intel_engine_cs.c 48.2 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	u8 gen6_hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56
	[RCS0] = {
57
		.gen6_hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64
	[BCS0] = {
65
		.gen6_hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72
	[VCS0] = {
73
		.gen6_hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82
	[VCS1] = {
83 84
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
85
		.mmio_bases = {
86 87
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
88
		},
89
	},
90
	[VCS2] = {
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
93
		.mmio_bases = {
94
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
95
		},
96
	},
97
	[VCS3] = {
98 99
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
100
		.mmio_bases = {
101
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
102
		},
103
	},
104
	[VECS0] = {
105
		.gen6_hw_id = VECS0_HW,
106 107
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
108
		.mmio_bases = {
109 110
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
111
		},
112
	},
113
	[VECS1] = {
114 115
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
116
		.mmio_bases = {
117
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
118
		},
119
	},
120 121
};

122
/**
123
 * intel_engine_context_size() - return the size of the context for an engine
124
 * @gt: the gt
125 126 127 128 129 130 131 132 133 134 135
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
136
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
137
{
138
	struct intel_uncore *uncore = gt->uncore;
139 140 141 142 143 144
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
145
		switch (GRAPHICS_VER(gt->i915)) {
146
		default:
147
			MISSING_CASE(GRAPHICS_VER(gt->i915));
148
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
149
		case 12:
150 151
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
152
		case 10:
O
Oscar Mateo 已提交
153
			return GEN10_LR_CONTEXT_RENDER_SIZE;
154 155 156
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
157
			return GEN8_LR_CONTEXT_RENDER_SIZE;
158
		case 7:
159
			if (IS_HASWELL(gt->i915))
160 161
				return HSW_CXT_TOTAL_SIZE;

162
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
163 164 165
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
166
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
167 168 169
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
170
		case 4:
171 172 173 174 175 176 177 178 179 180
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
181
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
182
			drm_dbg(&gt->i915->drm,
183 184
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
185
				cxt_size - 1);
186
			return round_up(cxt_size * 64, PAGE_SIZE);
187 188 189 190 191 192 193 194 195
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
196
		fallthrough;
197 198 199
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
200
		if (GRAPHICS_VER(gt->i915) < 8)
201 202 203 204 205
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

206 207 208 209 210 211
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
212
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
213 214 215 216 217 218 219 220
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

221
static void __sprint_engine_name(struct intel_engine_cs *engine)
222
{
223 224 225 226 227 228 229 230
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
231 232
}

233 234 235 236 237 238
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
239
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
240 241
		return;

242
	if (GRAPHICS_VER(engine->i915) >= 3)
243
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
244
	else
245
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
246 247 248 249 250 251 252 253
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

254 255 256 257 258
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

259
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
260 261
{
	const struct engine_info *info = &intel_engines[id];
262
	struct drm_i915_private *i915 = gt->i915;
263
	struct intel_engine_cs *engine;
264
	u8 guc_class;
265

266 267 268
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

269 270 271
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

272
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
273 274
		return -EINVAL;

275
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
276 277
		return -EINVAL;

278
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
279 280
		return -EINVAL;

281 282 283
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
284

285 286
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

287
	engine->id = id;
288
	engine->legacy_idx = INVALID_ENGINE;
289
	engine->mask = BIT(id);
290
	engine->i915 = i915;
291 292
	engine->gt = gt;
	engine->uncore = gt->uncore;
293
	engine->gen6_hw_id = info->gen6_hw_id;
294 295 296
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
297

298 299
	engine->irq_handler = nop_irq_handler;

300 301
	engine->class = info->class;
	engine->instance = info->instance;
302
	__sprint_engine_name(engine);
303

304 305
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
306 307
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
308 309
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
310 311
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
312 313
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
314

315
	/* Override to uninterruptible for OpenCL workloads. */
316
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
317 318
		engine->props.preempt_timeout_ms = 0;

319 320
	engine->defaults = engine->props; /* never to change again */

321
	engine->context_size = intel_engine_context_size(gt, engine->class);
322 323
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
324
	if (engine->context_size)
325
		DRIVER_CAPS(i915)->has_logical_contexts = true;
326

327
	ewma__engine_latency_init(&engine->latency);
328
	seqcount_init(&engine->stats.lock);
329

330 331
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

332 333 334
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

335
	gt->engine_class[info->class][info->instance] = engine;
336
	gt->engine[id] = engine;
337

338
	return 0;
339 340
}

341 342 343 344 345 346 347 348 349
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
350 351
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
352 353 354 355 356 357 358
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
359
		if ((GRAPHICS_VER(i915) >= 11 &&
360 361
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
362
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
363 364 365
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
366
		if (GRAPHICS_VER(i915) >= 9)
367 368 369 370 371
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

372
static void intel_setup_engine_capabilities(struct intel_gt *gt)
373 374 375 376
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

377
	for_each_engine(engine, gt, id)
378 379 380
		__setup_engine_capabilities(engine);
}

381
/**
382
 * intel_engines_release() - free the resources allocated for Command Streamers
383
 * @gt: pointer to struct intel_gt
384
 */
385
void intel_engines_release(struct intel_gt *gt)
386 387 388 389
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

390 391 392 393 394 395 396 397 398 399 400 401 402
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

403
	/* Decouple the backend; but keep the layout for late GPU resets */
404
	for_each_engine(engine, gt, id) {
405 406 407
		if (!engine->release)
			continue;

408 409 410
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

411 412 413 414
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
415 416 417
	}
}

418 419 420 421 422 423 424 425
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

426 427 428 429 430
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

431 432 433
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

434
	for_each_engine(engine, gt, id) {
435
		intel_engine_free_request_pool(engine);
436 437 438 439 440
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
static
bool gen11_vdbox_has_sfc(struct drm_i915_private *i915,
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
	 */
	if (GRAPHICS_VER(i915) == 12)
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
476
	struct intel_gt_info *info = &gt->info;
477 478 479 480 481 482 483
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

484 485
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

486
	if (GRAPHICS_VER(i915) < 11)
487 488
		return info->engine_mask;

489 490 491 492 493 494 495 496
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

514
		if (gen11_vdbox_has_sfc(i915, i, logical_vdbox, vdbox_mask))
515
			gt->info.vdbox_sfc_access |= BIT(i);
516
		logical_vdbox++;
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

540
/**
541
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
542
 * @gt: pointer to struct intel_gt
543 544 545
 *
 * Return: non-zero if the initialization failed.
 */
546
int intel_engines_init_mmio(struct intel_gt *gt)
547
{
548
	struct drm_i915_private *i915 = gt->i915;
549
	const unsigned int engine_mask = init_engine_mask(gt);
550
	unsigned int mask = 0;
551
	unsigned int i;
552
	int err;
553

554 555 556
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
557

558
	if (i915_inject_probe_failure(i915))
559 560
		return -ENODEV;

561
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
562
		if (!HAS_ENGINE(gt, i))
563 564
			continue;

565
		err = intel_engine_setup(gt, i);
566 567 568
		if (err)
			goto cleanup;

569
		mask |= BIT(i);
570 571 572 573 574 575 576
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
577
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
578
		gt->info.engine_mask = mask;
579

580
	gt->info.num_engines = hweight32(mask);
581

582
	intel_gt_check_and_clear_faults(gt);
583

584
	intel_setup_engine_capabilities(gt);
585

586 587
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

588 589 590
	return 0;

cleanup:
591
	intel_engines_free(gt);
592 593 594
	return err;
}

595
void intel_engine_init_execlists(struct intel_engine_cs *engine)
596 597 598
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

599
	execlists->port_mask = 1;
600
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
601 602
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

603 604 605
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
606 607
}

608
static void cleanup_status_page(struct intel_engine_cs *engine)
609
{
610 611
	struct i915_vma *vma;

612 613 614
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

615 616 617
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
618

619 620 621 622
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
623
	i915_gem_object_put(vma->obj);
624 625 626
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
627
				struct i915_gem_ww_ctx *ww,
628 629 630 631
				struct i915_vma *vma)
{
	unsigned int flags;

632
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
633 634 635 636 637 638 639 640 641 642 643
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
644
		flags = PIN_MAPPABLE;
645
	else
646
		flags = PIN_HIGH;
647

648
	return i915_ggtt_pin(vma, ww, 0, flags);
649 650 651 652 653
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
654
	struct i915_gem_ww_ctx ww;
655 656 657 658
	struct i915_vma *vma;
	void *vaddr;
	int ret;

659 660
	INIT_LIST_HEAD(&engine->status_page.timelines);

661 662 663 664 665 666 667
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
668 669
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
670 671
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
672 673 674
		return PTR_ERR(obj);
	}

675
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
676

677
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
678 679
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
680
		goto err_put;
681 682
	}

683 684 685 686 687 688 689 690
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

691 692 693
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
694
		goto err_unpin;
695 696
	}

697
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
698
	engine->status_page.vma = vma;
699

700
err_unpin:
701 702
	if (ret)
		i915_vma_unpin(vma);
703
err:
704 705 706 707 708 709 710 711 712
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
713 714 715
	return ret;
}

716
static int engine_setup_common(struct intel_engine_cs *engine)
717 718 719
{
	int err;

720 721
	init_llist_head(&engine->barrier_tasks);

722 723 724 725
	err = init_status_page(engine);
	if (err)
		return err;

726 727 728 729 730 731
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

732 733 734 735 736
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
737
	engine->sched_engine->private_data = engine;
738

739 740 741 742
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

743 744
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
745
	intel_engine_init_retire(engine);
746

747 748
	/* Use the whole device by default */
	engine->sseu =
749
		intel_sseu_from_device_info(&engine->gt->info.sseu);
750

751 752 753 754
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

755
	if (GRAPHICS_VER(engine->i915) >= 12)
756 757
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

758
	return 0;
759

760
err_cmd_parser:
761 762
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
763
	intel_breadcrumbs_free(engine->breadcrumbs);
764 765 766
err_status:
	cleanup_status_page(engine);
	return err;
767 768
}

769 770 771
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
772
	u32 cs[2048];
773 774
};

775
static int measure_breadcrumb_dw(struct intel_context *ce)
776
{
777
	struct intel_engine_cs *engine = ce->engine;
778
	struct measure_breadcrumb *frame;
779
	int dw;
780

781
	GEM_BUG_ON(!engine->gt->scratch);
782 783 784 785 786

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

787 788 789
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
790
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
791

792 793
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
794 795
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
796 797 798
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
799

800
	mutex_lock(&ce->timeline->mutex);
801
	spin_lock_irq(&engine->sched_engine->lock);
802

803
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
804

805
	spin_unlock_irq(&engine->sched_engine->lock);
806
	mutex_unlock(&ce->timeline->mutex);
807

808
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
809

810
	kfree(frame);
811 812 813
	return dw;
}

814 815 816 817 818 819 820
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
821 822 823 824
{
	struct intel_context *ce;
	int err;

825
	ce = intel_context_create(engine);
826 827 828
	if (IS_ERR(ce))
		return ce;

829
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
830
	ce->timeline = page_pack_bits(NULL, hwsp);
831 832
	ce->ring = NULL;
	ce->ring_size = ring_size;
833 834 835

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
836

837
	err = intel_context_pin(ce); /* perma-pin so it is always available */
838 839 840 841 842
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

843 844 845 846 847 848
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
849
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
850

851 852 853
	return ce;
}

854
void intel_engine_destroy_pinned_context(struct intel_context *ce)
855 856 857 858 859 860 861 862 863 864 865 866 867 868
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

869 870 871 872 873
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

874 875 876
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
877 878
}

879 880 881 882 883 884 885 886 887 888 889
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
890
static int engine_init_common(struct intel_engine_cs *engine)
891
{
892
	struct intel_context *ce;
893 894
	int ret;

895 896
	engine->set_default_submission(engine);

897 898
	/*
	 * We may need to do things with the shrinker which
899 900 901 902 903 904
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
905 906 907 908
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

909 910 911 912 913
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
914
	engine->kernel_context = ce;
915

916
	return 0;
917 918

err_context:
919
	intel_engine_destroy_pinned_context(ce);
920
	return ret;
921
}
922

923 924 925 926 927 928 929
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

930 931
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
932
		setup = intel_guc_submission_setup;
933 934
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
935
		setup = intel_execlists_submission_setup;
936 937
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
938
		setup = intel_ring_submission_setup;
939
	}
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

960 961 962 963 964 965 966 967 968
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
969
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
970

971
	i915_sched_engine_put(engine->sched_engine);
972
	intel_breadcrumbs_free(engine->breadcrumbs);
973

974
	intel_engine_fini_retire(engine);
975
	intel_engine_cleanup_cmd_parser(engine);
976

977
	if (engine->default_state)
978
		fput(engine->default_state);
979

980
	if (engine->kernel_context)
981
		intel_engine_destroy_pinned_context(engine->kernel_context);
982

983
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
984
	cleanup_status_page(engine);
985

986
	intel_wa_list_free(&engine->ctx_wa_list);
987
	intel_wa_list_free(&engine->wa_list);
988
	intel_wa_list_free(&engine->whitelist);
989
}
990

991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1005
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1006
{
1007 1008
	struct drm_i915_private *i915 = engine->i915;

1009 1010
	u64 acthd;

1011
	if (GRAPHICS_VER(i915) >= 8)
1012
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1013
	else if (GRAPHICS_VER(i915) >= 4)
1014
		acthd = ENGINE_READ(engine, RING_ACTHD);
1015
	else
1016
		acthd = ENGINE_READ(engine, ACTHD);
1017 1018 1019 1020

	return acthd;
}

1021
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1022 1023 1024
{
	u64 bbaddr;

1025
	if (GRAPHICS_VER(engine->i915) >= 8)
1026
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1027
	else
1028
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1029 1030 1031

	return bbaddr;
}
1032

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1048 1049 1050
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1051
{
1052
	struct intel_uncore *uncore = engine->uncore;
1053
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1054 1055
	int err;

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1072
	if (GRAPHICS_VER(engine->i915) < 3)
1073 1074
		return -ENODEV;

1075
	ENGINE_TRACE(engine, "\n");
1076
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1090 1091 1092 1093 1094
	}

	return err;
}

1095 1096
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1097
	ENGINE_TRACE(engine, "\n");
1098

1099
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1100 1101
}

1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1113
static u32
1114 1115
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1116
{
1117 1118
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1119 1120 1121
}

/* NB: please notice the memset */
1122
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1123 1124
			       struct intel_instdone *instdone)
{
1125
	struct drm_i915_private *i915 = engine->i915;
1126
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1127
	struct intel_uncore *uncore = engine->uncore;
1128 1129 1130 1131 1132 1133
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1134
	switch (GRAPHICS_VER(i915)) {
1135
	default:
1136 1137
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1138

1139
		if (engine->id != RCS0)
1140 1141
			break;

1142 1143
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1144
		if (GRAPHICS_VER(i915) >= 12) {
1145 1146 1147 1148 1149
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1150
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1151
			instdone->sampler[slice][subslice] =
1152
				read_subslice_reg(engine, slice, subslice,
1153 1154
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1155
				read_subslice_reg(engine, slice, subslice,
1156 1157 1158 1159
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1160 1161
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1162

1163
		if (engine->id != RCS0)
1164 1165
			break;

1166 1167 1168 1169 1170 1171
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1172 1173 1174 1175 1176

		break;
	case 6:
	case 5:
	case 4:
1177 1178
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1179
		if (engine->id == RCS0)
1180
			/* HACK: Using the wrong struct member */
1181 1182
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1183 1184 1185
		break;
	case 3:
	case 2:
1186
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1187 1188 1189
		break;
	}
}
1190

1191 1192 1193 1194
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1195 1196 1197
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1198
	if (!intel_engine_pm_get_if_awake(engine))
1199
		return true;
1200

1201
	/* First check that no commands are left in the ring */
1202 1203
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1204
		idle = false;
1205

1206
	/* No bit for gen2, so assume the CS parser is idle */
1207
	if (GRAPHICS_VER(engine->i915) > 2 &&
1208
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1209 1210
		idle = false;

1211
	intel_engine_pm_put(engine);
1212 1213 1214 1215

	return idle;
}

1216
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1217
{
1218
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1219

1220
	if (!t->callback)
1221 1222
		return;

1223 1224 1225 1226
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1227
			t->callback(t);
1228
		tasklet_unlock(t);
1229
	}
1230
	local_bh_enable();
1231 1232 1233 1234

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1235 1236
}

1237 1238 1239 1240 1241 1242 1243 1244 1245
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1246
	/* More white lies, if wedged, hw state is inconsistent */
1247
	if (intel_gt_is_wedged(engine->gt))
1248 1249
		return true;

1250
	if (!intel_engine_pm_is_awake(engine))
1251 1252
		return true;

1253
	/* Waiting to drain ELSP? */
1254
	intel_synchronize_hardirq(engine->i915);
1255
	intel_engine_flush_submission(engine);
1256

1257
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1258
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1259 1260
		return false;

1261
	/* Ring stopped? */
1262
	return ring_is_idle(engine);
1263 1264
}

1265
bool intel_engines_are_idle(struct intel_gt *gt)
1266 1267 1268 1269
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1270 1271
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1272 1273
	 * report that it is still busy, even though we have stopped using it.
	 */
1274
	if (intel_gt_is_wedged(gt))
1275 1276
		return true;

1277
	/* Already parked (and passed an idleness test); must still be idle */
1278
	if (!READ_ONCE(gt->awake))
1279 1280
		return true;

1281
	for_each_engine(engine, gt, id) {
1282 1283 1284 1285 1286 1287 1288
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1289
void intel_engines_reset_default_submission(struct intel_gt *gt)
1290 1291 1292 1293
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1294 1295 1296 1297
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1298
		engine->set_default_submission(engine);
1299
	}
1300 1301
}

1302 1303
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1304
	switch (GRAPHICS_VER(engine->i915)) {
1305 1306 1307 1308 1309
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1310 1311
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1312 1313 1314 1315 1316 1317 1318
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1319 1320 1321 1322 1323
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1324
	 * Even though we are holding the engine->sched_engine->lock here, there
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1384
		drm_printf(m, "[%04zx] %s\n", pos, line);
1385 1386 1387 1388 1389 1390

		prev = buf + pos;
		skip = false;
	}
}

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1402
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1403
					 struct drm_printer *m)
1404 1405
{
	struct drm_i915_private *dev_priv = engine->i915;
1406
	struct intel_engine_execlists * const execlists = &engine->execlists;
1407 1408
	u64 addr;

1409
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1410
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1411 1412 1413 1414 1415 1416
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1417
	drm_printf(m, "\tRING_START: 0x%08x\n",
1418
		   ENGINE_READ(engine, RING_START));
1419
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1420
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1421
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1422
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1423
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1424 1425
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1426
	if (GRAPHICS_VER(engine->i915) > 2) {
1427
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1428 1429
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1430
	}
1431

1432
	if (GRAPHICS_VER(dev_priv) >= 6) {
1433
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1434
			   ENGINE_READ(engine, RING_IMR));
1435 1436 1437 1438 1439 1440
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1441 1442
	}

1443 1444 1445 1446 1447 1448
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1449
	if (GRAPHICS_VER(dev_priv) >= 8)
1450
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1451
	else if (GRAPHICS_VER(dev_priv) >= 4)
1452
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1453
	else
1454
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1455 1456
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1457
	if (GRAPHICS_VER(dev_priv) >= 4) {
1458
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1459
			   ENGINE_READ(engine, RING_IPEIR));
1460
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1461
			   ENGINE_READ(engine, RING_IPEHR));
1462
	} else {
1463 1464
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1465
	}
1466

1467
	if (intel_engine_uses_guc(engine)) {
1468 1469
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1470
		struct i915_request * const *port, *rq;
1471 1472
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1473
		const u8 num_entries = execlists->csb_size;
1474
		unsigned int idx;
1475
		u8 read, write;
1476

1477
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1478
			   yesno(test_bit(TASKLET_STATE_SCHED,
1479 1480
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1481
			   repr_timer(&engine->execlists.preempt),
1482
			   repr_timer(&engine->execlists.timer));
1483

1484 1485 1486
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1487 1488 1489 1490 1491
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1492
		if (read >= num_entries)
1493
			read = 0;
1494
		if (write >= num_entries)
1495 1496
			write = 0;
		if (read > write)
1497
			write += num_entries;
1498
		while (read < write) {
1499 1500 1501
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1502 1503
		}

1504
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1505
		rcu_read_lock();
1506
		for (port = execlists->active; (rq = *port); port++) {
1507
			char hdr[160];
1508 1509
			int len;

1510
			len = scnprintf(hdr, sizeof(hdr),
1511
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1512
					(int)(port - execlists->active),
1513 1514 1515
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1516
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1517
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1518
			i915_request_show(m, rq, hdr, 0);
1519 1520
		}
		for (port = execlists->pending; (rq = *port); port++) {
1521 1522
			char hdr[160];
			int len;
1523

1524
			len = scnprintf(hdr, sizeof(hdr),
1525
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1526
					(int)(port - execlists->pending),
1527 1528 1529
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1530 1531
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1532
			i915_request_show(m, rq, hdr, 0);
1533
		}
1534
		rcu_read_unlock();
1535
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1536
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1537
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1538
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1539
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1540
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1541
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1542
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1543
	}
1544 1545
}

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1625 1626 1627 1628 1629
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1630
	struct i915_request *rq;
1631
	intel_wakeref_t wakeref;
1632
	unsigned long flags;
1633
	ktime_t dummy;
1634 1635 1636 1637 1638 1639 1640 1641 1642

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1643
	if (intel_gt_is_wedged(engine->gt))
1644 1645
		drm_printf(m, "*** WEDGED ***\n");

1646
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1647 1648
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1649 1650
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1651 1652 1653 1654
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1655
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1656
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1657 1658 1659 1660 1661 1662 1663

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1664 1665 1666
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1667
	print_properties(engine, m);
1668 1669 1670

	drm_printf(m, "\tRequests:\n");

1671
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1672
	rq = intel_engine_find_active_request(engine);
1673
	if (rq) {
1674 1675
		struct intel_timeline *tl = get_timeline(rq);

1676
		i915_request_show(m, rq, "\t\tactive ", 0);
1677

1678
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1679
			   i915_ggtt_offset(rq->ring->vma));
1680
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1681
			   rq->ring->head);
1682
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1683
			   rq->ring->tail);
1684 1685 1686 1687
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1688 1689 1690 1691 1692 1693

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1694 1695

		print_request_ring(m, rq);
1696

1697
		if (rq->context->lrc_reg_state) {
1698
			drm_printf(m, "Logical Ring Context:\n");
1699
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1700
		}
1701
	}
1702 1703 1704
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1705

1706
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1707
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1708
	if (wakeref) {
1709
		intel_engine_print_registers(engine, m);
1710
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1711 1712 1713
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1714

C
Chris Wilson 已提交
1715
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1716

1717
	drm_printf(m, "HWSP:\n");
1718
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1719

1720
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1721 1722

	intel_engine_print_breadcrumbs(engine, m);
1723 1724
}

1725 1726
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1727 1728 1729 1730 1731 1732 1733
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1734
	*now = ktime_get();
1735
	if (READ_ONCE(engine->stats.active))
1736
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1737 1738 1739 1740 1741 1742 1743

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1744
 * @now: monotonic timestamp of sampling
1745 1746 1747
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1748
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1749
{
1750
	unsigned int seq;
1751 1752
	ktime_t total;

1753
	do {
1754
		seq = read_seqcount_begin(&engine->stats.lock);
1755
		total = __intel_engine_get_busy_time(engine, now);
1756
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1757 1758 1759 1760

	return total;
}

1761 1762
static bool match_ring(struct i915_request *rq)
{
1763
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1784
	lockdep_assert_held(&engine->sched_engine->lock);
1785 1786 1787 1788 1789 1790 1791

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1792
			if (__i915_request_is_complete(request))
1793 1794 1795 1796 1797 1798 1799 1800 1801
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1802 1803
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
1804
		if (__i915_request_is_complete(request))
1805 1806
			continue;

1807
		if (!__i915_request_has_started(request))
1808
			continue;
1809 1810 1811

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1812
			continue;
1813 1814 1815 1816 1817 1818 1819 1820

		active = request;
		break;
	}

	return active;
}

1821
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1822
#include "mock_engine.c"
1823
#include "selftest_engine.c"
1824
#include "selftest_engine_cs.c"
1825
#endif