intel_engine_cs.c 47.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_breadcrumbs.h"
32
#include "intel_context.h"
33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		/* fall through */
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278
	struct drm_i915_private *i915 = gt->i915;
279 280
	struct intel_engine_cs *engine;

281 282 283
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

284 285 286
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

287
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 289
		return -EINVAL;

290
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 292
		return -EINVAL;

293
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 295
		return -EINVAL;

296 297 298
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
299

300 301
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

302
	engine->id = id;
303
	engine->legacy_idx = INVALID_ENGINE;
304
	engine->mask = BIT(id);
305
	engine->i915 = i915;
306 307
	engine->gt = gt;
	engine->uncore = gt->uncore;
308
	engine->hw_id = engine->guc_id = info->hw_id;
309
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310

311 312
	engine->class = info->class;
	engine->instance = info->instance;
313
	__sprint_engine_name(engine);
314

315 316
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 318
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 320
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 322
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
323 324
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
325

326 327 328 329
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

330 331
	engine->defaults = engine->props; /* never to change again */

332
	engine->context_size = intel_engine_context_size(gt, engine->class);
333 334
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
335
	if (engine->context_size)
336
		DRIVER_CAPS(i915)->has_logical_contexts = true;
337

338 339 340
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

341
	ewma__engine_latency_init(&engine->latency);
342
	seqlock_init(&engine->stats.lock);
343

344 345
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

346 347 348
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

349
	gt->engine_class[info->class][info->instance] = engine;
350
	gt->engine[id] = engine;
351

352
	return 0;
353 354
}

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
374
		     engine->gt->info.vdbox_sfc_access & engine->mask) ||
375 376 377 378 379 380 381 382 383 384
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

385
static void intel_setup_engine_capabilities(struct intel_gt *gt)
386 387 388 389
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

390
	for_each_engine(engine, gt, id)
391 392 393
		__setup_engine_capabilities(engine);
}

394
/**
395
 * intel_engines_release() - free the resources allocated for Command Streamers
396
 * @gt: pointer to struct intel_gt
397
 */
398
void intel_engines_release(struct intel_gt *gt)
399 400 401 402
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

403 404 405 406 407 408 409 410 411 412 413 414 415
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

416
	/* Decouple the backend; but keep the layout for late GPU resets */
417
	for_each_engine(engine, gt, id) {
418 419 420
		if (!engine->release)
			continue;

421 422 423
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

424 425 426 427
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
428 429 430
	}
}

431 432 433 434 435 436 437 438
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

439 440 441 442 443
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

444 445 446
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

447
	for_each_engine(engine, gt, id) {
448
		intel_engine_free_request_pool(engine);
449 450 451 452 453
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
467
	struct intel_gt_info *info = &gt->info;
468 469 470 471 472 473 474
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

475 476
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
504
			gt->info.vdbox_sfc_access |= BIT(i);
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

528
/**
529
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
530
 * @gt: pointer to struct intel_gt
531 532 533
 *
 * Return: non-zero if the initialization failed.
 */
534
int intel_engines_init_mmio(struct intel_gt *gt)
535
{
536
	struct drm_i915_private *i915 = gt->i915;
537
	const unsigned int engine_mask = init_engine_mask(gt);
538
	unsigned int mask = 0;
539
	unsigned int i;
540
	int err;
541

542 543 544
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
545

546
	if (i915_inject_probe_failure(i915))
547 548
		return -ENODEV;

549
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
550
		if (!HAS_ENGINE(gt, i))
551 552
			continue;

553
		err = intel_engine_setup(gt, i);
554 555 556
		if (err)
			goto cleanup;

557
		mask |= BIT(i);
558 559 560 561 562 563 564
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
565
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
566
		gt->info.engine_mask = mask;
567

568
	gt->info.num_engines = hweight32(mask);
569

570
	intel_gt_check_and_clear_faults(gt);
571

572
	intel_setup_engine_capabilities(gt);
573

574 575
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

576 577 578
	return 0;

cleanup:
579
	intel_engines_free(gt);
580 581 582
	return err;
}

583
void intel_engine_init_execlists(struct intel_engine_cs *engine)
584 585 586
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

587
	execlists->port_mask = 1;
588
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
589 590
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

591 592 593 594
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

595
	execlists->queue_priority_hint = INT_MIN;
596
	execlists->queue = RB_ROOT_CACHED;
597 598
}

599
static void cleanup_status_page(struct intel_engine_cs *engine)
600
{
601 602
	struct i915_vma *vma;

603 604 605
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

606 607 608
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
609

610 611 612 613
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
614
	i915_gem_object_put(vma->obj);
615 616 617 618 619 620 621
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

622
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
623 624 625 626 627 628 629 630 631 632 633
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
634
		flags = PIN_MAPPABLE;
635
	else
636
		flags = PIN_HIGH;
637

638
	return i915_ggtt_pin(vma, NULL, 0, flags);
639 640 641 642 643 644 645 646 647
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

648 649 650 651 652 653 654
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
655 656
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
657 658
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
659 660 661
		return PTR_ERR(obj);
	}

662
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
663

664
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
665 666 667 668 669 670 671 672
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
673
		goto err;
674 675
	}

676
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
677
	engine->status_page.vma = vma;
678 679 680 681 682 683 684

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

685 686 687
	return 0;

err_unpin:
688
	i915_gem_object_unpin_map(obj);
689 690 691 692 693
err:
	i915_gem_object_put(obj);
	return ret;
}

694
static int engine_setup_common(struct intel_engine_cs *engine)
695 696 697
{
	int err;

698 699
	init_llist_head(&engine->barrier_tasks);

700 701 702 703
	err = init_status_page(engine);
	if (err)
		return err;

704 705 706 707 708 709
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

710
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
711
	intel_engine_init_execlists(engine);
712
	intel_engine_init_cmd_parser(engine);
713
	intel_engine_init__pm(engine);
714
	intel_engine_init_retire(engine);
715

716 717
	/* Use the whole device by default */
	engine->sseu =
718
		intel_sseu_from_device_info(&engine->gt->info.sseu);
719

720 721 722 723
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

724
	return 0;
725 726 727 728

err_status:
	cleanup_status_page(engine);
	return err;
729 730
}

731 732 733
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
734
	u32 cs[2048];
735 736
};

737
static int measure_breadcrumb_dw(struct intel_context *ce)
738
{
739
	struct intel_engine_cs *engine = ce->engine;
740
	struct measure_breadcrumb *frame;
741
	int dw;
742

743
	GEM_BUG_ON(!engine->gt->scratch);
744 745 746 747 748

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

749 750 751
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
752

753 754
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
755 756
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
757 758 759
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
760

761
	mutex_lock(&ce->timeline->mutex);
762
	spin_lock_irq(&engine->active.lock);
763

764
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
765

766
	spin_unlock_irq(&engine->active.lock);
767
	mutex_unlock(&ce->timeline->mutex);
768

769
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
770

771
	kfree(frame);
772 773 774
	return dw;
}

775 776 777 778
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
779
	INIT_LIST_HEAD(&engine->active.hold);
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

797
static struct intel_context *
798 799 800 801
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
802 803 804 805
{
	struct intel_context *ce;
	int err;

806
	ce = intel_context_create(engine);
807 808 809
	if (IS_ERR(ce))
		return ce;

810
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
811
	ce->timeline = page_pack_bits(NULL, hwsp);
812

813
	err = intel_context_pin(ce); /* perma-pin so it is always available */
814 815 816 817 818
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

819 820 821 822 823 824
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
825
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
826

827 828 829
	return ce;
}

830 831 832 833 834 835 836 837 838
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

839 840 841 842 843 844 845 846 847 848 849
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
850
static int engine_init_common(struct intel_engine_cs *engine)
851
{
852
	struct intel_context *ce;
853 854
	int ret;

855 856
	engine->set_default_submission(engine);

857 858
	/*
	 * We may need to do things with the shrinker which
859 860 861 862 863 864
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
865 866 867 868
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

869 870 871 872 873
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
874
	engine->kernel_context = ce;
875

876
	return 0;
877 878 879 880

err_context:
	intel_context_put(ce);
	return ret;
881
}
882

883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

914 915 916 917 918 919 920 921 922
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
923
	GEM_BUG_ON(!list_empty(&engine->active.requests));
924
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
925

926
	cleanup_status_page(engine);
927
	intel_breadcrumbs_free(engine->breadcrumbs);
928

929
	intel_engine_fini_retire(engine);
930
	intel_engine_cleanup_cmd_parser(engine);
931

932
	if (engine->default_state)
933
		fput(engine->default_state);
934

935 936 937 938
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
939
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
940

941
	intel_wa_list_free(&engine->ctx_wa_list);
942
	intel_wa_list_free(&engine->wa_list);
943
	intel_wa_list_free(&engine->whitelist);
944
}
945

946 947 948 949 950 951 952 953 954 955 956 957 958 959
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

960
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
961
{
962 963
	struct drm_i915_private *i915 = engine->i915;

964 965
	u64 acthd;

966 967 968 969
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
970
	else
971
		acthd = ENGINE_READ(engine, ACTHD);
972 973 974 975

	return acthd;
}

976
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
977 978 979
{
	u64 bbaddr;

980 981
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
982
	else
983
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
984 985 986

	return bbaddr;
}
987

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1003 1004
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
1005
	struct intel_uncore *uncore = engine->uncore;
1006 1007 1008 1009
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

1010
	if (INTEL_GEN(engine->i915) < 3)
1011 1012
		return -ENODEV;

1013
	ENGINE_TRACE(engine, "\n");
1014

1015
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1016 1017

	err = 0;
1018
	if (__intel_wait_for_register_fw(uncore,
1019
					 mode, MODE_IDLE, MODE_IDLE,
1020
					 1000, stop_timeout(engine),
1021
					 NULL)) {
1022
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1023 1024 1025 1026
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1027
	intel_uncore_posting_read_fw(uncore, mode);
1028 1029 1030 1031

	return err;
}

1032 1033
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1034
	ENGINE_TRACE(engine, "\n");
1035

1036
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1037 1038
}

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1050
static u32
1051 1052
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1053
{
1054 1055
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1056
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1057 1058
	enum forcewake_domains fw_domains;

1059
	if (INTEL_GEN(i915) >= 11) {
1060 1061
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1062
	} else {
1063 1064
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1065 1066
	}

1067
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1068
						    FW_REG_READ);
1069
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1070 1071 1072
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1073 1074
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1075

1076
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1077

1078 1079
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1080
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1081

1082
	val = intel_uncore_read_fw(uncore, reg);
1083

1084 1085
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1086

1087
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1088

1089 1090
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1091

1092
	return val;
1093 1094 1095
}

/* NB: please notice the memset */
1096
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1097 1098
			       struct intel_instdone *instdone)
{
1099
	struct drm_i915_private *i915 = engine->i915;
1100
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1101
	struct intel_uncore *uncore = engine->uncore;
1102 1103 1104 1105 1106 1107
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1108
	switch (INTEL_GEN(i915)) {
1109
	default:
1110 1111
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1112

1113
		if (engine->id != RCS0)
1114 1115
			break;

1116 1117
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1118 1119 1120 1121 1122 1123
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1124
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1125
			instdone->sampler[slice][subslice] =
1126
				read_subslice_reg(engine, slice, subslice,
1127 1128
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1129
				read_subslice_reg(engine, slice, subslice,
1130 1131 1132 1133
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1134 1135
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1136

1137
		if (engine->id != RCS0)
1138 1139
			break;

1140 1141 1142 1143 1144 1145
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1146 1147 1148 1149 1150

		break;
	case 6:
	case 5:
	case 4:
1151 1152
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1153
		if (engine->id == RCS0)
1154
			/* HACK: Using the wrong struct member */
1155 1156
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1157 1158 1159
		break;
	case 3:
	case 2:
1160
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1161 1162 1163
		break;
	}
}
1164

1165 1166 1167 1168
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1169 1170 1171
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1172
	if (!intel_engine_pm_get_if_awake(engine))
1173
		return true;
1174

1175
	/* First check that no commands are left in the ring */
1176 1177
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1178
		idle = false;
1179

1180
	/* No bit for gen2, so assume the CS parser is idle */
1181
	if (INTEL_GEN(engine->i915) > 2 &&
1182
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1183 1184
		idle = false;

1185
	intel_engine_pm_put(engine);
1186 1187 1188 1189

	return idle;
}

1190
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1191 1192 1193
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1194 1195 1196
	if (!t->func)
		return;

1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
	/* Synchronise and wait for the tasklet on another CPU */
	tasklet_kill(t);

	/* Having cancelled the tasklet, ensure that is run */
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1207
	}
1208
	local_bh_enable();
1209 1210
}

1211 1212 1213 1214 1215 1216 1217 1218 1219
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1220
	/* More white lies, if wedged, hw state is inconsistent */
1221
	if (intel_gt_is_wedged(engine->gt))
1222 1223
		return true;

1224
	if (!intel_engine_pm_is_awake(engine))
1225 1226
		return true;

1227
	/* Waiting to drain ELSP? */
1228
	if (execlists_active(&engine->execlists)) {
1229
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1230

1231
		intel_engine_flush_submission(engine);
1232

1233
		if (execlists_active(&engine->execlists))
1234 1235
			return false;
	}
1236

1237
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1238
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1239 1240
		return false;

1241
	/* Ring stopped? */
1242
	return ring_is_idle(engine);
1243 1244
}

1245
bool intel_engines_are_idle(struct intel_gt *gt)
1246 1247 1248 1249
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1250 1251
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1252 1253
	 * report that it is still busy, even though we have stopped using it.
	 */
1254
	if (intel_gt_is_wedged(gt))
1255 1256
		return true;

1257
	/* Already parked (and passed an idleness test); must still be idle */
1258
	if (!READ_ONCE(gt->awake))
1259 1260
		return true;

1261
	for_each_engine(engine, gt, id) {
1262 1263 1264 1265 1266 1267 1268
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1269
void intel_engines_reset_default_submission(struct intel_gt *gt)
1270 1271 1272 1273
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1274
	for_each_engine(engine, gt, id)
1275 1276 1277
		engine->set_default_submission(engine);
}

1278 1279 1280 1281 1282 1283 1284 1285
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1286 1287
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1288 1289 1290 1291 1292 1293 1294
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1295
static int print_sched_attr(const struct i915_sched_attr *attr,
1296
			    char *buf, int x, int len)
1297 1298
{
	if (attr->priority == I915_PRIORITY_INVALID)
1299 1300 1301 1302
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1303

1304
	return x;
1305 1306
}

1307
static void print_request(struct drm_printer *m,
1308
			  struct i915_request *rq,
1309 1310
			  const char *prefix)
{
1311
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1312
	char buf[80] = "";
1313 1314
	int x = 0;

1315
	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1316

1317
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1318
		   prefix,
1319
		   rq->fence.context, rq->fence.seqno,
1320 1321 1322
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1323 1324
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1325
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1326 1327
			    &rq->fence.flags) ? "-" :
		   "",
1328
		   buf,
1329
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1330
		   name);
1331 1332
}

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1398
		drm_printf(m, "[%04zx] %s\n", pos, line);
1399 1400 1401 1402 1403 1404

		prev = buf + pos;
		skip = false;
	}
}

1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1416
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1417
					 struct drm_printer *m)
1418 1419
{
	struct drm_i915_private *dev_priv = engine->i915;
1420
	struct intel_engine_execlists * const execlists = &engine->execlists;
1421 1422
	u64 addr;

1423
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1424
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1425 1426 1427 1428 1429 1430
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1431
	drm_printf(m, "\tRING_START: 0x%08x\n",
1432
		   ENGINE_READ(engine, RING_START));
1433
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1434
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1435
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1436
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1437
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1438 1439
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1440 1441
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1442 1443
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1444
	}
1445 1446

	if (INTEL_GEN(dev_priv) >= 6) {
1447
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1448
			   ENGINE_READ(engine, RING_IMR));
1449 1450 1451 1452 1453 1454
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1455 1456
	}

1457 1458 1459 1460 1461 1462
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1463
	if (INTEL_GEN(dev_priv) >= 8)
1464
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1465
	else if (INTEL_GEN(dev_priv) >= 4)
1466
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1467
	else
1468
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1469 1470 1471 1472
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1473
			   ENGINE_READ(engine, RING_IPEIR));
1474
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1475
			   ENGINE_READ(engine, RING_IPEHR));
1476
	} else {
1477 1478
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1479
	}
1480

1481
	if (HAS_EXECLISTS(dev_priv)) {
1482
		struct i915_request * const *port, *rq;
1483 1484
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1485
		const u8 num_entries = execlists->csb_size;
1486
		unsigned int idx;
1487
		u8 read, write;
1488

1489
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1490 1491 1492
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1493
			   repr_timer(&engine->execlists.preempt),
1494
			   repr_timer(&engine->execlists.timer));
1495

1496 1497 1498
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1499 1500 1501 1502 1503
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1504
		if (read >= num_entries)
1505
			read = 0;
1506
		if (write >= num_entries)
1507 1508
			write = 0;
		if (read > write)
1509
			write += num_entries;
1510
		while (read < write) {
1511 1512 1513
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1514 1515
		}

1516
		execlists_active_lock_bh(execlists);
1517
		rcu_read_lock();
1518
		for (port = execlists->active; (rq = *port); port++) {
1519
			char hdr[160];
1520 1521
			int len;

1522
			len = scnprintf(hdr, sizeof(hdr),
1523
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1524
					(int)(port - execlists->active),
1525 1526 1527
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1528
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1529
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1530 1531 1532
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1533 1534
			char hdr[160];
			int len;
1535

1536
			len = scnprintf(hdr, sizeof(hdr),
1537
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1538
					(int)(port - execlists->pending),
1539 1540 1541
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1542 1543 1544
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
1545
		}
1546
		rcu_read_unlock();
1547
		execlists_active_unlock_bh(execlists);
1548 1549
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1550
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1551
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1552
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1553
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1554
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1555
	}
1556 1557
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1602 1603 1604 1605 1606
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1607
	struct i915_request *rq;
1608
	intel_wakeref_t wakeref;
1609
	unsigned long flags;
1610
	ktime_t dummy;
1611 1612 1613 1614 1615 1616 1617 1618 1619

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1620
	if (intel_gt_is_wedged(engine->gt))
1621 1622
		drm_printf(m, "*** WEDGED ***\n");

1623
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1624 1625
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1626 1627
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1628 1629 1630 1631
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1632 1633
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
		   engine->fw_domain, atomic_read(&engine->fw_active));
1634 1635 1636 1637 1638 1639 1640

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1641 1642 1643 1644 1645 1646
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1647
	spin_lock_irqsave(&engine->active.lock, flags);
1648
	rq = intel_engine_find_active_request(engine);
1649
	if (rq) {
1650 1651
		struct intel_timeline *tl = get_timeline(rq);

1652
		print_request(m, rq, "\t\tactive ");
1653

1654
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1655
			   i915_ggtt_offset(rq->ring->vma));
1656
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1657
			   rq->ring->head);
1658
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1659
			   rq->ring->tail);
1660 1661 1662 1663
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1664 1665 1666 1667 1668 1669

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1670 1671

		print_request_ring(m, rq);
1672

1673
		if (rq->context->lrc_reg_state) {
1674
			drm_printf(m, "Logical Ring Context:\n");
1675
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1676
		}
1677
	}
1678
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1679
	spin_unlock_irqrestore(&engine->active.lock, flags);
1680

1681
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1682
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1683
	if (wakeref) {
1684
		intel_engine_print_registers(engine, m);
1685
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1686 1687 1688
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1689

1690
	intel_execlists_show_requests(engine, m, print_request, 8);
1691

1692
	drm_printf(m, "HWSP:\n");
1693
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1694

1695
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1696 1697

	intel_engine_print_breadcrumbs(engine, m);
1698 1699
}

1700 1701
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1702 1703 1704 1705 1706 1707 1708
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1709
	*now = ktime_get();
1710
	if (atomic_read(&engine->stats.active))
1711
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1712 1713 1714 1715 1716 1717 1718

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1719
 * @now: monotonic timestamp of sampling
1720 1721 1722
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1723
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1724
{
1725
	unsigned int seq;
1726 1727
	ktime_t total;

1728 1729
	do {
		seq = read_seqbegin(&engine->stats.lock);
1730
		total = __intel_engine_get_busy_time(engine, now);
1731
	} while (read_seqretry(&engine->stats.lock, seq));
1732 1733 1734 1735

	return total;
}

1736 1737
static bool match_ring(struct i915_request *rq)
{
1738
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1759
	lockdep_assert_held(&engine->active.lock);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1777
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1778 1779 1780 1781
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1782
			continue;
1783 1784 1785

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1786
			continue;
1787 1788 1789 1790 1791 1792 1793 1794

		active = request;
		break;
	}

	return active;
}

1795
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1796
#include "mock_engine.c"
1797
#include "selftest_engine.c"
1798
#include "selftest_engine_cs.c"
1799
#endif