intel_engine_cs.c 54.3 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
39 40 41

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

42
#define MAX_MMIO_BASES 3
43
struct engine_info {
44 45
	u8 class;
	u8 instance;
46
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
47
	struct engine_mmio_base {
48
		u32 graphics_ver : 8;
49 50
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
51 52 53
};

static const struct engine_info intel_engines[] = {
54
	[RCS0] = {
55 56
		.class = RENDER_CLASS,
		.instance = 0,
57
		.mmio_bases = {
58
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
59
		},
60
	},
61
	[BCS0] = {
62 63
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
64
		.mmio_bases = {
65
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
66
		},
67
	},
68
	[VCS0] = {
69 70
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
71
		.mmio_bases = {
72 73 74
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
75
		},
76
	},
77
	[VCS1] = {
78 79
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
80
		.mmio_bases = {
81 82
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
83
		},
84
	},
85
	[VCS2] = {
86 87
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
88
		.mmio_bases = {
89
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
90
		},
91
	},
92
	[VCS3] = {
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
97
		},
98
	},
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
127
	[VECS0] = {
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130
		.mmio_bases = {
131 132
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
133
		},
134
	},
135
	[VECS1] = {
136 137
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
138
		.mmio_bases = {
139
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
140
		},
141
	},
142 143 144 145 146 147 148 149 150 151 152 153 154 155
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
156 157
};

158
/**
159
 * intel_engine_context_size() - return the size of the context for an engine
160
 * @gt: the gt
161 162 163 164 165 166 167 168 169 170 171
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
172
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
173
{
174
	struct intel_uncore *uncore = gt->uncore;
175 176 177 178 179 180
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
181
		switch (GRAPHICS_VER(gt->i915)) {
182
		default:
183
			MISSING_CASE(GRAPHICS_VER(gt->i915));
184
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185
		case 12:
186 187
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
188 189 190
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
191
			return GEN8_LR_CONTEXT_RENDER_SIZE;
192
		case 7:
193
			if (IS_HASWELL(gt->i915))
194 195
				return HSW_CXT_TOTAL_SIZE;

196
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
197 198 199
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
200
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
201 202 203
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
204
		case 4:
205 206 207 208 209 210 211 212 213 214
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
215
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
216
			drm_dbg(&gt->i915->drm,
217 218
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
219
				cxt_size - 1);
220
			return round_up(cxt_size * 64, PAGE_SIZE);
221 222 223 224 225 226 227 228 229
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
230
		fallthrough;
231 232 233
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
234
		if (GRAPHICS_VER(gt->i915) < 8)
235 236 237 238 239
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

240 241 242 243 244 245
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
246
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
247 248 249 250 251 252 253 254
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

255
static void __sprint_engine_name(struct intel_engine_cs *engine)
256
{
257 258 259 260 261 262 263 264
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
265 266
}

267 268 269 270 271 272
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
273
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
274 275
		return;

276
	if (GRAPHICS_VER(engine->i915) >= 3)
277
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
278
	else
279
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
280 281 282 283 284 285 286 287
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

288 289 290 291 292
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

293 294
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
			      u8 logical_instance)
295 296
{
	const struct engine_info *info = &intel_engines[id];
297
	struct drm_i915_private *i915 = gt->i915;
298
	struct intel_engine_cs *engine;
299
	u8 guc_class;
300

301 302
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
303 304
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
305

306 307 308
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

309
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
310 311
		return -EINVAL;

312
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
313 314
		return -EINVAL;

315
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
316 317
		return -EINVAL;

318 319 320
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
321

322 323
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

324
	INIT_LIST_HEAD(&engine->pinned_contexts_list);
325
	engine->id = id;
326
	engine->legacy_idx = INVALID_ENGINE;
327
	engine->mask = BIT(id);
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
	if (GRAPHICS_VER(gt->i915) >= 11) {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN11_GRDOM_RENDER,
			[BCS0]  = GEN11_GRDOM_BLT,
			[VCS0]  = GEN11_GRDOM_MEDIA,
			[VCS1]  = GEN11_GRDOM_MEDIA2,
			[VCS2]  = GEN11_GRDOM_MEDIA3,
			[VCS3]  = GEN11_GRDOM_MEDIA4,
			[VCS4]  = GEN11_GRDOM_MEDIA5,
			[VCS5]  = GEN11_GRDOM_MEDIA6,
			[VCS6]  = GEN11_GRDOM_MEDIA7,
			[VCS7]  = GEN11_GRDOM_MEDIA8,
			[VECS0] = GEN11_GRDOM_VECS,
			[VECS1] = GEN11_GRDOM_VECS2,
			[VECS2] = GEN11_GRDOM_VECS3,
			[VECS3] = GEN11_GRDOM_VECS4,
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		engine->reset_domain = engine_reset_domains[id];
	} else {
		static const u32 engine_reset_domains[] = {
			[RCS0]  = GEN6_GRDOM_RENDER,
			[BCS0]  = GEN6_GRDOM_BLT,
			[VCS0]  = GEN6_GRDOM_MEDIA,
			[VCS1]  = GEN8_GRDOM_MEDIA2,
			[VECS0] = GEN6_GRDOM_VECS,
		};
		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
			   !engine_reset_domains[id]);
		engine->reset_domain = engine_reset_domains[id];
	}
360
	engine->i915 = i915;
361 362
	engine->gt = gt;
	engine->uncore = gt->uncore;
363 364 365
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
366

367 368
	engine->irq_handler = nop_irq_handler;

369 370
	engine->class = info->class;
	engine->instance = info->instance;
371
	engine->logical_mask = BIT(logical_instance);
372
	__sprint_engine_name(engine);
373

374 375
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
376 377
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
378 379
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
380 381
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
382 383
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
384

385
	/* Override to uninterruptible for OpenCL workloads. */
386
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
387 388
		engine->props.preempt_timeout_ms = 0;

389 390
	engine->defaults = engine->props; /* never to change again */

391
	engine->context_size = intel_engine_context_size(gt, engine->class);
392 393
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
394
	if (engine->context_size)
395
		DRIVER_CAPS(i915)->has_logical_contexts = true;
396

397
	ewma__engine_latency_init(&engine->latency);
398
	seqcount_init(&engine->stats.execlists.lock);
399

400 401
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

402 403 404
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

405
	gt->engine_class[info->class][info->instance] = engine;
406
	gt->engine[id] = engine;
407

408
	return 0;
409 410
}

411 412 413 414 415 416 417 418 419
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
420 421
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
422 423 424 425 426 427 428
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
429
		if ((GRAPHICS_VER(i915) >= 11 &&
430 431
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
432
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
433 434 435
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
436 437
		if (GRAPHICS_VER(i915) >= 9 &&
		    engine->gt->info.sfc_mask & BIT(engine->instance))
438 439 440 441 442
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

443
static void intel_setup_engine_capabilities(struct intel_gt *gt)
444 445 446 447
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

448
	for_each_engine(engine, gt, id)
449 450 451
		__setup_engine_capabilities(engine);
}

452
/**
453
 * intel_engines_release() - free the resources allocated for Command Streamers
454
 * @gt: pointer to struct intel_gt
455
 */
456
void intel_engines_release(struct intel_gt *gt)
457 458 459 460
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

461 462 463 464 465 466 467 468 469 470 471 472 473
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

474
	/* Decouple the backend; but keep the layout for late GPU resets */
475
	for_each_engine(engine, gt, id) {
476 477 478
		if (!engine->release)
			continue;

479 480 481
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

482 483 484 485
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
486 487 488
	}
}

489 490 491 492 493 494 495 496
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

497 498 499 500 501
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

502 503 504
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

505
	for_each_engine(engine, gt, id) {
506
		intel_engine_free_request_pool(engine);
507 508 509 510 511
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

512
static
513
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
514 515 516
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
517 518
	struct drm_i915_private *i915 = gt->i915;

519 520 521 522 523 524
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
525 526 527
	 *
	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
	 * in the fuse register that tells us whether a specific SFC is present.
528
	 */
529 530 531
	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
		return false;
	else if (GRAPHICS_VER(i915) == 12)
532 533 534 535 536 537 538 539 540
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

541 542 543 544 545 546 547 548 549 550 551 552 553
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
554
	struct intel_gt_info *info = &gt->info;
555 556 557
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
558
	u32 media_fuse, fuse1;
559 560 561
	u16 vdbox_mask;
	u16 vebox_mask;

562 563
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

564
	if (GRAPHICS_VER(i915) < 11)
565 566
		return info->engine_mask;

567 568 569 570 571 572 573 574
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
575 576 577 578 579

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

580 581 582 583 584 585 586
	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
	} else {
		gt->info.sfc_mask = ~0;
	}

587 588 589 590 591 592 593 594 595 596 597 598
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

599
		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
600
			gt->info.vdbox_sfc_access |= BIT(i);
601
		logical_vdbox++;
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
				 u8 class, const u8 *map, u8 num_instances)
{
	int i, j;
	u8 current_logical_id = 0;

	for (j = 0; j < num_instances; ++j) {
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			if (!HAS_ENGINE(gt, i) ||
			    intel_engines[i].class != class)
				continue;

			if (intel_engines[i].instance == map[j]) {
				logical_ids[intel_engines[i].instance] =
					current_logical_id++;
				break;
			}
		}
	}
}

static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
{
	int i;
	u8 map[MAX_ENGINE_INSTANCE + 1];

	for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
		map[i] = i;
	populate_logical_ids(gt, logical_ids, class, map, ARRAY_SIZE(map));
}

656
/**
657
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
658
 * @gt: pointer to struct intel_gt
659 660 661
 *
 * Return: non-zero if the initialization failed.
 */
662
int intel_engines_init_mmio(struct intel_gt *gt)
663
{
664
	struct drm_i915_private *i915 = gt->i915;
665
	const unsigned int engine_mask = init_engine_mask(gt);
666
	unsigned int mask = 0;
667 668
	unsigned int i, class;
	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
669
	int err;
670

671 672 673
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
674

675
	if (i915_inject_probe_failure(i915))
676 677
		return -ENODEV;

678 679
	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
		setup_logical_ids(gt, logical_ids, class);
680

681 682
		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
			u8 instance = intel_engines[i].instance;
683

684 685 686 687 688 689 690 691 692 693 694
			if (intel_engines[i].class != class ||
			    !HAS_ENGINE(gt, i))
				continue;

			err = intel_engine_setup(gt, i,
						 logical_ids[instance]);
			if (err)
				goto cleanup;

			mask |= BIT(i);
		}
695 696 697 698 699 700 701
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
702
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
703
		gt->info.engine_mask = mask;
704

705
	gt->info.num_engines = hweight32(mask);
706

707
	intel_gt_check_and_clear_faults(gt);
708

709
	intel_setup_engine_capabilities(gt);
710

711 712
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

713 714 715
	return 0;

cleanup:
716
	intel_engines_free(gt);
717 718 719
	return err;
}

720
void intel_engine_init_execlists(struct intel_engine_cs *engine)
721 722 723
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

724
	execlists->port_mask = 1;
725
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
726 727
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

728 729 730
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
731 732
}

733
static void cleanup_status_page(struct intel_engine_cs *engine)
734
{
735 736
	struct i915_vma *vma;

737 738 739
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

740 741 742
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
743

744 745 746 747
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
748
	i915_gem_object_put(vma->obj);
749 750 751
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
752
				struct i915_gem_ww_ctx *ww,
753 754 755 756
				struct i915_vma *vma)
{
	unsigned int flags;

757
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
758 759 760 761 762 763 764 765 766 767 768
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
769
		flags = PIN_MAPPABLE;
770
	else
771
		flags = PIN_HIGH;
772

773
	return i915_ggtt_pin(vma, ww, 0, flags);
774 775 776 777 778
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
779
	struct i915_gem_ww_ctx ww;
780 781 782 783
	struct i915_vma *vma;
	void *vaddr;
	int ret;

784 785
	INIT_LIST_HEAD(&engine->status_page.timelines);

786 787 788 789 790 791 792
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
793 794
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
795 796
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
797 798 799
		return PTR_ERR(obj);
	}

800
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
801

802
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
803 804
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
805
		goto err_put;
806 807
	}

808 809 810 811 812 813 814 815
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

816 817 818
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
819
		goto err_unpin;
820 821
	}

822
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
823
	engine->status_page.vma = vma;
824

825
err_unpin:
826 827
	if (ret)
		i915_vma_unpin(vma);
828
err:
829 830 831 832 833 834 835 836 837
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
838 839 840
	return ret;
}

841
static int engine_setup_common(struct intel_engine_cs *engine)
842 843 844
{
	int err;

845 846
	init_llist_head(&engine->barrier_tasks);

847 848 849 850
	err = init_status_page(engine);
	if (err)
		return err;

851 852 853 854 855 856
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

857 858 859 860 861
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
862
	engine->sched_engine->private_data = engine;
863

864 865 866 867
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

868 869
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
870
	intel_engine_init_retire(engine);
871

872 873
	/* Use the whole device by default */
	engine->sseu =
874
		intel_sseu_from_device_info(&engine->gt->info.sseu);
875

876 877 878 879
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

880
	if (GRAPHICS_VER(engine->i915) >= 12)
881 882
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

883
	return 0;
884

885
err_cmd_parser:
886 887
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
888
	intel_breadcrumbs_put(engine->breadcrumbs);
889 890 891
err_status:
	cleanup_status_page(engine);
	return err;
892 893
}

894 895 896
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
897
	u32 cs[2048];
898 899
};

900
static int measure_breadcrumb_dw(struct intel_context *ce)
901
{
902
	struct intel_engine_cs *engine = ce->engine;
903
	struct measure_breadcrumb *frame;
904
	int dw;
905

906
	GEM_BUG_ON(!engine->gt->scratch);
907 908 909 910 911

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

912 913 914
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
915
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
916

917 918
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
919 920
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
921 922 923
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
924

925
	mutex_lock(&ce->timeline->mutex);
926
	spin_lock_irq(&engine->sched_engine->lock);
927

928
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
929

930
	spin_unlock_irq(&engine->sched_engine->lock);
931
	mutex_unlock(&ce->timeline->mutex);
932

933
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
934

935
	kfree(frame);
936 937 938
	return dw;
}

939 940 941 942 943 944 945
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
946 947 948 949
{
	struct intel_context *ce;
	int err;

950
	ce = intel_context_create(engine);
951 952 953
	if (IS_ERR(ce))
		return ce;

954
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
955
	ce->timeline = page_pack_bits(NULL, hwsp);
956 957
	ce->ring = NULL;
	ce->ring_size = ring_size;
958 959 960

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
961

962
	err = intel_context_pin(ce); /* perma-pin so it is always available */
963 964 965 966 967
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

968 969
	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);

970 971 972 973 974 975
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
976
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
977

978 979 980
	return ce;
}

981
void intel_engine_destroy_pinned_context(struct intel_context *ce)
982 983 984 985 986 987 988 989 990 991
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

992
	list_del(&ce->pinned_contexts_link);
993 994 995 996
	intel_context_unpin(ce);
	intel_context_put(ce);
}

997 998 999 1000 1001
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

1002 1003 1004
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
1005 1006
}

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
1018
static int engine_init_common(struct intel_engine_cs *engine)
1019
{
1020
	struct intel_context *ce;
1021 1022
	int ret;

1023 1024
	engine->set_default_submission(engine);

1025 1026
	/*
	 * We may need to do things with the shrinker which
1027 1028 1029 1030 1031 1032
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
1033 1034 1035 1036
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

1037 1038 1039 1040 1041
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
1042
	engine->kernel_context = ce;
1043

1044
	return 0;
1045 1046

err_context:
1047
	intel_engine_destroy_pinned_context(ce);
1048
	return ret;
1049
}
1050

1051 1052 1053 1054 1055 1056 1057
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

1058 1059
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
1060
		setup = intel_guc_submission_setup;
1061 1062
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
1063
		setup = intel_execlists_submission_setup;
1064 1065
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
1066
		setup = intel_ring_submission_setup;
1067
	}
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

1088 1089 1090 1091 1092 1093 1094 1095 1096
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1097
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1098

1099
	i915_sched_engine_put(engine->sched_engine);
1100
	intel_breadcrumbs_put(engine->breadcrumbs);
1101

1102
	intel_engine_fini_retire(engine);
1103
	intel_engine_cleanup_cmd_parser(engine);
1104

1105
	if (engine->default_state)
1106
		fput(engine->default_state);
1107

1108
	if (engine->kernel_context)
1109
		intel_engine_destroy_pinned_context(engine->kernel_context);
1110

1111
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1112
	cleanup_status_page(engine);
1113

1114
	intel_wa_list_free(&engine->ctx_wa_list);
1115
	intel_wa_list_free(&engine->wa_list);
1116
	intel_wa_list_free(&engine->whitelist);
1117
}
1118

1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1133
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1134
{
1135 1136
	struct drm_i915_private *i915 = engine->i915;

1137 1138
	u64 acthd;

1139
	if (GRAPHICS_VER(i915) >= 8)
1140
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1141
	else if (GRAPHICS_VER(i915) >= 4)
1142
		acthd = ENGINE_READ(engine, RING_ACTHD);
1143
	else
1144
		acthd = ENGINE_READ(engine, ACTHD);
1145 1146 1147 1148

	return acthd;
}

1149
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1150 1151 1152
{
	u64 bbaddr;

1153
	if (GRAPHICS_VER(engine->i915) >= 8)
1154
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1155
	else
1156
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1157 1158 1159

	return bbaddr;
}
1160

1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1176 1177 1178
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1179
{
1180
	struct intel_uncore *uncore = engine->uncore;
1181
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1182 1183
	int err;

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1200
	if (GRAPHICS_VER(engine->i915) < 3)
1201 1202
		return -ENODEV;

1203
	ENGINE_TRACE(engine, "\n");
1204
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1218 1219 1220 1221 1222
	}

	return err;
}

1223 1224
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1225
	ENGINE_TRACE(engine, "\n");
1226

1227
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1241
static u32
1242 1243
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1244
{
1245 1246
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1247 1248 1249
}

/* NB: please notice the memset */
1250
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1251 1252
			       struct intel_instdone *instdone)
{
1253
	struct drm_i915_private *i915 = engine->i915;
1254
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1255
	struct intel_uncore *uncore = engine->uncore;
1256 1257 1258
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1259
	int iter;
1260 1261 1262

	memset(instdone, 0, sizeof(*instdone));

1263
	if (GRAPHICS_VER(i915) >= 8) {
1264 1265
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1266

1267
		if (engine->id != RCS0)
1268
			return;
1269

1270 1271
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1272
		if (GRAPHICS_VER(i915) >= 12) {
1273 1274 1275 1276 1277
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1297
		}
1298 1299 1300 1301 1302 1303 1304

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1305
	} else if (GRAPHICS_VER(i915) >= 7) {
1306 1307
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1308

1309
		if (engine->id != RCS0)
1310
			return;
1311

1312 1313 1314 1315 1316 1317
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1318
	} else if (GRAPHICS_VER(i915) >= 4) {
1319 1320
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1321
		if (engine->id == RCS0)
1322
			/* HACK: Using the wrong struct member */
1323 1324
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1325
	} else {
1326
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1327 1328
	}
}
1329

1330 1331 1332 1333
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1334 1335 1336
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1337
	if (!intel_engine_pm_get_if_awake(engine))
1338
		return true;
1339

1340
	/* First check that no commands are left in the ring */
1341 1342
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1343
		idle = false;
1344

1345
	/* No bit for gen2, so assume the CS parser is idle */
1346
	if (GRAPHICS_VER(engine->i915) > 2 &&
1347
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1348 1349
		idle = false;

1350
	intel_engine_pm_put(engine);
1351 1352 1353 1354

	return idle;
}

1355
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1356
{
1357
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1358

1359
	if (!t->callback)
1360 1361
		return;

1362 1363 1364 1365
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1366
			t->callback(t);
1367
		tasklet_unlock(t);
1368
	}
1369
	local_bh_enable();
1370 1371 1372 1373

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1374 1375
}

1376 1377 1378 1379 1380 1381 1382 1383 1384
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1385
	/* More white lies, if wedged, hw state is inconsistent */
1386
	if (intel_gt_is_wedged(engine->gt))
1387 1388
		return true;

1389
	if (!intel_engine_pm_is_awake(engine))
1390 1391
		return true;

1392
	/* Waiting to drain ELSP? */
1393
	intel_synchronize_hardirq(engine->i915);
1394
	intel_engine_flush_submission(engine);
1395

1396
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1397
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1398 1399
		return false;

1400
	/* Ring stopped? */
1401
	return ring_is_idle(engine);
1402 1403
}

1404
bool intel_engines_are_idle(struct intel_gt *gt)
1405 1406 1407 1408
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1409 1410
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1411 1412
	 * report that it is still busy, even though we have stopped using it.
	 */
1413
	if (intel_gt_is_wedged(gt))
1414 1415
		return true;

1416
	/* Already parked (and passed an idleness test); must still be idle */
1417
	if (!READ_ONCE(gt->awake))
1418 1419
		return true;

1420
	for_each_engine(engine, gt, id) {
1421 1422 1423 1424 1425 1426 1427
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1452
void intel_engines_reset_default_submission(struct intel_gt *gt)
1453 1454 1455 1456
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1457 1458 1459 1460
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1461
		engine->set_default_submission(engine);
1462
	}
1463 1464
}

1465 1466
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1467
	switch (GRAPHICS_VER(engine->i915)) {
1468 1469 1470 1471 1472
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1473 1474
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1475 1476 1477 1478 1479 1480 1481
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1482 1483 1484 1485 1486
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1487
	 * Even though we are holding the engine->sched_engine->lock here, there
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1547
		drm_printf(m, "[%04zx] %s\n", pos, line);
1548 1549 1550 1551 1552 1553

		prev = buf + pos;
		skip = false;
	}
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1565
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1566
					 struct drm_printer *m)
1567 1568
{
	struct drm_i915_private *dev_priv = engine->i915;
1569
	struct intel_engine_execlists * const execlists = &engine->execlists;
1570 1571
	u64 addr;

1572
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1573
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1574 1575 1576 1577 1578 1579
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1580
	drm_printf(m, "\tRING_START: 0x%08x\n",
1581
		   ENGINE_READ(engine, RING_START));
1582
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1583
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1584
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1585
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1586
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1587 1588
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1589
	if (GRAPHICS_VER(engine->i915) > 2) {
1590
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1591 1592
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1593
	}
1594

1595
	if (GRAPHICS_VER(dev_priv) >= 6) {
1596
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1597
			   ENGINE_READ(engine, RING_IMR));
1598 1599 1600 1601 1602 1603
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1604 1605
	}

1606 1607 1608 1609 1610 1611
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1612
	if (GRAPHICS_VER(dev_priv) >= 8)
1613
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1614
	else if (GRAPHICS_VER(dev_priv) >= 4)
1615
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1616
	else
1617
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1618 1619
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1620
	if (GRAPHICS_VER(dev_priv) >= 4) {
1621
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1622
			   ENGINE_READ(engine, RING_IPEIR));
1623
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1624
			   ENGINE_READ(engine, RING_IPEHR));
1625
	} else {
1626 1627
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1628
	}
1629

1630
	if (intel_engine_uses_guc(engine)) {
1631 1632
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1633
		struct i915_request * const *port, *rq;
1634 1635
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1636
		const u8 num_entries = execlists->csb_size;
1637
		unsigned int idx;
1638
		u8 read, write;
1639

1640
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1641
			   yesno(test_bit(TASKLET_STATE_SCHED,
1642 1643
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1644
			   repr_timer(&engine->execlists.preempt),
1645
			   repr_timer(&engine->execlists.timer));
1646

1647 1648 1649
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1650 1651 1652 1653 1654
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1655
		if (read >= num_entries)
1656
			read = 0;
1657
		if (write >= num_entries)
1658 1659
			write = 0;
		if (read > write)
1660
			write += num_entries;
1661
		while (read < write) {
1662 1663 1664
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1665 1666
		}

1667
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1668
		rcu_read_lock();
1669
		for (port = execlists->active; (rq = *port); port++) {
1670
			char hdr[160];
1671 1672
			int len;

1673
			len = scnprintf(hdr, sizeof(hdr),
1674
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1675
					(int)(port - execlists->active),
1676 1677 1678
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1679
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1680
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1681
			i915_request_show(m, rq, hdr, 0);
1682 1683
		}
		for (port = execlists->pending; (rq = *port); port++) {
1684 1685
			char hdr[160];
			int len;
1686

1687
			len = scnprintf(hdr, sizeof(hdr),
1688
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1689
					(int)(port - execlists->pending),
1690 1691 1692
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1693 1694
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1695
			i915_request_show(m, rq, hdr, 0);
1696
		}
1697
		rcu_read_unlock();
1698
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1699
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1700
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1701
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1702
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1703
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1704
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1705
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1706
	}
1707 1708
}

1709 1710
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
1711
	struct i915_vma_snapshot *vsnap = &rq->batch_snapshot;
1712 1713 1714
	void *ring;
	int size;

1715 1716 1717
	if (!i915_vma_snapshot_present(vsnap))
		vsnap = NULL;

1718 1719 1720
	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
1721 1722
		   vsnap ? upper_32_bits(vsnap->vma_resource->start) : ~0u,
		   vsnap ? lower_32_bits(vsnap->vma_resource->start) : ~0u);
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1884 1885 1886 1887 1888
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1889
	struct i915_request *rq;
1890
	intel_wakeref_t wakeref;
1891
	unsigned long flags;
1892
	ktime_t dummy;
1893 1894 1895 1896 1897 1898 1899 1900 1901

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1902
	if (intel_gt_is_wedged(engine->gt))
1903 1904
		drm_printf(m, "*** WEDGED ***\n");

1905
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1906 1907
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1908 1909
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1910 1911 1912 1913
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1914
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1915
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1916 1917 1918 1919 1920 1921 1922

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1923 1924 1925
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1926
	print_properties(engine, m);
1927

1928
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1929
	engine_dump_active_requests(engine, m);
1930

1931 1932 1933
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1934

1935
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1936
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1937
	if (wakeref) {
1938
		intel_engine_print_registers(engine, m);
1939
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1940 1941 1942
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1943

C
Chris Wilson 已提交
1944
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1945

1946
	drm_printf(m, "HWSP:\n");
1947
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1948

1949
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1950 1951

	intel_engine_print_breadcrumbs(engine, m);
1952 1953
}

1954 1955 1956
/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1957
 * @now: monotonic timestamp of sampling
1958 1959 1960
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1961
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1962
{
1963
	return engine->busyness(engine, now);
1964 1965
}

1966 1967
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
1968
			    unsigned int count, unsigned long flags)
1969 1970 1971 1972
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

1973
	if (count == 1 && !(flags & FORCE_VIRTUAL))
1974 1975 1976
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
1977
	return siblings[0]->cops->create_virtual(siblings, count, flags);
1978 1979
}

1980
struct i915_request *
1981
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1982 1983 1984
{
	struct i915_request *request, *active = NULL;

1985 1986 1987 1988 1989 1990 1991
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
2003
	lockdep_assert_held(&engine->sched_engine->lock);
2004 2005 2006 2007 2008 2009 2010

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2011
			if (__i915_request_is_complete(request))
2012 2013 2014 2015 2016 2017 2018 2019 2020
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

2021 2022
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
2023
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2024
			continue;
2025 2026 2027 2028 2029 2030 2031 2032

		active = request;
		break;
	}

	return active;
}

2033
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2034
#include "mock_engine.c"
2035
#include "selftest_engine.c"
2036
#include "selftest_engine_cs.c"
2037
#endif