intel_engine_cs.c 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31 32
#include "gt/intel_gt.h"

33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_pool.h"
36
#include "intel_engine_user.h"
37
#include "intel_context.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40
#include "intel_ring.h"
41

42 43 44 45 46 47 48 49 50
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

51
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
52 53
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
55
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
56 57 58

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

59
#define MAX_MMIO_BASES 3
60
struct engine_info {
61
	unsigned int hw_id;
62 63
	u8 class;
	u8 instance;
64 65 66 67 68
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
69 70 71
};

static const struct engine_info intel_engines[] = {
72 73
	[RCS0] = {
		.hw_id = RCS0_HW,
74 75
		.class = RENDER_CLASS,
		.instance = 0,
76 77 78
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
79
	},
80 81
	[BCS0] = {
		.hw_id = BCS0_HW,
82 83
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
84 85 86
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
87
	},
88 89
	[VCS0] = {
		.hw_id = VCS0_HW,
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
92 93 94 95 96
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
97
	},
98 99
	[VCS1] = {
		.hw_id = VCS1_HW,
100 101
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
102 103 104 105
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
106
	},
107 108
	[VCS2] = {
		.hw_id = VCS2_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
111 112 113
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
114
	},
115 116
	[VCS3] = {
		.hw_id = VCS3_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
122
	},
123 124
	[VECS0] = {
		.hw_id = VECS0_HW,
125 126
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
131
	},
132 133
	[VECS1] = {
		.hw_id = VECS1_HW,
134 135
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
139
	},
140 141
};

142
/**
143
 * intel_engine_context_size() - return the size of the context for an engine
144 145 146 147 148 149 150 151 152 153 154 155
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
156
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
157 158 159 160 161 162 163 164 165 166
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
167
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
168
		case 12:
169 170
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
171
		case 10:
O
Oscar Mateo 已提交
172
			return GEN10_LR_CONTEXT_RENDER_SIZE;
173 174 175
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
176
			return GEN8_LR_CONTEXT_RENDER_SIZE;
177 178 179 180 181 182 183 184 185 186 187 188
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
189
		case 4:
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
206 207 208 209 210 211 212 213 214
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
215
		/* fall through */
216 217 218 219 220 221 222 223 224
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

240
static void __sprint_engine_name(struct intel_engine_cs *engine)
241
{
242 243 244 245 246 247 248 249
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
250 251
}

252 253 254 255 256 257
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
258
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
259 260
		return;

261 262
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
263
	else
264
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
265 266 267 268 269 270 271 272
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

273
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
274 275
{
	const struct engine_info *info = &intel_engines[id];
276 277
	struct intel_engine_cs *engine;

278 279 280
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

281 282 283
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

284
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
285 286
		return -EINVAL;

287
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
288 289
		return -EINVAL;

290
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
291 292
		return -EINVAL;

293 294 295
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
296

297 298
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

299
	engine->id = id;
300
	engine->legacy_idx = INVALID_ENGINE;
301
	engine->mask = BIT(id);
302 303 304
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
305
	engine->hw_id = engine->guc_id = info->hw_id;
306
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
307

308 309
	engine->class = info->class;
	engine->instance = info->instance;
310
	__sprint_engine_name(engine);
311

312 313
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
314 315
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
316 317
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
318 319
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
320

321 322 323 324 325 326
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

327
	engine->context_size = intel_engine_context_size(gt->i915,
328
							 engine->class);
329 330
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
331
	if (engine->context_size)
332
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
333

334 335 336
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

337
	seqlock_init(&engine->stats.lock);
338

339 340
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

341 342 343
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

344
	gt->engine_class[info->class][info->instance] = engine;
345
	gt->engine[id] = engine;
346 347 348

	gt->i915->engine[id] = engine;

349
	return 0;
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

382
static void intel_setup_engine_capabilities(struct intel_gt *gt)
383 384 385 386
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

387
	for_each_engine(engine, gt, id)
388 389 390
		__setup_engine_capabilities(engine);
}

391 392
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
393
 * @gt: pointer to struct intel_gt
394
 */
395
void intel_engines_cleanup(struct intel_gt *gt)
396 397 398 399
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

400
	for_each_engine(engine, gt, id) {
401
		engine->destroy(engine);
402 403
		gt->engine[id] = NULL;
		gt->i915->engine[id] = NULL;
404 405 406
	}
}

407
/**
408
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
409
 * @gt: pointer to struct intel_gt
410 411 412
 *
 * Return: non-zero if the initialization failed.
 */
413
int intel_engines_init_mmio(struct intel_gt *gt)
414
{
415
	struct drm_i915_private *i915 = gt->i915;
416 417
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
418
	unsigned int mask = 0;
419
	unsigned int i;
420
	int err;
421

422 423
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
424
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
425

426
	if (i915_inject_probe_failure(i915))
427 428
		return -ENODEV;

429
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
430
		if (!HAS_ENGINE(i915, i))
431 432
			continue;

433
		err = intel_engine_setup(gt, i);
434 435 436
		if (err)
			goto cleanup;

437
		mask |= BIT(i);
438 439 440 441 442 443 444
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
445 446
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
447

448
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
449

450
	intel_gt_check_and_clear_faults(gt);
451

452
	intel_setup_engine_capabilities(gt);
453

454 455 456
	return 0;

cleanup:
457
	intel_engines_cleanup(gt);
458 459 460 461
	return err;
}

/**
462
 * intel_engines_init() - init the Engine Command Streamers
463
 * @gt: pointer to struct intel_gt
464 465 466
 *
 * Return: non-zero if the initialization failed.
 */
467
int intel_engines_init(struct intel_gt *gt)
468
{
469
	int (*init)(struct intel_engine_cs *engine);
470
	struct intel_engine_cs *engine;
471
	enum intel_engine_id id;
472
	int err;
473

474
	if (HAS_EXECLISTS(gt->i915))
475 476 477
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
478

479
	for_each_engine(engine, gt, id) {
480
		err = init(engine);
481
		if (err)
482
			goto cleanup;
483 484

		intel_engine_add_user(engine);
485 486 487 488 489
	}

	return 0;

cleanup:
490
	intel_engines_cleanup(gt);
491
	return err;
492 493
}

494
void intel_engine_init_execlists(struct intel_engine_cs *engine)
495 496 497
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

498
	execlists->port_mask = 1;
499
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
500 501
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

502 503 504 505
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

506
	execlists->queue_priority_hint = INT_MIN;
507
	execlists->queue = RB_ROOT_CACHED;
508 509
}

510
static void cleanup_status_page(struct intel_engine_cs *engine)
511
{
512 513
	struct i915_vma *vma;

514 515 516
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

517 518 519
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
520

521 522 523 524
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
525
	i915_gem_object_put(vma->obj);
526 527 528 529 530 531 532 533
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
534
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
535 536 537 538 539 540 541 542 543 544 545 546 547 548
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
549

550
	return i915_vma_pin(vma, 0, 0, flags);
551 552 553 554 555 556 557 558 559
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

560 561 562 563 564 565 566
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
567 568 569 570 571 572
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

573
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
574

575
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
576 577 578 579 580 581 582 583
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
584
		goto err;
585 586
	}

587
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
588
	engine->status_page.vma = vma;
589 590 591 592 593 594 595

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

596 597 598
	return 0;

err_unpin:
599
	i915_gem_object_unpin_map(obj);
600 601 602 603 604
err:
	i915_gem_object_put(obj);
	return ret;
}

605
static int intel_engine_setup_common(struct intel_engine_cs *engine)
606 607 608
{
	int err;

609 610
	init_llist_head(&engine->barrier_tasks);

611 612 613 614
	err = init_status_page(engine);
	if (err)
		return err;

615
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
616
	intel_engine_init_breadcrumbs(engine);
617
	intel_engine_init_execlists(engine);
618
	intel_engine_init_cmd_parser(engine);
619
	intel_engine_init__pm(engine);
620

621 622
	intel_engine_pool_init(&engine->pool);

623 624 625 626
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

627 628 629 630
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

631 632 633
	return 0;
}

634 635
/**
 * intel_engines_setup- setup engine state not requiring hw access
636
 * @gt: pointer to struct intel_gt
637 638 639 640 641 642
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
643
int intel_engines_setup(struct intel_gt *gt)
644 645 646 647 648 649
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

650
	if (HAS_EXECLISTS(gt->i915))
651 652 653 654
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

655
	for_each_engine(engine, gt, id) {
656 657 658 659 660 661 662 663
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

664 665 666
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

667 668 669 670 671 672
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
673
	intel_engines_cleanup(gt);
674 675 676
	return err;
}

677 678
struct measure_breadcrumb {
	struct i915_request rq;
679
	struct intel_timeline timeline;
680 681 682 683
	struct intel_ring ring;
	u32 cs[1024];
};

684
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
685 686
{
	struct measure_breadcrumb *frame;
687
	int dw = -ENOMEM;
688

689
	GEM_BUG_ON(!engine->gt->scratch);
690 691 692 693 694

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

695 696 697
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
698
		goto out_frame;
699

700 701
	mutex_lock(&frame->timeline.mutex);

702 703 704 705 706 707 708 709
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
710
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
711

712
	dw = intel_timeline_pin(&frame->timeline);
713 714 715
	if (dw < 0)
		goto out_timeline;

716
	spin_lock_irq(&engine->active.lock);
717
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
718 719
	spin_unlock_irq(&engine->active.lock);

720
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
721

722
	intel_timeline_unpin(&frame->timeline);
723

724
out_timeline:
725
	mutex_unlock(&frame->timeline.mutex);
726
	intel_timeline_fini(&frame->timeline);
727 728
out_frame:
	kfree(frame);
729 730 731
	return dw;
}

732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

753 754 755
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
756
	static struct lock_class_key kernel;
757 758 759 760 761 762 763
	struct intel_context *ce;
	int err;

	ce = intel_context_create(engine->i915->kernel_context, engine);
	if (IS_ERR(ce))
		return ce;

764 765
	ce->ring = __intel_context_ring_size(SZ_4K);

766 767 768 769 770 771
	err = intel_context_pin(ce);
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

772 773 774 775 776 777 778 779
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

780 781 782
	return ce;
}

783 784 785 786 787 788 789 790 791 792 793 794 795
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
796
	struct intel_context *ce;
797 798
	int ret;

799 800
	engine->set_default_submission(engine);

801 802
	/*
	 * We may need to do things with the shrinker which
803 804 805 806 807 808
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
809 810 811 812 813
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
814

815
	ret = measure_breadcrumb_dw(engine);
816
	if (ret < 0)
817
		goto err_unpin;
818

819
	engine->emit_fini_breadcrumb_dw = ret;
820

821
	return 0;
822

823
err_unpin:
824 825
	intel_context_unpin(ce);
	intel_context_put(ce);
826
	return ret;
827
}
828 829 830 831 832 833 834 835 836 837

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
838 839
	GEM_BUG_ON(!list_empty(&engine->active.requests));

840
	cleanup_status_page(engine);
841

842
	intel_engine_pool_fini(&engine->pool);
843
	intel_engine_fini_breadcrumbs(engine);
844
	intel_engine_cleanup_cmd_parser(engine);
845

846 847 848
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

849 850 851 852
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
853
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
854

855
	intel_wa_list_free(&engine->ctx_wa_list);
856
	intel_wa_list_free(&engine->wa_list);
857
	intel_wa_list_free(&engine->whitelist);
858
}
859

860
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
861
{
862 863
	struct drm_i915_private *i915 = engine->i915;

864 865
	u64 acthd;

866 867 868 869
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
870
	else
871
		acthd = ENGINE_READ(engine, ACTHD);
872 873 874 875

	return acthd;
}

876
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
877 878 879
{
	u64 bbaddr;

880 881
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
882
	else
883
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
884 885 886

	return bbaddr;
}
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

903 904
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
905
	struct intel_uncore *uncore = engine->uncore;
906 907 908 909
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

910
	if (INTEL_GEN(engine->i915) < 3)
911 912 913 914
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

915
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
916 917

	err = 0;
918
	if (__intel_wait_for_register_fw(uncore,
919
					 mode, MODE_IDLE, MODE_IDLE,
920
					 1000, stop_timeout(engine),
921 922 923 924 925 926
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
927
	intel_uncore_posting_read_fw(uncore, mode);
928 929 930 931

	return err;
}

932 933 934 935
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

936
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
937 938
}

939 940 941 942 943 944 945 946 947 948 949
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

950 951 952
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
953
{
954 955
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
956
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
957 958
	enum forcewake_domains fw_domains;

959
	if (INTEL_GEN(i915) >= 11) {
960 961
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
962
	} else {
963 964
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
965 966
	}

967
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
968
						    FW_REG_READ);
969
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
970 971 972
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

973 974
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
975

976
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
977

978 979
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
980
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
981

982
	val = intel_uncore_read_fw(uncore, reg);
983

984 985
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
986

987
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
988

989 990
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
991

992
	return val;
993 994 995 996 997 998
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
999
	struct drm_i915_private *i915 = engine->i915;
1000
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
1001
	struct intel_uncore *uncore = engine->uncore;
1002 1003 1004 1005 1006 1007
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1008
	switch (INTEL_GEN(i915)) {
1009
	default:
1010 1011
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1012

1013
		if (engine->id != RCS0)
1014 1015
			break;

1016 1017
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1018
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1019
			instdone->sampler[slice][subslice] =
1020
				read_subslice_reg(engine, slice, subslice,
1021 1022
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1023
				read_subslice_reg(engine, slice, subslice,
1024 1025 1026 1027
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1028 1029
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1030

1031
		if (engine->id != RCS0)
1032 1033
			break;

1034 1035 1036 1037 1038 1039
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1040 1041 1042 1043 1044

		break;
	case 6:
	case 5:
	case 4:
1045 1046
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1047
		if (engine->id == RCS0)
1048
			/* HACK: Using the wrong struct member */
1049 1050
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1051 1052 1053
		break;
	case 3:
	case 2:
1054
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1055 1056 1057
		break;
	}
}
1058

1059 1060 1061 1062
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1063 1064 1065
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1066
	if (!intel_engine_pm_get_if_awake(engine))
1067
		return true;
1068

1069
	/* First check that no commands are left in the ring */
1070 1071
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1072
		idle = false;
1073

1074
	/* No bit for gen2, so assume the CS parser is idle */
1075
	if (INTEL_GEN(engine->i915) > 2 &&
1076
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1077 1078
		idle = false;

1079
	intel_engine_pm_put(engine);
1080 1081 1082 1083

	return idle;
}

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
void intel_engine_flush_submission(struct intel_engine_cs *engine)
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1103 1104 1105 1106 1107 1108 1109 1110 1111
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1112
	/* More white lies, if wedged, hw state is inconsistent */
1113
	if (intel_gt_is_wedged(engine->gt))
1114 1115
		return true;

1116
	if (!intel_engine_pm_is_awake(engine))
1117 1118
		return true;

1119
	/* Waiting to drain ELSP? */
1120
	if (execlists_active(&engine->execlists)) {
1121
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1122

1123
		intel_engine_flush_submission(engine);
1124

1125
		if (execlists_active(&engine->execlists))
1126 1127
			return false;
	}
1128

1129
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1130
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1131 1132
		return false;

1133
	/* Ring stopped? */
1134
	return ring_is_idle(engine);
1135 1136
}

1137
bool intel_engines_are_idle(struct intel_gt *gt)
1138 1139 1140 1141
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1142 1143
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1144 1145
	 * report that it is still busy, even though we have stopped using it.
	 */
1146
	if (intel_gt_is_wedged(gt))
1147 1148
		return true;

1149
	/* Already parked (and passed an idleness test); must still be idle */
1150
	if (!READ_ONCE(gt->awake))
1151 1152
		return true;

1153
	for_each_engine(engine, gt, id) {
1154 1155 1156 1157 1158 1159 1160
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1161
void intel_engines_reset_default_submission(struct intel_gt *gt)
1162 1163 1164 1165
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1166
	for_each_engine(engine, gt, id)
1167 1168 1169
		engine->set_default_submission(engine);
}

1170 1171 1172 1173 1174 1175 1176 1177
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1178 1179
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1180 1181 1182 1183 1184 1185 1186
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1187 1188 1189
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1190 1191
{
	if (attr->priority == I915_PRIORITY_INVALID)
1192 1193 1194 1195
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1196

1197
	return x;
1198 1199
}

1200
static void print_request(struct drm_printer *m,
1201
			  struct i915_request *rq,
1202 1203
			  const char *prefix)
{
1204
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1205
	char buf[80] = "";
1206 1207 1208
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1209

1210
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1211
		   prefix,
1212
		   rq->fence.context, rq->fence.seqno,
1213 1214 1215
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1216 1217
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1218
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1219 1220
			    &rq->fence.flags) ? "-" :
		   "",
1221
		   buf,
1222
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1223
		   name);
1224 1225
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1248
		drm_printf(m, "[%04zx] %s\n", pos, line);
1249 1250 1251 1252 1253 1254

		prev = buf + pos;
		skip = false;
	}
}

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1287
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1288
					 struct drm_printer *m)
1289 1290
{
	struct drm_i915_private *dev_priv = engine->i915;
1291
	struct intel_engine_execlists * const execlists = &engine->execlists;
1292 1293
	u64 addr;

1294
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1295
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1296
	drm_printf(m, "\tRING_START: 0x%08x\n",
1297
		   ENGINE_READ(engine, RING_START));
1298
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1299
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1300
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1301
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1302
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1303 1304
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1305 1306
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1307 1308
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1309
	}
1310 1311

	if (INTEL_GEN(dev_priv) >= 6) {
1312 1313
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1314 1315
	}

1316 1317 1318 1319 1320 1321
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1322
	if (INTEL_GEN(dev_priv) >= 8)
1323
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1324
	else if (INTEL_GEN(dev_priv) >= 4)
1325
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1326
	else
1327
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1328 1329 1330 1331
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1332
			   ENGINE_READ(engine, RING_IPEIR));
1333
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1334
			   ENGINE_READ(engine, RING_IPEHR));
1335
	} else {
1336 1337
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1338
	}
1339

1340
	if (HAS_EXECLISTS(dev_priv)) {
1341
		struct i915_request * const *port, *rq;
1342 1343
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1344
		const u8 num_entries = execlists->csb_size;
1345
		unsigned int idx;
1346
		u8 read, write;
1347

1348
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1349 1350 1351
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1352
			   repr_timer(&engine->execlists.preempt),
1353
			   repr_timer(&engine->execlists.timer));
1354

1355 1356 1357
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1358 1359 1360 1361 1362
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1363
		if (read >= num_entries)
1364
			read = 0;
1365
		if (write >= num_entries)
1366 1367
			write = 0;
		if (read > write)
1368
			write += num_entries;
1369
		while (read < write) {
1370 1371 1372
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1373 1374
		}

1375
		execlists_active_lock_bh(execlists);
1376
		rcu_read_lock();
1377 1378 1379 1380 1381
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1382
				       "\t\tActive[%d]: ",
1383
				       (int)(port - execlists->active));
1384 1385 1386
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1387 1388 1389
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1390
						tl ? tl->hwsp_offset : 0,
1391
						hwsp_seqno(rq));
1392 1393 1394 1395

				if (tl)
					intel_timeline_put(tl);
			}
1396 1397 1398 1399
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1400
			struct intel_timeline *tl = get_timeline(rq);
1401
			char hdr[80];
1402

1403 1404 1405 1406
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1407
				 tl ? tl->hwsp_offset : 0,
1408 1409
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1410 1411 1412

			if (tl)
				intel_timeline_put(tl);
1413
		}
1414
		rcu_read_unlock();
1415
		execlists_active_unlock_bh(execlists);
1416 1417
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1418
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1419
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1420
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1421
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1422
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1423
	}
1424 1425
}

1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1459 1460 1461 1462 1463
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1464
	struct i915_request *rq;
1465
	intel_wakeref_t wakeref;
1466
	unsigned long flags;
1467 1468 1469 1470 1471 1472 1473 1474 1475

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1476
	if (intel_gt_is_wedged(engine->gt))
1477 1478
		drm_printf(m, "*** WEDGED ***\n");

1479
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1480 1481 1482 1483 1484 1485 1486

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1487 1488 1489 1490 1491 1492
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1493
	spin_lock_irqsave(&engine->active.lock, flags);
1494
	rq = intel_engine_find_active_request(engine);
1495
	if (rq) {
1496 1497
		struct intel_timeline *tl = get_timeline(rq);

1498
		print_request(m, rq, "\t\tactive ");
1499

1500
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1501
			   i915_ggtt_offset(rq->ring->vma));
1502
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1503
			   rq->ring->head);
1504
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1505
			   rq->ring->tail);
1506 1507 1508 1509
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1510 1511 1512 1513 1514 1515

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1516 1517

		print_request_ring(m, rq);
1518 1519 1520 1521 1522

		if (rq->hw_context->lrc_reg_state) {
			drm_printf(m, "Logical Ring Context:\n");
			hexdump(m, rq->hw_context->lrc_reg_state, PAGE_SIZE);
		}
1523
	}
1524
	spin_unlock_irqrestore(&engine->active.lock, flags);
1525

1526
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1527
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1528
	if (wakeref) {
1529
		intel_engine_print_registers(engine, m);
1530
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1531 1532 1533
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1534

1535
	intel_execlists_show_requests(engine, m, print_request, 8);
1536

1537
	drm_printf(m, "HWSP:\n");
1538
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1539

1540
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1541 1542

	intel_engine_print_breadcrumbs(engine, m);
1543 1544
}

1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1555
	struct intel_engine_execlists *execlists = &engine->execlists;
1556
	unsigned long flags;
1557
	int err = 0;
1558

1559
	if (!intel_engine_supports_stats(engine))
1560 1561
		return -ENODEV;

1562 1563
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1564 1565 1566 1567 1568 1569

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1570
	if (engine->stats.enabled++ == 0) {
1571 1572
		struct i915_request * const *port;
		struct i915_request *rq;
1573

1574
		engine->stats.enabled_at = ktime_get();
1575 1576

		/* XXX submission method oblivious? */
1577
		for (port = execlists->active; (rq = *port); port++)
1578
			engine->stats.active++;
1579 1580 1581

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1582
			if (!intel_context_inflight_count(rq->hw_context))
1583
				engine->stats.active++;
1584 1585 1586 1587 1588
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1589

1590
unlock:
1591 1592
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1593

1594
	return err;
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1620
	unsigned int seq;
1621 1622
	ktime_t total;

1623 1624 1625 1626
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1641
	if (!intel_engine_supports_stats(engine))
1642 1643
		return;

1644
	write_seqlock_irqsave(&engine->stats.lock, flags);
1645 1646 1647 1648 1649
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1650
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1651 1652
}

1653 1654
static bool match_ring(struct i915_request *rq)
{
1655
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1676
	lockdep_assert_held(&engine->active.lock);
1677
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1678 1679 1680 1681
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1682
			continue;
1683 1684 1685

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1686
			continue;
1687 1688 1689 1690 1691 1692 1693 1694

		active = request;
		break;
	}

	return active;
}

1695
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1696
#include "mock_engine.c"
1697
#include "selftest_engine.c"
1698
#include "selftest_engine_cs.c"
1699
#endif