}
}
1205

1206 1207 1208 1209
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1210 1211 1212
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1213
	if (!intel_engine_pm_get_if_awake(engine))
1214
		return true;
1215

1216
	/* First check that no commands are left in the ring */
1217 1218
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1219
		idle = false;
1220

1221
	/* No bit for gen2, so assume the CS parser is idle */
1222
	if (INTEL_GEN(engine->i915) > 2 &&
1223
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1224 1225
		idle = false;

1226
	intel_engine_pm_put(engine);
1227 1228 1229 1230

	return idle;
}

1231
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1232 1233 1234
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1235
	if (!t->callback)
1236 1237
		return;

1238 1239 1240 1241
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1242
			t->callback(t);
1243
		tasklet_unlock(t);
1244
	}
1245
	local_bh_enable();
1246 1247 1248 1249

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1250 1251
}

1252 1253 1254 1255 1256 1257 1258 1259 1260
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1261
	/* More white lies, if wedged, hw state is inconsistent */
1262
	if (intel_gt_is_wedged(engine->gt))
1263 1264
		return true;

1265
	if (!intel_engine_pm_is_awake(engine))
1266 1267
		return true;

1268
	/* Waiting to drain ELSP? */
1269 1270
	synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
	intel_engine_flush_submission(engine);
1271

1272
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1273
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1274 1275
		return false;

1276
	/* Ring stopped? */
1277
	return ring_is_idle(engine);
1278 1279
}

1280
bool intel_engines_are_idle(struct intel_gt *gt)
1281 1282 1283 1284
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1285 1286
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1287 1288
	 * report that it is still busy, even though we have stopped using it.
	 */
1289
	if (intel_gt_is_wedged(gt))
1290 1291
		return true;

1292
	/* Already parked (and passed an idleness test); must still be idle */
1293
	if (!READ_ONCE(gt->awake))
1294 1295
		return true;

1296
	for_each_engine(engine, gt, id) {
1297 1298 1299 1300 1301 1302 1303
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1304
void intel_engines_reset_default_submission(struct intel_gt *gt)
1305 1306 1307 1308
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1309 1310 1311 1312
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1313
		engine->set_default_submission(engine);
1314
	}
1315 1316
}

1317 1318 1319 1320 1321 1322 1323 1324
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1325 1326
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1327 1328 1329 1330 1331 1332 1333
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1399
		drm_printf(m, "[%04zx] %s\n", pos, line);
1400 1401 1402 1403 1404 1405

		prev = buf + pos;
		skip = false;
	}
}

1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1417
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1418
					 struct drm_printer *m)
1419 1420
{
	struct drm_i915_private *dev_priv = engine->i915;
1421
	struct intel_engine_execlists * const execlists = &engine->execlists;
1422 1423
	u64 addr;

1424
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1425
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1426 1427 1428 1429 1430 1431
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1432
	drm_printf(m, "\tRING_START: 0x%08x\n",
1433
		   ENGINE_READ(engine, RING_START));
1434
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1435
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1436
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1437
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1438
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1439 1440
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1441 1442
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1443 1444
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1445
	}
1446 1447

	if (INTEL_GEN(dev_priv) >= 6) {
1448
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1449
			   ENGINE_READ(engine, RING_IMR));
1450 1451 1452 1453 1454 1455
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1456 1457
	}

1458 1459 1460 1461 1462 1463
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1464
	if (INTEL_GEN(dev_priv) >= 8)
1465
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1466
	else if (INTEL_GEN(dev_priv) >= 4)
1467
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1468
	else
1469
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1470 1471 1472 1473
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1474
			   ENGINE_READ(engine, RING_IPEIR));
1475
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1476
			   ENGINE_READ(engine, RING_IPEHR));
1477
	} else {
1478 1479
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1480
	}
1481

1482 1483 1484
	if (intel_engine_in_guc_submission_mode(engine)) {
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1485
		struct i915_request * const *port, *rq;
1486 1487
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1488
		const u8 num_entries = execlists->csb_size;
1489
		unsigned int idx;
1490
		u8 read, write;
1491

1492
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1493 1494 1495
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1496
			   repr_timer(&engine->execlists.preempt),
1497
			   repr_timer(&engine->execlists.timer));
1498

1499 1500 1501
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1502 1503 1504 1505 1506
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1507
		if (read >= num_entries)
1508
			read = 0;
1509
		if (write >= num_entries)
1510 1511
			write = 0;
		if (read > write)
1512
			write += num_entries;
1513
		while (read < write) {
1514 1515 1516
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1517 1518
		}

1519
		execlists_active_lock_bh(execlists);
1520
		rcu_read_lock();
1521
		for (port = execlists->active; (rq = *port); port++) {
1522
			char hdr[160];
1523 1524
			int len;

1525
			len = scnprintf(hdr, sizeof(hdr),
1526
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1527
					(int)(port - execlists->active),
1528 1529 1530
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1531
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1532
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1533
			i915_request_show(m, rq, hdr, 0);
1534 1535
		}
		for (port = execlists->pending; (rq = *port); port++) {
1536 1537
			char hdr[160];
			int len;
1538

1539
			len = scnprintf(hdr, sizeof(hdr),
1540
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1541
					(int)(port - execlists->pending),
1542 1543 1544
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1545 1546
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1547
			i915_request_show(m, rq, hdr, 0);
1548
		}
1549
		rcu_read_unlock();
1550
		execlists_active_unlock_bh(execlists);
1551 1552
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1553
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1554
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1555
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1556
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1557
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1558
	}
1559 1560
}

1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1640 1641 1642 1643 1644
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1645
	struct i915_request *rq;
1646
	intel_wakeref_t wakeref;
1647
	unsigned long flags;
1648
	ktime_t dummy;
1649 1650 1651 1652 1653 1654 1655 1656 1657

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1658
	if (intel_gt_is_wedged(engine->gt))
1659 1660
		drm_printf(m, "*** WEDGED ***\n");

1661
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1662 1663
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1664 1665
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1666 1667 1668 1669
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1670
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1671
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1672 1673 1674 1675 1676 1677 1678

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1679 1680 1681
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1682
	print_properties(engine, m);
1683 1684 1685

	drm_printf(m, "\tRequests:\n");

1686
	spin_lock_irqsave(&engine->active.lock, flags);
1687
	rq = intel_engine_find_active_request(engine);
1688
	if (rq) {
1689 1690
		struct intel_timeline *tl = get_timeline(rq);

1691
		i915_request_show(m, rq, "\t\tactive ", 0);
1692

1693
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1694
			   i915_ggtt_offset(rq->ring->vma));
1695
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1696
			   rq->ring->head);
1697
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1698
			   rq->ring->tail);
1699 1700 1701 1702
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1703 1704 1705 1706 1707 1708

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1709 1710

		print_request_ring(m, rq);
1711

1712
		if (rq->context->lrc_reg_state) {
1713
			drm_printf(m, "Logical Ring Context:\n");
1714
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1715
		}
1716
	}
1717
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1718
	spin_unlock_irqrestore(&engine->active.lock, flags);
1719

1720
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1721
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1722
	if (wakeref) {
1723
		intel_engine_print_registers(engine, m);
1724
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1725 1726 1727
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1728

C
Chris Wilson 已提交
1729
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1730

1731
	drm_printf(m, "HWSP:\n");
1732
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1733

1734
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1735 1736

	intel_engine_print_breadcrumbs(engine, m);
1737 1738
}

1739 1740
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1741 1742 1743 1744 1745 1746 1747
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1748
	*now = ktime_get();
1749
	if (READ_ONCE(engine->stats.active))
1750
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1751 1752 1753 1754 1755 1756 1757

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1758
 * @now: monotonic timestamp of sampling
1759 1760 1761
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1762
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1763
{
1764
	unsigned int seq;
1765 1766
	ktime_t total;

1767
	do {
1768
		seq = read_seqcount_begin(&engine->stats.lock);
1769
		total = __intel_engine_get_busy_time(engine, now);
1770
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1771 1772 1773 1774

	return total;
}

1775 1776
static bool match_ring(struct i915_request *rq)
{
1777
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1798
	lockdep_assert_held(&engine->active.lock);
1799 1800 1801 1802 1803 1804 1805

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1806
			if (__i915_request_is_complete(request))
1807 1808 1809 1810 1811 1812 1813 1814 1815
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1816
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1817
		if (__i915_request_is_complete(request))
1818 1819
			continue;

1820
		if (!__i915_request_has_started(request))
1821
			continue;
1822 1823 1824

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1825
			continue;
1826 1827 1828 1829 1830 1831 1832 1833

		active = request;
		break;
	}

	return active;
}

1834
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1835
#include "mock_engine.c"
1836
#include "selftest_engine.c"
1837
#include "selftest_engine_cs.c"
1838
#endif