intel_engine_cs.c 41.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31 32
#include "gt/intel_gt.h"

33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_pool.h"
36
#include "intel_engine_user.h"
37
#include "intel_context.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40

41 42 43 44 45 46 47 48 49
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

50
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
51 52
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
54
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
55 56 57

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

58
#define MAX_MMIO_BASES 3
59
struct engine_info {
60
	unsigned int hw_id;
61 62
	u8 class;
	u8 instance;
63 64 65 66 67
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
68 69 70
};

static const struct engine_info intel_engines[] = {
71 72
	[RCS0] = {
		.hw_id = RCS0_HW,
73 74
		.class = RENDER_CLASS,
		.instance = 0,
75 76 77
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
78
	},
79 80
	[BCS0] = {
		.hw_id = BCS0_HW,
81 82
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
83 84 85
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
86
	},
87 88
	[VCS0] = {
		.hw_id = VCS0_HW,
89 90
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
91 92 93 94 95
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
96
	},
97 98
	[VCS1] = {
		.hw_id = VCS1_HW,
99 100
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
101 102 103 104
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
105
	},
106 107
	[VCS2] = {
		.hw_id = VCS2_HW,
108 109
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
110 111 112
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
113
	},
114 115
	[VCS3] = {
		.hw_id = VCS3_HW,
116 117
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
118 119 120
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
121
	},
122 123
	[VECS0] = {
		.hw_id = VECS0_HW,
124 125
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
126 127 128 129
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
130
	},
131 132
	[VECS1] = {
		.hw_id = VECS1_HW,
133 134
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
135 136 137
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
138
	},
139 140
};

141
/**
142
 * intel_engine_context_size() - return the size of the context for an engine
143 144 145 146 147 148 149 150 151 152 153 154
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
155
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
156 157 158 159 160 161 162 163 164 165
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
166
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
167
		case 12:
168 169
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
170
		case 10:
O
Oscar Mateo 已提交
171
			return GEN10_LR_CONTEXT_RENDER_SIZE;
172 173 174
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
175
			return GEN8_LR_CONTEXT_RENDER_SIZE;
176 177 178 179 180 181 182 183 184 185 186 187
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
188
		case 4:
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
205 206 207 208 209 210 211 212 213
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
214
		/* fall through */
215 216 217 218 219 220 221 222 223
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

239
static void __sprint_engine_name(struct intel_engine_cs *engine)
240
{
241 242 243 244 245 246 247 248
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
249 250
}

251 252 253 254 255 256
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
257
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
258 259
		return;

260 261
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
262
	else
263
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
264 265 266 267 268 269 270 271
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

272
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
273 274
{
	const struct engine_info *info = &intel_engines[id];
275 276
	struct intel_engine_cs *engine;

277 278 279
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

280
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
281 282
		return -EINVAL;

283
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
284 285
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
287 288
		return -EINVAL;

289 290 291
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
292

293 294
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

295
	engine->id = id;
296
	engine->mask = BIT(id);
297 298 299
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
300
	engine->hw_id = engine->guc_id = info->hw_id;
301
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
302

303 304
	engine->class = info->class;
	engine->instance = info->instance;
305
	__sprint_engine_name(engine);
306

307 308 309 310 311 312
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

313
	engine->context_size = intel_engine_context_size(gt->i915,
314
							 engine->class);
315 316
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
317
	if (engine->context_size)
318
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
319

320 321 322
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

323
	seqlock_init(&engine->stats.lock);
324

325 326
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

327 328 329
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

330 331 332 333 334
	gt->engine_class[info->class][info->instance] = engine;

	intel_engine_add_user(engine);
	gt->i915->engine[id] = engine;

335
	return 0;
336 337
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

static void intel_setup_engine_capabilities(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		__setup_engine_capabilities(engine);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 * @i915: the i915 devic
 */
void intel_engines_cleanup(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		engine->destroy(engine);
		i915->engine[id] = NULL;
	}
}

392
/**
393
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
394
 * @i915: the i915 device
395 396 397
 *
 * Return: non-zero if the initialization failed.
 */
398
int intel_engines_init_mmio(struct drm_i915_private *i915)
399
{
400 401
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
402
	unsigned int mask = 0;
403
	unsigned int i;
404
	int err;
405

406 407
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
408
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
409

410
	if (i915_inject_probe_failure(i915))
411 412
		return -ENODEV;

413
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
414
		if (!HAS_ENGINE(i915, i))
415 416
			continue;

417
		err = intel_engine_setup(&i915->gt, i);
418 419 420
		if (err)
			goto cleanup;

421
		mask |= BIT(i);
422 423 424 425 426 427 428
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
429 430
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
431

432
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
433

434
	intel_gt_check_and_clear_faults(&i915->gt);
435

436 437
	intel_setup_engine_capabilities(i915);

438 439 440
	return 0;

cleanup:
441
	intel_engines_cleanup(i915);
442 443 444 445
	return err;
}

/**
446
 * intel_engines_init() - init the Engine Command Streamers
447
 * @i915: i915 device private
448 449 450
 *
 * Return: non-zero if the initialization failed.
 */
451
int intel_engines_init(struct drm_i915_private *i915)
452
{
453
	int (*init)(struct intel_engine_cs *engine);
454
	struct intel_engine_cs *engine;
455
	enum intel_engine_id id;
456
	int err;
457

458 459 460 461
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
462

463
	for_each_engine(engine, i915, id) {
464
		err = init(engine);
465
		if (err)
466 467 468 469 470 471
			goto cleanup;
	}

	return 0;

cleanup:
472
	intel_engines_cleanup(i915);
473
	return err;
474 475
}

476
void intel_engine_init_execlists(struct intel_engine_cs *engine)
477 478 479
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

480
	execlists->port_mask = 1;
481
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
482 483
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

484 485 486 487
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

488
	execlists->queue_priority_hint = INT_MIN;
489
	execlists->queue = RB_ROOT_CACHED;
490 491
}

492
static void cleanup_status_page(struct intel_engine_cs *engine)
493
{
494 495
	struct i915_vma *vma;

496 497 498
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

499 500 501
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
502

503 504 505 506
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
507
	i915_gem_object_put(vma->obj);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
531

532
	return i915_vma_pin(vma, 0, 0, flags);
533 534 535 536 537 538 539 540 541
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

542 543 544 545 546 547 548
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
549 550 551 552 553 554
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

555
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
556

557
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
558 559 560 561 562 563 564 565
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
566
		goto err;
567 568
	}

569
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
570
	engine->status_page.vma = vma;
571 572 573 574 575 576 577

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

578 579 580
	return 0;

err_unpin:
581
	i915_gem_object_unpin_map(obj);
582 583 584 585 586
err:
	i915_gem_object_put(obj);
	return ret;
}

587
static int intel_engine_setup_common(struct intel_engine_cs *engine)
588 589 590
{
	int err;

591 592
	init_llist_head(&engine->barrier_tasks);

593 594 595 596
	err = init_status_page(engine);
	if (err)
		return err;

597
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
598
	intel_engine_init_breadcrumbs(engine);
599
	intel_engine_init_execlists(engine);
600 601
	intel_engine_init_hangcheck(engine);
	intel_engine_init_cmd_parser(engine);
602
	intel_engine_init__pm(engine);
603

604 605
	intel_engine_pool_init(&engine->pool);

606 607 608 609
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

610 611 612 613
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

614 615 616
	return 0;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

647 648 649
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

650 651 652 653 654 655
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
656
	intel_engines_cleanup(i915);
657 658 659
	return err;
}

660 661
struct measure_breadcrumb {
	struct i915_request rq;
662
	struct intel_timeline timeline;
663 664 665 666
	struct intel_ring ring;
	u32 cs[1024];
};

667
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
668 669
{
	struct measure_breadcrumb *frame;
670
	int dw = -ENOMEM;
671

672
	GEM_BUG_ON(!engine->gt->scratch);
673 674 675 676 677

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

678 679 680
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
681
		goto out_frame;
682 683 684 685 686 687 688 689 690 691 692

	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

693
	dw = intel_timeline_pin(&frame->timeline);
694 695 696
	if (dw < 0)
		goto out_timeline;

697
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
698
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
699

700
	intel_timeline_unpin(&frame->timeline);
701

702
out_timeline:
703
	intel_timeline_fini(&frame->timeline);
704 705
out_frame:
	kfree(frame);
706 707 708
	return dw;
}

709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

730 731 732 733 734 735 736 737 738 739
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce;
	int err;

	ce = intel_context_create(engine->i915->kernel_context, engine);
	if (IS_ERR(ce))
		return ce;

740 741
	ce->ring = __intel_context_ring_size(SZ_4K);

742 743 744 745 746 747 748 749 750
	err = intel_context_pin(ce);
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

	return ce;
}

751 752 753 754 755 756 757 758 759 760 761 762 763
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
764
	struct intel_context *ce;
765 766
	int ret;

767 768
	engine->set_default_submission(engine);

769 770
	/*
	 * We may need to do things with the shrinker which
771 772 773 774 775 776
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
777 778 779 780 781
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
782

783
	ret = measure_breadcrumb_dw(engine);
784
	if (ret < 0)
785
		goto err_unpin;
786

787
	engine->emit_fini_breadcrumb_dw = ret;
788

789
	return 0;
790

791
err_unpin:
792 793
	intel_context_unpin(ce);
	intel_context_put(ce);
794
	return ret;
795
}
796 797 798 799 800 801 802 803 804 805

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
806 807
	GEM_BUG_ON(!list_empty(&engine->active.requests));

808
	cleanup_status_page(engine);
809

810
	intel_engine_pool_fini(&engine->pool);
811
	intel_engine_fini_breadcrumbs(engine);
812
	intel_engine_cleanup_cmd_parser(engine);
813

814 815 816
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

817
	intel_context_unpin(engine->kernel_context);
818
	intel_context_put(engine->kernel_context);
819
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
820

821
	intel_wa_list_free(&engine->ctx_wa_list);
822
	intel_wa_list_free(&engine->wa_list);
823
	intel_wa_list_free(&engine->whitelist);
824
}
825

826
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
827
{
828 829
	struct drm_i915_private *i915 = engine->i915;

830 831
	u64 acthd;

832 833 834 835
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
836
	else
837
		acthd = ENGINE_READ(engine, ACTHD);
838 839 840 841

	return acthd;
}

842
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
843 844 845
{
	u64 bbaddr;

846 847
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
848
	else
849
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
850 851 852

	return bbaddr;
}
853

854 855
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
856
	struct intel_uncore *uncore = engine->uncore;
857 858 859 860
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

861
	if (INTEL_GEN(engine->i915) < 3)
862 863 864 865
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

866
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
867 868

	err = 0;
869
	if (__intel_wait_for_register_fw(uncore,
870 871 872 873 874 875 876 877
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
878
	intel_uncore_posting_read_fw(uncore, mode);
879 880 881 882

	return err;
}

883 884 885 886
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

887
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
888 889
}

890 891 892 893 894 895 896 897 898 899 900
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

901 902 903
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
904
{
905 906
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
907
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
908 909
	enum forcewake_domains fw_domains;

910
	if (INTEL_GEN(i915) >= 11) {
911 912
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
913
	} else {
914 915
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
916 917
	}

918
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
919
						    FW_REG_READ);
920
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
921 922 923
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

924 925
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
926

927
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
928

929 930
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
931
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
932

933
	val = intel_uncore_read_fw(uncore, reg);
934

935 936
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
937

938
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
939

940 941
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
942

943
	return val;
944 945 946 947 948 949
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
950
	struct drm_i915_private *i915 = engine->i915;
951
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
952
	struct intel_uncore *uncore = engine->uncore;
953 954 955 956 957 958
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

959
	switch (INTEL_GEN(i915)) {
960
	default:
961 962
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
963

964
		if (engine->id != RCS0)
965 966
			break;

967 968
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
969
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
970
			instdone->sampler[slice][subslice] =
971
				read_subslice_reg(engine, slice, subslice,
972 973
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
974
				read_subslice_reg(engine, slice, subslice,
975 976 977 978
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
979 980
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
981

982
		if (engine->id != RCS0)
983 984
			break;

985 986 987 988 989 990
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
991 992 993 994 995

		break;
	case 6:
	case 5:
	case 4:
996 997
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
998
		if (engine->id == RCS0)
999
			/* HACK: Using the wrong struct member */
1000 1001
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1002 1003 1004
		break;
	case 3:
	case 2:
1005
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1006 1007 1008
		break;
	}
}
1009

1010 1011 1012 1013
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1014 1015 1016
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1017
	if (!intel_engine_pm_get_if_awake(engine))
1018
		return true;
1019

1020
	/* First check that no commands are left in the ring */
1021 1022
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1023
		idle = false;
1024

1025
	/* No bit for gen2, so assume the CS parser is idle */
1026
	if (INTEL_GEN(engine->i915) > 2 &&
1027
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1028 1029
		idle = false;

1030
	intel_engine_pm_put(engine);
1031 1032 1033 1034

	return idle;
}

1035 1036 1037 1038 1039 1040 1041 1042 1043
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1044
	/* More white lies, if wedged, hw state is inconsistent */
1045
	if (intel_gt_is_wedged(engine->gt))
1046 1047
		return true;

1048
	if (!intel_engine_pm_is_awake(engine))
1049 1050
		return true;

1051
	/* Waiting to drain ELSP? */
1052
	if (execlists_active(&engine->execlists)) {
1053
		struct tasklet_struct *t = &engine->execlists.tasklet;
1054

1055
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1056

1057
		local_bh_disable();
1058 1059 1060 1061 1062
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1063
		}
1064
		local_bh_enable();
1065

1066 1067 1068
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1069
		if (execlists_active(&engine->execlists))
1070 1071
			return false;
	}
1072

1073
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1074
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1075 1076
		return false;

1077
	/* Ring stopped? */
1078
	return ring_is_idle(engine);
1079 1080
}

1081
bool intel_engines_are_idle(struct intel_gt *gt)
1082 1083 1084 1085
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1086 1087
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1088 1089
	 * report that it is still busy, even though we have stopped using it.
	 */
1090
	if (intel_gt_is_wedged(gt))
1091 1092
		return true;

1093
	/* Already parked (and passed an idleness test); must still be idle */
1094
	if (!READ_ONCE(gt->awake))
1095 1096
		return true;

1097
	for_each_engine(engine, gt->i915, id) {
1098 1099 1100 1101 1102 1103 1104
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1105
void intel_engines_reset_default_submission(struct intel_gt *gt)
1106 1107 1108 1109
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1110
	for_each_engine(engine, gt->i915, id)
1111 1112 1113
		engine->set_default_submission(engine);
}

1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1129 1130 1131
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1132 1133
{
	if (attr->priority == I915_PRIORITY_INVALID)
1134 1135 1136 1137
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1138

1139
	return x;
1140 1141
}

1142
static void print_request(struct drm_printer *m,
1143
			  struct i915_request *rq,
1144 1145
			  const char *prefix)
{
1146
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1147
	char buf[80] = "";
1148 1149 1150
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1151

1152
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1153
		   prefix,
1154
		   rq->fence.context, rq->fence.seqno,
1155 1156 1157
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1158 1159
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1160
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1161 1162
			    &rq->fence.flags) ? "-" :
		   "",
1163
		   buf,
1164
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1165
		   name);
1166 1167
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1190
		drm_printf(m, "[%04zx] %s\n", pos, line);
1191 1192 1193 1194 1195 1196

		prev = buf + pos;
		skip = false;
	}
}

1197
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1198
					 struct drm_printer *m)
1199 1200
{
	struct drm_i915_private *dev_priv = engine->i915;
1201 1202
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1203
	unsigned long flags;
1204 1205
	u64 addr;

1206
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1207
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1208
	drm_printf(m, "\tRING_START: 0x%08x\n",
1209
		   ENGINE_READ(engine, RING_START));
1210
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1211
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1212
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1213
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1214
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1215 1216
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1217 1218
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1219 1220
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1221
	}
1222 1223

	if (INTEL_GEN(dev_priv) >= 6) {
1224 1225
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1226 1227
	}

1228 1229 1230 1231 1232 1233
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1234
	if (INTEL_GEN(dev_priv) >= 8)
1235
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1236
	else if (INTEL_GEN(dev_priv) >= 4)
1237
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1238
	else
1239
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1240 1241 1242 1243
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1244
			   ENGINE_READ(engine, RING_IPEIR));
1245
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1246
			   ENGINE_READ(engine, RING_IPEHR));
1247
	} else {
1248 1249
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1250
	}
1251

1252
	if (HAS_EXECLISTS(dev_priv)) {
1253
		struct i915_request * const *port, *rq;
1254 1255
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1256
		const u8 num_entries = execlists->csb_size;
1257
		unsigned int idx;
1258
		u8 read, write;
1259

1260
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1261
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1262 1263
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1264

1265 1266 1267
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1268
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1269
			   read, write,
1270 1271 1272
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1273
		if (read >= num_entries)
1274
			read = 0;
1275
		if (write >= num_entries)
1276 1277
			write = 0;
		if (read > write)
1278
			write += num_entries;
1279
		while (read < write) {
1280 1281 1282
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1283 1284
		}

1285
		spin_lock_irqsave(&engine->active.lock, flags);
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
				       "\t\tActive[%d: ",
				       (int)(port - execlists->active));
			if (!i915_request_signaled(rq))
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
						rq->timeline->hwsp_offset,
						hwsp_seqno(rq));
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1303
			char hdr[80];
1304

1305 1306 1307 1308 1309 1310 1311
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
				 rq->timeline->hwsp_offset,
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1312
		}
1313
		spin_unlock_irqrestore(&engine->active.lock, flags);
1314 1315
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1316
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1317
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1318
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1319
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1320
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1321
	}
1322 1323
}

1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1357 1358 1359 1360 1361
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1362
	struct i915_request *rq;
1363
	intel_wakeref_t wakeref;
1364
	unsigned long flags;
1365 1366 1367 1368 1369 1370 1371 1372 1373

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1374
	if (intel_gt_is_wedged(engine->gt))
1375 1376
		drm_printf(m, "*** WEDGED ***\n");

1377
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1378
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1379
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1380 1381 1382 1383 1384 1385
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1386
	spin_lock_irqsave(&engine->active.lock, flags);
1387
	rq = intel_engine_find_active_request(engine);
1388 1389
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1390

1391
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1392
			   i915_ggtt_offset(rq->ring->vma));
1393
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1394
			   rq->ring->head);
1395
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1396
			   rq->ring->tail);
1397 1398 1399 1400
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1401 1402
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1403 1404

		print_request_ring(m, rq);
1405
	}
1406
	spin_unlock_irqrestore(&engine->active.lock, flags);
1407

1408
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1409
	wakeref = intel_runtime_pm_get_if_in_use(&engine->i915->runtime_pm);
1410
	if (wakeref) {
1411
		intel_engine_print_registers(engine, m);
1412
		intel_runtime_pm_put(&engine->i915->runtime_pm, wakeref);
1413 1414 1415
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1416

1417
	intel_execlists_show_requests(engine, m, print_request, 8);
1418

1419
	drm_printf(m, "HWSP:\n");
1420
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1421

1422
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1423 1424

	intel_engine_print_breadcrumbs(engine, m);
1425 1426
}

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1437
	struct intel_engine_execlists *execlists = &engine->execlists;
1438
	unsigned long flags;
1439
	int err = 0;
1440

1441
	if (!intel_engine_supports_stats(engine))
1442 1443
		return -ENODEV;

1444
	spin_lock_irqsave(&engine->active.lock, flags);
1445
	write_seqlock(&engine->stats.lock);
1446 1447 1448 1449 1450 1451

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1452
	if (engine->stats.enabled++ == 0) {
1453 1454
		struct i915_request * const *port;
		struct i915_request *rq;
1455

1456
		engine->stats.enabled_at = ktime_get();
1457 1458

		/* XXX submission method oblivious? */
1459
		for (port = execlists->active; (rq = *port); port++)
1460
			engine->stats.active++;
1461 1462 1463

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1464
			if (!intel_context_inflight_count(rq->hw_context))
1465
				engine->stats.active++;
1466 1467 1468 1469 1470
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1471

1472
unlock:
1473
	write_sequnlock(&engine->stats.lock);
1474
	spin_unlock_irqrestore(&engine->active.lock, flags);
1475

1476
	return err;
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1502
	unsigned int seq;
1503 1504
	ktime_t total;

1505 1506 1507 1508
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1523
	if (!intel_engine_supports_stats(engine))
1524 1525
		return;

1526
	write_seqlock_irqsave(&engine->stats.lock, flags);
1527 1528 1529 1530 1531
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1532
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1533 1534
}

1535 1536
static bool match_ring(struct i915_request *rq)
{
1537
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1558
	lockdep_assert_held(&engine->active.lock);
1559
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1560 1561 1562 1563
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1564
			continue;
1565 1566 1567

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1568
			continue;
1569 1570 1571 1572 1573 1574 1575 1576

		active = request;
		break;
	}

	return active;
}

1577
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1578
#include "mock_engine.c"
1579
#include "selftest_engine.c"
1580
#include "selftest_engine_cs.c"
1581
#endif