intel_engine_cs.c 47.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_user.h"
35 36
#include "intel_gt.h"
#include "intel_gt_requests.h"
37
#include "intel_gt_pm.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40
#include "intel_ring.h"
41

42 43 44 45 46 47 48 49 50
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

51
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
52 53
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
55
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
56 57 58

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

59
#define MAX_MMIO_BASES 3
60
struct engine_info {
61
	unsigned int hw_id;
62 63
	u8 class;
	u8 instance;
64 65 66 67 68
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
69 70 71
};

static const struct engine_info intel_engines[] = {
72 73
	[RCS0] = {
		.hw_id = RCS0_HW,
74 75
		.class = RENDER_CLASS,
		.instance = 0,
76 77 78
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
79
	},
80 81
	[BCS0] = {
		.hw_id = BCS0_HW,
82 83
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
84 85 86
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
87
	},
88 89
	[VCS0] = {
		.hw_id = VCS0_HW,
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
92 93 94 95 96
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
97
	},
98 99
	[VCS1] = {
		.hw_id = VCS1_HW,
100 101
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
102 103 104 105
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
106
	},
107 108
	[VCS2] = {
		.hw_id = VCS2_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
111 112 113
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
114
	},
115 116
	[VCS3] = {
		.hw_id = VCS3_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
122
	},
123 124
	[VECS0] = {
		.hw_id = VECS0_HW,
125 126
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
131
	},
132 133
	[VECS1] = {
		.hw_id = VECS1_HW,
134 135
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
139
	},
140 141
};

142
/**
143
 * intel_engine_context_size() - return the size of the context for an engine
144
 * @gt: the gt
145 146 147 148 149 150 151 152 153 154 155
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
156
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157
{
158
	struct intel_uncore *uncore = gt->uncore;
159 160 161 162 163 164
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
165
		switch (INTEL_GEN(gt->i915)) {
166
		default:
167
			MISSING_CASE(INTEL_GEN(gt->i915));
168
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169
		case 12:
170 171
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
172
		case 10:
O
Oscar Mateo 已提交
173
			return GEN10_LR_CONTEXT_RENDER_SIZE;
174 175 176
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
177
			return GEN8_LR_CONTEXT_RENDER_SIZE;
178
		case 7:
179
			if (IS_HASWELL(gt->i915))
180 181
				return HSW_CXT_TOTAL_SIZE;

182
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183 184 185
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
186
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187 188 189
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
190
		case 4:
191 192 193 194 195 196 197 198 199 200
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
201
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202 203 204 205
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
206
			return round_up(cxt_size * 64, PAGE_SIZE);
207 208 209 210 211 212 213 214 215
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
216
		/* fall through */
217 218 219
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
220
		if (INTEL_GEN(gt->i915) < 8)
221 222 223 224 225
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

241
static void __sprint_engine_name(struct intel_engine_cs *engine)
242
{
243 244 245 246 247 248 249 250
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
251 252
}

253 254 255 256 257 258
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
259
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260 261
		return;

262 263
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
264
	else
265
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 267 268 269 270 271 272 273
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

274
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 276
{
	const struct engine_info *info = &intel_engines[id];
277
	struct drm_i915_private *i915 = gt->i915;
278 279
	struct intel_engine_cs *engine;

280 281 282
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

283 284 285
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 294
		return -EINVAL;

295 296 297
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
298

299 300
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

301
	engine->id = id;
302
	engine->legacy_idx = INVALID_ENGINE;
303
	engine->mask = BIT(id);
304
	engine->i915 = i915;
305 306
	engine->gt = gt;
	engine->uncore = gt->uncore;
307
	engine->hw_id = engine->guc_id = info->hw_id;
308
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309

310 311
	engine->class = info->class;
	engine->instance = info->instance;
312
	__sprint_engine_name(engine);
313

314 315
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 317
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
318 319
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
320 321
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
322 323
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
324

325 326 327 328
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

329 330
	engine->defaults = engine->props; /* never to change again */

331
	engine->context_size = intel_engine_context_size(gt, engine->class);
332 333
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
334
	if (engine->context_size)
335
		DRIVER_CAPS(i915)->has_logical_contexts = true;
336

337 338 339
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

340
	ewma__engine_latency_init(&engine->latency);
341
	seqlock_init(&engine->stats.lock);
342

343 344
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

345 346 347
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

348
	gt->engine_class[info->class][info->instance] = engine;
349
	gt->engine[id] = engine;
350

351
	return 0;
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
373
		     engine->gt->info.vdbox_sfc_access & engine->mask) ||
374 375 376 377 378 379 380 381 382 383
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

384
static void intel_setup_engine_capabilities(struct intel_gt *gt)
385 386 387 388
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

389
	for_each_engine(engine, gt, id)
390 391 392
		__setup_engine_capabilities(engine);
}

393
/**
394
 * intel_engines_release() - free the resources allocated for Command Streamers
395
 * @gt: pointer to struct intel_gt
396
 */
397
void intel_engines_release(struct intel_gt *gt)
398 399 400 401
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

402 403 404 405 406 407 408 409 410 411 412 413 414
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

415
	/* Decouple the backend; but keep the layout for late GPU resets */
416
	for_each_engine(engine, gt, id) {
417 418 419
		if (!engine->release)
			continue;

420 421 422
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

423 424 425 426
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
427 428 429
	}
}

430 431 432 433 434 435 436 437
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

438 439 440 441 442
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

443 444 445
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

446
	for_each_engine(engine, gt, id) {
447
		intel_engine_free_request_pool(engine);
448 449 450 451 452
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

453 454 455 456 457 458 459 460 461 462 463 464 465
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
466
	struct intel_gt_info *info = &gt->info;
467 468 469 470 471 472 473
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

474 475
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
503
			gt->info.vdbox_sfc_access |= BIT(i);
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

527
/**
528
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
529
 * @gt: pointer to struct intel_gt
530 531 532
 *
 * Return: non-zero if the initialization failed.
 */
533
int intel_engines_init_mmio(struct intel_gt *gt)
534
{
535
	struct drm_i915_private *i915 = gt->i915;
536
	const unsigned int engine_mask = init_engine_mask(gt);
537
	unsigned int mask = 0;
538
	unsigned int i;
539
	int err;
540

541 542 543
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
544

545
	if (i915_inject_probe_failure(i915))
546 547
		return -ENODEV;

548
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
549
		if (!HAS_ENGINE(gt, i))
550 551
			continue;

552
		err = intel_engine_setup(gt, i);
553 554 555
		if (err)
			goto cleanup;

556
		mask |= BIT(i);
557 558 559 560 561 562 563
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
564
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
565
		gt->info.engine_mask = mask;
566

567
	gt->info.num_engines = hweight32(mask);
568

569
	intel_gt_check_and_clear_faults(gt);
570

571
	intel_setup_engine_capabilities(gt);
572

573 574
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

575 576 577
	return 0;

cleanup:
578
	intel_engines_free(gt);
579 580 581
	return err;
}

582
void intel_engine_init_execlists(struct intel_engine_cs *engine)
583 584 585
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

586
	execlists->port_mask = 1;
587
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
588 589
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

590 591 592 593
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

594
	execlists->queue_priority_hint = INT_MIN;
595
	execlists->queue = RB_ROOT_CACHED;
596 597
}

598
static void cleanup_status_page(struct intel_engine_cs *engine)
599
{
600 601
	struct i915_vma *vma;

602 603 604
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

605 606 607
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
608

609 610 611 612
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
613
	i915_gem_object_put(vma->obj);
614 615 616 617 618 619 620
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

621
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
622 623 624 625 626 627 628 629 630 631 632
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
633
		flags = PIN_MAPPABLE;
634
	else
635
		flags = PIN_HIGH;
636

637
	return i915_ggtt_pin(vma, 0, flags);
638 639 640 641 642 643 644 645 646
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

647 648 649 650 651 652 653
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
654 655
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
656 657
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
658 659 660
		return PTR_ERR(obj);
	}

661
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
662

663
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
664 665 666 667 668 669 670 671
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
672
		goto err;
673 674
	}

675
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
676
	engine->status_page.vma = vma;
677 678 679 680 681 682 683

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

684 685 686
	return 0;

err_unpin:
687
	i915_gem_object_unpin_map(obj);
688 689 690 691 692
err:
	i915_gem_object_put(obj);
	return ret;
}

693
static int engine_setup_common(struct intel_engine_cs *engine)
694 695 696
{
	int err;

697 698
	init_llist_head(&engine->barrier_tasks);

699 700 701 702
	err = init_status_page(engine);
	if (err)
		return err;

703
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
704
	intel_engine_init_breadcrumbs(engine);
705
	intel_engine_init_execlists(engine);
706
	intel_engine_init_cmd_parser(engine);
707
	intel_engine_init__pm(engine);
708
	intel_engine_init_retire(engine);
709

710 711 712 713
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

714 715 716 717
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

718 719 720
	return 0;
}

721 722 723
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
724
	u32 cs[2048];
725 726
};

727
static int measure_breadcrumb_dw(struct intel_context *ce)
728
{
729
	struct intel_engine_cs *engine = ce->engine;
730
	struct measure_breadcrumb *frame;
731
	int dw;
732

733
	GEM_BUG_ON(!engine->gt->scratch);
734 735 736 737 738

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

739 740 741
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
742

743 744
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
745 746
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
747 748 749
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
750

751
	mutex_lock(&ce->timeline->mutex);
752
	spin_lock_irq(&engine->active.lock);
753

754
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
755

756
	spin_unlock_irq(&engine->active.lock);
757
	mutex_unlock(&ce->timeline->mutex);
758

759
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
760

761
	kfree(frame);
762 763 764
	return dw;
}

765 766 767 768
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
769
	INIT_LIST_HEAD(&engine->active.hold);
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

787 788 789
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
790
	static struct lock_class_key kernel;
791 792 793
	struct intel_context *ce;
	int err;

794
	ce = intel_context_create(engine);
795 796 797
	if (IS_ERR(ce))
		return ce;

798
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
799

800
	err = intel_context_pin(ce); /* perma-pin so it is always available */
801 802 803 804 805
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

806 807 808 809 810 811 812 813
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

814 815 816
	return ce;
}

817 818 819 820 821 822 823 824 825 826 827
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
828
static int engine_init_common(struct intel_engine_cs *engine)
829
{
830
	struct intel_context *ce;
831 832
	int ret;

833 834
	engine->set_default_submission(engine);

835 836
	/*
	 * We may need to do things with the shrinker which
837 838 839 840 841 842
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
843 844 845 846
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

847 848 849 850 851
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
852
	engine->kernel_context = ce;
853

854
	return 0;
855 856 857 858

err_context:
	intel_context_put(ce);
	return ret;
859
}
860

861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

892 893 894 895 896 897 898 899 900
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
901
	GEM_BUG_ON(!list_empty(&engine->active.requests));
902
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
903

904
	cleanup_status_page(engine);
905

906
	intel_engine_fini_retire(engine);
907
	intel_engine_fini_breadcrumbs(engine);
908
	intel_engine_cleanup_cmd_parser(engine);
909

910
	if (engine->default_state)
911
		fput(engine->default_state);
912

913 914 915 916
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
917
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
918

919
	intel_wa_list_free(&engine->ctx_wa_list);
920
	intel_wa_list_free(&engine->wa_list);
921
	intel_wa_list_free(&engine->whitelist);
922
}
923

924 925 926 927 928 929 930 931 932 933 934 935 936 937
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

938
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
939
{
940 941
	struct drm_i915_private *i915 = engine->i915;

942 943
	u64 acthd;

944 945 946 947
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
948
	else
949
		acthd = ENGINE_READ(engine, ACTHD);
950 951 952 953

	return acthd;
}

954
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
955 956 957
{
	u64 bbaddr;

958 959
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
960
	else
961
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
962 963 964

	return bbaddr;
}
965

966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

981 982
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
983
	struct intel_uncore *uncore = engine->uncore;
984 985 986 987
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

988
	if (INTEL_GEN(engine->i915) < 3)
989 990
		return -ENODEV;

991
	ENGINE_TRACE(engine, "\n");
992

993
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
994 995

	err = 0;
996
	if (__intel_wait_for_register_fw(uncore,
997
					 mode, MODE_IDLE, MODE_IDLE,
998
					 1000, stop_timeout(engine),
999
					 NULL)) {
1000
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1001 1002 1003 1004
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1005
	intel_uncore_posting_read_fw(uncore, mode);
1006 1007 1008 1009

	return err;
}

1010 1011
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1012
	ENGINE_TRACE(engine, "\n");
1013

1014
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1015 1016
}

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1028
static u32
1029 1030
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1031
{
1032 1033
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1034
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1035 1036
	enum forcewake_domains fw_domains;

1037
	if (INTEL_GEN(i915) >= 11) {
1038 1039
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1040
	} else {
1041 1042
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1043 1044
	}

1045
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1046
						    FW_REG_READ);
1047
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1048 1049 1050
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1051 1052
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1053

1054
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1055

1056 1057
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1058
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1059

1060
	val = intel_uncore_read_fw(uncore, reg);
1061

1062 1063
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1064

1065
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1066

1067 1068
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1069

1070
	return val;
1071 1072 1073
}

/* NB: please notice the memset */
1074
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1075 1076
			       struct intel_instdone *instdone)
{
1077
	struct drm_i915_private *i915 = engine->i915;
1078
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
1079
	struct intel_uncore *uncore = engine->uncore;
1080 1081 1082 1083 1084 1085
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1086
	switch (INTEL_GEN(i915)) {
1087
	default:
1088 1089
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1090

1091
		if (engine->id != RCS0)
1092 1093
			break;

1094 1095
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1096 1097 1098 1099 1100 1101
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1102
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1103
			instdone->sampler[slice][subslice] =
1104
				read_subslice_reg(engine, slice, subslice,
1105 1106
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1107
				read_subslice_reg(engine, slice, subslice,
1108 1109 1110 1111
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1112 1113
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1114

1115
		if (engine->id != RCS0)
1116 1117
			break;

1118 1119 1120 1121 1122 1123
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1124 1125 1126 1127 1128

		break;
	case 6:
	case 5:
	case 4:
1129 1130
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1131
		if (engine->id == RCS0)
1132
			/* HACK: Using the wrong struct member */
1133 1134
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1135 1136 1137
		break;
	case 3:
	case 2:
1138
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1139 1140 1141
		break;
	}
}
1142

1143 1144 1145 1146
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1147 1148 1149
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1150
	if (!intel_engine_pm_get_if_awake(engine))
1151
		return true;
1152

1153
	/* First check that no commands are left in the ring */
1154 1155
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1156
		idle = false;
1157

1158
	/* No bit for gen2, so assume the CS parser is idle */
1159
	if (INTEL_GEN(engine->i915) > 2 &&
1160
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1161 1162
		idle = false;

1163
	intel_engine_pm_put(engine);
1164 1165 1166 1167

	return idle;
}

1168
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1169 1170 1171
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1172 1173 1174
	if (!t->func)
		return;

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
	/* Synchronise and wait for the tasklet on another CPU */
	tasklet_kill(t);

	/* Having cancelled the tasklet, ensure that is run */
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1185
	}
1186
	local_bh_enable();
1187 1188
}

1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1198
	/* More white lies, if wedged, hw state is inconsistent */
1199
	if (intel_gt_is_wedged(engine->gt))
1200 1201
		return true;

1202
	if (!intel_engine_pm_is_awake(engine))
1203 1204
		return true;

1205
	/* Waiting to drain ELSP? */
1206
	if (execlists_active(&engine->execlists)) {
1207
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1208

1209
		intel_engine_flush_submission(engine);
1210

1211
		if (execlists_active(&engine->execlists))
1212 1213
			return false;
	}
1214

1215
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1216
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1217 1218
		return false;

1219
	/* Ring stopped? */
1220
	return ring_is_idle(engine);
1221 1222
}

1223
bool intel_engines_are_idle(struct intel_gt *gt)
1224 1225 1226 1227
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1228 1229
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1230 1231
	 * report that it is still busy, even though we have stopped using it.
	 */
1232
	if (intel_gt_is_wedged(gt))
1233 1234
		return true;

1235
	/* Already parked (and passed an idleness test); must still be idle */
1236
	if (!READ_ONCE(gt->awake))
1237 1238
		return true;

1239
	for_each_engine(engine, gt, id) {
1240 1241 1242 1243 1244 1245 1246
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1247
void intel_engines_reset_default_submission(struct intel_gt *gt)
1248 1249 1250 1251
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1252
	for_each_engine(engine, gt, id)
1253 1254 1255
		engine->set_default_submission(engine);
}

1256 1257 1258 1259 1260 1261 1262 1263
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1264 1265
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1266 1267 1268 1269 1270 1271 1272
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1273
static int print_sched_attr(const struct i915_sched_attr *attr,
1274
			    char *buf, int x, int len)
1275 1276
{
	if (attr->priority == I915_PRIORITY_INVALID)
1277 1278 1279 1280
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1281

1282
	return x;
1283 1284
}

1285
static void print_request(struct drm_printer *m,
1286
			  struct i915_request *rq,
1287 1288
			  const char *prefix)
{
1289
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1290
	char buf[80] = "";
1291 1292
	int x = 0;

1293
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1294

1295
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1296
		   prefix,
1297
		   rq->fence.context, rq->fence.seqno,
1298 1299 1300
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1301 1302
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1303
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1304 1305
			    &rq->fence.flags) ? "-" :
		   "",
1306
		   buf,
1307
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1308
		   name);
1309 1310
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1376
		drm_printf(m, "[%04zx] %s\n", pos, line);
1377 1378 1379 1380 1381 1382

		prev = buf + pos;
		skip = false;
	}
}

1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1394
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1395
					 struct drm_printer *m)
1396 1397
{
	struct drm_i915_private *dev_priv = engine->i915;
1398
	struct intel_engine_execlists * const execlists = &engine->execlists;
1399 1400
	u64 addr;

1401
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1402
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1403 1404 1405 1406 1407 1408
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1409
	drm_printf(m, "\tRING_START: 0x%08x\n",
1410
		   ENGINE_READ(engine, RING_START));
1411
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1412
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1413
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1414
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1415
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1416 1417
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1418 1419
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1420 1421
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1422
	}
1423 1424

	if (INTEL_GEN(dev_priv) >= 6) {
1425
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1426
			   ENGINE_READ(engine, RING_IMR));
1427 1428 1429 1430 1431 1432
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1433 1434
	}

1435 1436 1437 1438 1439 1440
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1441
	if (INTEL_GEN(dev_priv) >= 8)
1442
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1443
	else if (INTEL_GEN(dev_priv) >= 4)
1444
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1445
	else
1446
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1447 1448 1449 1450
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1451
			   ENGINE_READ(engine, RING_IPEIR));
1452
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1453
			   ENGINE_READ(engine, RING_IPEHR));
1454
	} else {
1455 1456
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1457
	}
1458

1459
	if (HAS_EXECLISTS(dev_priv)) {
1460
		struct i915_request * const *port, *rq;
1461 1462
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1463
		const u8 num_entries = execlists->csb_size;
1464
		unsigned int idx;
1465
		u8 read, write;
1466

1467
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1468 1469 1470
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1471
			   repr_timer(&engine->execlists.preempt),
1472
			   repr_timer(&engine->execlists.timer));
1473

1474 1475 1476
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1477 1478 1479 1480 1481
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1482
		if (read >= num_entries)
1483
			read = 0;
1484
		if (write >= num_entries)
1485 1486
			write = 0;
		if (read > write)
1487
			write += num_entries;
1488
		while (read < write) {
1489 1490 1491
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1492 1493
		}

1494
		execlists_active_lock_bh(execlists);
1495
		rcu_read_lock();
1496
		for (port = execlists->active; (rq = *port); port++) {
1497
			char hdr[160];
1498 1499
			int len;

1500
			len = scnprintf(hdr, sizeof(hdr),
1501
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1502
					(int)(port - execlists->active),
1503 1504 1505
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1506
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1507
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1508 1509 1510
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1511 1512
			char hdr[160];
			int len;
1513

1514
			len = scnprintf(hdr, sizeof(hdr),
1515
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1516
					(int)(port - execlists->pending),
1517 1518 1519
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1520 1521 1522
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
1523
		}
1524
		rcu_read_unlock();
1525
		execlists_active_unlock_bh(execlists);
1526 1527
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1528
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1529
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1530
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1531
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1532
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1533
	}
1534 1535
}

1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1580 1581 1582 1583 1584
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1585
	struct i915_request *rq;
1586
	intel_wakeref_t wakeref;
1587
	unsigned long flags;
1588
	ktime_t dummy;
1589 1590 1591 1592 1593 1594 1595 1596 1597

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1598
	if (intel_gt_is_wedged(engine->gt))
1599 1600
		drm_printf(m, "*** WEDGED ***\n");

1601
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1602 1603
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1604 1605
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1606 1607 1608 1609
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1610 1611
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
		   engine->fw_domain, atomic_read(&engine->fw_active));
1612 1613 1614 1615 1616 1617 1618

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1619 1620 1621 1622 1623 1624
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1625
	spin_lock_irqsave(&engine->active.lock, flags);
1626
	rq = intel_engine_find_active_request(engine);
1627
	if (rq) {
1628 1629
		struct intel_timeline *tl = get_timeline(rq);

1630
		print_request(m, rq, "\t\tactive ");
1631

1632
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1633
			   i915_ggtt_offset(rq->ring->vma));
1634
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1635
			   rq->ring->head);
1636
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1637
			   rq->ring->tail);
1638 1639 1640 1641
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1642 1643 1644 1645 1646 1647

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1648 1649

		print_request_ring(m, rq);
1650

1651
		if (rq->context->lrc_reg_state) {
1652
			drm_printf(m, "Logical Ring Context:\n");
1653
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1654
		}
1655
	}
1656
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1657
	spin_unlock_irqrestore(&engine->active.lock, flags);
1658

1659
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1660
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1661
	if (wakeref) {
1662
		intel_engine_print_registers(engine, m);
1663
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1664 1665 1666
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1667

1668
	intel_execlists_show_requests(engine, m, print_request, 8);
1669

1670
	drm_printf(m, "HWSP:\n");
1671
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1672

1673
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1674 1675

	intel_engine_print_breadcrumbs(engine, m);
1676 1677
}

1678 1679
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1680 1681 1682 1683 1684 1685 1686
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1687
	*now = ktime_get();
1688
	if (atomic_read(&engine->stats.active))
1689
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1690 1691 1692 1693 1694 1695 1696

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1697
 * @now: monotonic timestamp of sampling
1698 1699 1700
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1701
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1702
{
1703
	unsigned int seq;
1704 1705
	ktime_t total;

1706 1707
	do {
		seq = read_seqbegin(&engine->stats.lock);
1708
		total = __intel_engine_get_busy_time(engine, now);
1709
	} while (read_seqretry(&engine->stats.lock, seq));
1710 1711 1712 1713

	return total;
}

1714 1715
static bool match_ring(struct i915_request *rq)
{
1716
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1737
	lockdep_assert_held(&engine->active.lock);
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1755
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1756 1757 1758 1759
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1760
			continue;
1761 1762 1763

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1764
			continue;
1765 1766 1767 1768 1769 1770 1771 1772

		active = request;
		break;
	}

	return active;
}

1773
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1774
#include "mock_engine.c"
1775
#include "selftest_engine.c"
1776
#include "selftest_engine_cs.c"
1777
#endif