intel_engine_cs.c 52.6 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
39 40 41

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

42
#define MAX_MMIO_BASES 3
43
struct engine_info {
44 45
	u8 class;
	u8 instance;
46
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
47
	struct engine_mmio_base {
48
		u32 graphics_ver : 8;
49 50
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
51 52 53
};

static const struct engine_info intel_engines[] = {
54
	[RCS0] = {
55 56
		.class = RENDER_CLASS,
		.instance = 0,
57
		.mmio_bases = {
58
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
59
		},
60
	},
61
	[BCS0] = {
62 63
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
64
		.mmio_bases = {
65
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
66
		},
67
	},
68
	[VCS0] = {
69 70
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
71
		.mmio_bases = {
72 73 74
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
75
		},
76
	},
77
	[VCS1] = {
78 79
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
80
		.mmio_bases = {
81 82
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
83
		},
84
	},
85
	[VCS2] = {
86 87
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
88
		.mmio_bases = {
89
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
90
		},
91
	},
92
	[VCS3] = {
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
97
		},
98
	},
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
	[VCS4] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 4,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
		},
	},
	[VCS5] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 5,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
		},
	},
	[VCS6] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 6,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
		},
	},
	[VCS7] = {
		.class = VIDEO_DECODE_CLASS,
		.instance = 7,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
		},
	},
127
	[VECS0] = {
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130
		.mmio_bases = {
131 132
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
133
		},
134
	},
135
	[VECS1] = {
136 137
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
138
		.mmio_bases = {
139
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
140
		},
141
	},
142 143 144 145 146 147 148 149 150 151 152 153 154 155
	[VECS2] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 2,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
		},
	},
	[VECS3] = {
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 3,
		.mmio_bases = {
			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
		},
	},
156 157
};

158
/**
159
 * intel_engine_context_size() - return the size of the context for an engine
160
 * @gt: the gt
161 162 163 164 165 166 167 168 169 170 171
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
172
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
173
{
174
	struct intel_uncore *uncore = gt->uncore;
175 176 177 178 179 180
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
181
		switch (GRAPHICS_VER(gt->i915)) {
182
		default:
183
			MISSING_CASE(GRAPHICS_VER(gt->i915));
184
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185
		case 12:
186 187
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
188 189 190
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
191
			return GEN8_LR_CONTEXT_RENDER_SIZE;
192
		case 7:
193
			if (IS_HASWELL(gt->i915))
194 195
				return HSW_CXT_TOTAL_SIZE;

196
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
197 198 199
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
200
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
201 202 203
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
204
		case 4:
205 206 207 208 209 210 211 212 213 214
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
215
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
216
			drm_dbg(&gt->i915->drm,
217 218
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
219
				cxt_size - 1);
220
			return round_up(cxt_size * 64, PAGE_SIZE);
221 222 223 224 225 226 227 228 229
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
230
		fallthrough;
231 232 233
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
234
		if (GRAPHICS_VER(gt->i915) < 8)
235 236 237 238 239
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

240 241 242 243 244 245
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
246
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
247 248 249 250 251 252 253 254
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

255
static void __sprint_engine_name(struct intel_engine_cs *engine)
256
{
257 258 259 260 261 262 263 264
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
265 266
}

267 268 269 270 271 272
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
273
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
274 275
		return;

276
	if (GRAPHICS_VER(engine->i915) >= 3)
277
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
278
	else
279
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
280 281 282 283 284 285 286 287
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

288 289 290 291 292
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

293
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
294 295
{
	const struct engine_info *info = &intel_engines[id];
296
	struct drm_i915_private *i915 = gt->i915;
297
	struct intel_engine_cs *engine;
298
	u8 guc_class;
299

300 301
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
302 303
	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
304

305 306 307
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

308
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
309 310
		return -EINVAL;

311
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
312 313
		return -EINVAL;

314
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
315 316
		return -EINVAL;

317 318 319
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
320

321 322
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

323
	INIT_LIST_HEAD(&engine->pinned_contexts_list);
324
	engine->id = id;
325
	engine->legacy_idx = INVALID_ENGINE;
326
	engine->mask = BIT(id);
327
	engine->i915 = i915;
328 329
	engine->gt = gt;
	engine->uncore = gt->uncore;
330 331 332
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
333

334 335
	engine->irq_handler = nop_irq_handler;

336 337
	engine->class = info->class;
	engine->instance = info->instance;
338
	__sprint_engine_name(engine);
339

340 341
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
342 343
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
344 345
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
346 347
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
348 349
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
350

351
	/* Override to uninterruptible for OpenCL workloads. */
352
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
353 354
		engine->props.preempt_timeout_ms = 0;

355 356
	engine->defaults = engine->props; /* never to change again */

357
	engine->context_size = intel_engine_context_size(gt, engine->class);
358 359
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
360
	if (engine->context_size)
361
		DRIVER_CAPS(i915)->has_logical_contexts = true;
362

363
	ewma__engine_latency_init(&engine->latency);
364
	seqcount_init(&engine->stats.lock);
365

366 367
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

368 369 370
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

371
	gt->engine_class[info->class][info->instance] = engine;
372
	gt->engine[id] = engine;
373

374
	return 0;
375 376
}

377 378 379 380 381 382 383 384 385
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
386 387
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
388 389 390 391 392 393 394
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
395
		if ((GRAPHICS_VER(i915) >= 11 &&
396 397
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
398
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
399 400 401
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
402 403
		if (GRAPHICS_VER(i915) >= 9 &&
		    engine->gt->info.sfc_mask & BIT(engine->instance))
404 405 406 407 408
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

409
static void intel_setup_engine_capabilities(struct intel_gt *gt)
410 411 412 413
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

414
	for_each_engine(engine, gt, id)
415 416 417
		__setup_engine_capabilities(engine);
}

418
/**
419
 * intel_engines_release() - free the resources allocated for Command Streamers
420
 * @gt: pointer to struct intel_gt
421
 */
422
void intel_engines_release(struct intel_gt *gt)
423 424 425 426
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

427 428 429 430 431 432 433 434 435 436 437 438 439
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

440
	/* Decouple the backend; but keep the layout for late GPU resets */
441
	for_each_engine(engine, gt, id) {
442 443 444
		if (!engine->release)
			continue;

445 446 447
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

448 449 450 451
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
452 453 454
	}
}

455 456 457 458 459 460 461 462
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

463 464 465 466 467
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

468 469 470
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

471
	for_each_engine(engine, gt, id) {
472
		intel_engine_free_request_pool(engine);
473 474 475 476 477
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

478
static
479
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
480 481 482
			 unsigned int physical_vdbox,
			 unsigned int logical_vdbox, u16 vdbox_mask)
{
483 484
	struct drm_i915_private *i915 = gt->i915;

485 486 487 488 489 490
	/*
	 * In Gen11, only even numbered logical VDBOXes are hooked
	 * up to an SFC (Scaler & Format Converter) unit.
	 * In Gen12, Even numbered physical instance always are connected
	 * to an SFC. Odd numbered physical instances have SFC only if
	 * previous even instance is fused off.
491 492 493
	 *
	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
	 * in the fuse register that tells us whether a specific SFC is present.
494
	 */
495 496 497
	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
		return false;
	else if (GRAPHICS_VER(i915) == 12)
498 499 500 501 502 503 504 505 506
		return (physical_vdbox % 2 == 0) ||
			!(BIT(physical_vdbox - 1) & vdbox_mask);
	else if (GRAPHICS_VER(i915) == 11)
		return logical_vdbox % 2 == 0;

	MISSING_CASE(GRAPHICS_VER(i915));
	return false;
}

507 508 509 510 511 512 513 514 515 516 517 518 519
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
520
	struct intel_gt_info *info = &gt->info;
521 522 523
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
524
	u32 media_fuse, fuse1;
525 526 527
	u16 vdbox_mask;
	u16 vebox_mask;

528 529
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

530
	if (GRAPHICS_VER(i915) < 11)
531 532
		return info->engine_mask;

533 534 535 536 537 538 539 540
	/*
	 * On newer platforms the fusing register is called 'enable' and has
	 * enable semantics, while on older platforms it is called 'disable'
	 * and bits have disable semantices.
	 */
	media_fuse = intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
	if (GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
		media_fuse = ~media_fuse;
541 542 543 544 545

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

546 547 548 549 550 551 552
	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
		fuse1 = intel_uncore_read(uncore, HSW_PAVP_FUSE1);
		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
	} else {
		gt->info.sfc_mask = ~0;
	}

553 554 555 556 557 558 559 560 561 562 563 564
	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

565
		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
566
			gt->info.vdbox_sfc_access |= BIT(i);
567
		logical_vdbox++;
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

591
/**
592
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
593
 * @gt: pointer to struct intel_gt
594 595 596
 *
 * Return: non-zero if the initialization failed.
 */
597
int intel_engines_init_mmio(struct intel_gt *gt)
598
{
599
	struct drm_i915_private *i915 = gt->i915;
600
	const unsigned int engine_mask = init_engine_mask(gt);
601
	unsigned int mask = 0;
602
	unsigned int i;
603
	int err;
604

605 606 607
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
608

609
	if (i915_inject_probe_failure(i915))
610 611
		return -ENODEV;

612
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
613
		if (!HAS_ENGINE(gt, i))
614 615
			continue;

616
		err = intel_engine_setup(gt, i);
617 618 619
		if (err)
			goto cleanup;

620
		mask |= BIT(i);
621 622 623 624 625 626 627
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
628
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
629
		gt->info.engine_mask = mask;
630

631
	gt->info.num_engines = hweight32(mask);
632

633
	intel_gt_check_and_clear_faults(gt);
634

635
	intel_setup_engine_capabilities(gt);
636

637 638
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

639 640 641
	return 0;

cleanup:
642
	intel_engines_free(gt);
643 644 645
	return err;
}

646
void intel_engine_init_execlists(struct intel_engine_cs *engine)
647 648 649
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

650
	execlists->port_mask = 1;
651
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
652 653
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

654 655 656
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
657 658
}

659
static void cleanup_status_page(struct intel_engine_cs *engine)
660
{
661 662
	struct i915_vma *vma;

663 664 665
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

666 667 668
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
669

670 671 672 673
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
674
	i915_gem_object_put(vma->obj);
675 676 677
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
678
				struct i915_gem_ww_ctx *ww,
679 680 681 682
				struct i915_vma *vma)
{
	unsigned int flags;

683
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
684 685 686 687 688 689 690 691 692 693 694
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
695
		flags = PIN_MAPPABLE;
696
	else
697
		flags = PIN_HIGH;
698

699
	return i915_ggtt_pin(vma, ww, 0, flags);
700 701 702 703 704
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
705
	struct i915_gem_ww_ctx ww;
706 707 708 709
	struct i915_vma *vma;
	void *vaddr;
	int ret;

710 711
	INIT_LIST_HEAD(&engine->status_page.timelines);

712 713 714 715 716 717 718
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
719 720
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
721 722
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
723 724 725
		return PTR_ERR(obj);
	}

726
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
727

728
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
729 730
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
731
		goto err_put;
732 733
	}

734 735 736 737 738 739 740 741
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

742 743 744
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
745
		goto err_unpin;
746 747
	}

748
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
749
	engine->status_page.vma = vma;
750

751
err_unpin:
752 753
	if (ret)
		i915_vma_unpin(vma);
754
err:
755 756 757 758 759 760 761 762 763
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
764 765 766
	return ret;
}

767
static int engine_setup_common(struct intel_engine_cs *engine)
768 769 770
{
	int err;

771 772
	init_llist_head(&engine->barrier_tasks);

773 774 775 776
	err = init_status_page(engine);
	if (err)
		return err;

777 778 779 780 781 782
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

783 784 785 786 787
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}
788
	engine->sched_engine->private_data = engine;
789

790 791 792 793
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

794 795
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
796
	intel_engine_init_retire(engine);
797

798 799
	/* Use the whole device by default */
	engine->sseu =
800
		intel_sseu_from_device_info(&engine->gt->info.sseu);
801

802 803 804 805
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

806
	if (GRAPHICS_VER(engine->i915) >= 12)
807 808
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

809
	return 0;
810

811
err_cmd_parser:
812 813
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
814
	intel_breadcrumbs_put(engine->breadcrumbs);
815 816 817
err_status:
	cleanup_status_page(engine);
	return err;
818 819
}

820 821 822
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
823
	u32 cs[2048];
824 825
};

826
static int measure_breadcrumb_dw(struct intel_context *ce)
827
{
828
	struct intel_engine_cs *engine = ce->engine;
829
	struct measure_breadcrumb *frame;
830
	int dw;
831

832
	GEM_BUG_ON(!engine->gt->scratch);
833 834 835 836 837

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

838 839 840
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
841
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
842

843 844
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
845 846
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
847 848 849
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
850

851
	mutex_lock(&ce->timeline->mutex);
852
	spin_lock_irq(&engine->sched_engine->lock);
853

854
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
855

856
	spin_unlock_irq(&engine->sched_engine->lock);
857
	mutex_unlock(&ce->timeline->mutex);
858

859
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
860

861
	kfree(frame);
862 863 864
	return dw;
}

865 866 867 868 869 870 871
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
872 873 874 875
{
	struct intel_context *ce;
	int err;

876
	ce = intel_context_create(engine);
877 878 879
	if (IS_ERR(ce))
		return ce;

880
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
881
	ce->timeline = page_pack_bits(NULL, hwsp);
882 883
	ce->ring = NULL;
	ce->ring_size = ring_size;
884 885 886

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
887

888
	err = intel_context_pin(ce); /* perma-pin so it is always available */
889 890 891 892 893
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

894 895
	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);

896 897 898 899 900 901
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
902
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
903

904 905 906
	return ce;
}

907
void intel_engine_destroy_pinned_context(struct intel_context *ce)
908 909 910 911 912 913 914 915 916 917
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

918
	list_del(&ce->pinned_contexts_link);
919 920 921 922
	intel_context_unpin(ce);
	intel_context_put(ce);
}

923 924 925 926 927
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

928 929 930
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
931 932
}

933 934 935 936 937 938 939 940 941 942 943
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
944
static int engine_init_common(struct intel_engine_cs *engine)
945
{
946
	struct intel_context *ce;
947 948
	int ret;

949 950
	engine->set_default_submission(engine);

951 952
	/*
	 * We may need to do things with the shrinker which
953 954 955 956 957 958
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
959 960 961 962
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

963 964 965 966 967
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
968
	engine->kernel_context = ce;
969

970
	return 0;
971 972

err_context:
973
	intel_engine_destroy_pinned_context(ce);
974
	return ret;
975
}
976

977 978 979 980 981 982 983
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

984 985
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
986
		setup = intel_guc_submission_setup;
987 988
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
989
		setup = intel_execlists_submission_setup;
990 991
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
992
		setup = intel_ring_submission_setup;
993
	}
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
1023
	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1024

1025
	i915_sched_engine_put(engine->sched_engine);
1026
	intel_breadcrumbs_put(engine->breadcrumbs);
1027

1028
	intel_engine_fini_retire(engine);
1029
	intel_engine_cleanup_cmd_parser(engine);
1030

1031
	if (engine->default_state)
1032
		fput(engine->default_state);
1033

1034
	if (engine->kernel_context)
1035
		intel_engine_destroy_pinned_context(engine->kernel_context);
1036

1037
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1038
	cleanup_status_page(engine);
1039

1040
	intel_wa_list_free(&engine->ctx_wa_list);
1041
	intel_wa_list_free(&engine->wa_list);
1042
	intel_wa_list_free(&engine->whitelist);
1043
}
1044

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1059
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1060
{
1061 1062
	struct drm_i915_private *i915 = engine->i915;

1063 1064
	u64 acthd;

1065
	if (GRAPHICS_VER(i915) >= 8)
1066
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1067
	else if (GRAPHICS_VER(i915) >= 4)
1068
		acthd = ENGINE_READ(engine, RING_ACTHD);
1069
	else
1070
		acthd = ENGINE_READ(engine, ACTHD);
1071 1072 1073 1074

	return acthd;
}

1075
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1076 1077 1078
{
	u64 bbaddr;

1079
	if (GRAPHICS_VER(engine->i915) >= 8)
1080
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1081
	else
1082
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1083 1084 1085

	return bbaddr;
}
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1102 1103 1104
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1105
{
1106
	struct intel_uncore *uncore = engine->uncore;
1107
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1108 1109
	int err;

1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1126
	if (GRAPHICS_VER(engine->i915) < 3)
1127 1128
		return -ENODEV;

1129
	ENGINE_TRACE(engine, "\n");
1130
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1144 1145 1146 1147 1148
	}

	return err;
}

1149 1150
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1151
	ENGINE_TRACE(engine, "\n");
1152

1153
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1154 1155
}

1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1167
static u32
1168 1169
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1170
{
1171 1172
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1173 1174 1175
}

/* NB: please notice the memset */
1176
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1177 1178
			       struct intel_instdone *instdone)
{
1179
	struct drm_i915_private *i915 = engine->i915;
1180
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1181
	struct intel_uncore *uncore = engine->uncore;
1182 1183 1184
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;
1185
	int iter;
1186 1187 1188

	memset(instdone, 0, sizeof(*instdone));

1189
	if (GRAPHICS_VER(i915) >= 8) {
1190 1191
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1192

1193
		if (engine->id != RCS0)
1194
			return;
1195

1196 1197
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1198
		if (GRAPHICS_VER(i915) >= 12) {
1199 1200 1201 1202 1203
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
		} else {
			for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
				instdone->sampler[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_SAMPLER_INSTDONE);
				instdone->row[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  GEN7_ROW_INSTDONE);
			}
1223
		}
1224 1225 1226 1227 1228 1229 1230

		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
			for_each_instdone_gslice_dss_xehp(i915, sseu, iter, slice, subslice)
				instdone->geom_svg[slice][subslice] =
					read_subslice_reg(engine, slice, subslice,
							  XEHPG_INSTDONE_GEOM_SVG);
		}
1231
	} else if (GRAPHICS_VER(i915) >= 7) {
1232 1233
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1234

1235
		if (engine->id != RCS0)
1236
			return;
1237

1238 1239 1240 1241 1242 1243
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1244
	} else if (GRAPHICS_VER(i915) >= 4) {
1245 1246
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1247
		if (engine->id == RCS0)
1248
			/* HACK: Using the wrong struct member */
1249 1250
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1251
	} else {
1252
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1253 1254
	}
}
1255

1256 1257 1258 1259
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1260 1261 1262
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1263
	if (!intel_engine_pm_get_if_awake(engine))
1264
		return true;
1265

1266
	/* First check that no commands are left in the ring */
1267 1268
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1269
		idle = false;
1270

1271
	/* No bit for gen2, so assume the CS parser is idle */
1272
	if (GRAPHICS_VER(engine->i915) > 2 &&
1273
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1274 1275
		idle = false;

1276
	intel_engine_pm_put(engine);
1277 1278 1279 1280

	return idle;
}

1281
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1282
{
1283
	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1284

1285
	if (!t->callback)
1286 1287
		return;

1288 1289 1290 1291
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1292
			t->callback(t);
1293
		tasklet_unlock(t);
1294
	}
1295
	local_bh_enable();
1296 1297 1298 1299

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1300 1301
}

1302 1303 1304 1305 1306 1307 1308 1309 1310
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1311
	/* More white lies, if wedged, hw state is inconsistent */
1312
	if (intel_gt_is_wedged(engine->gt))
1313 1314
		return true;

1315
	if (!intel_engine_pm_is_awake(engine))
1316 1317
		return true;

1318
	/* Waiting to drain ELSP? */
1319
	intel_synchronize_hardirq(engine->i915);
1320
	intel_engine_flush_submission(engine);
1321

1322
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1323
	if (!i915_sched_engine_is_empty(engine->sched_engine))
1324 1325
		return false;

1326
	/* Ring stopped? */
1327
	return ring_is_idle(engine);
1328 1329
}

1330
bool intel_engines_are_idle(struct intel_gt *gt)
1331 1332 1333 1334
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1335 1336
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1337 1338
	 * report that it is still busy, even though we have stopped using it.
	 */
1339
	if (intel_gt_is_wedged(gt))
1340 1341
		return true;

1342
	/* Already parked (and passed an idleness test); must still be idle */
1343
	if (!READ_ONCE(gt->awake))
1344 1345
		return true;

1346
	for_each_engine(engine, gt, id) {
1347 1348 1349 1350 1351 1352 1353
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
	if (!engine->irq_enable)
		return false;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_enable(engine);
	spin_unlock(&engine->gt->irq_lock);

	return true;
}

void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
	if (!engine->irq_disable)
		return;

	/* Caller disables interrupts */
	spin_lock(&engine->gt->irq_lock);
	engine->irq_disable(engine);
	spin_unlock(&engine->gt->irq_lock);
}

1378
void intel_engines_reset_default_submission(struct intel_gt *gt)
1379 1380 1381 1382
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1383 1384 1385 1386
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1387
		engine->set_default_submission(engine);
1388
	}
1389 1390
}

1391 1392
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1393
	switch (GRAPHICS_VER(engine->i915)) {
1394 1395 1396 1397 1398
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1399 1400
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1401 1402 1403 1404 1405 1406 1407
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1408 1409 1410 1411 1412
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
1413
	 * Even though we are holding the engine->sched_engine->lock here, there
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1473
		drm_printf(m, "[%04zx] %s\n", pos, line);
1474 1475 1476 1477 1478 1479

		prev = buf + pos;
		skip = false;
	}
}

1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1491
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1492
					 struct drm_printer *m)
1493 1494
{
	struct drm_i915_private *dev_priv = engine->i915;
1495
	struct intel_engine_execlists * const execlists = &engine->execlists;
1496 1497
	u64 addr;

1498
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1499
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1500 1501 1502 1503 1504 1505
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1506
	drm_printf(m, "\tRING_START: 0x%08x\n",
1507
		   ENGINE_READ(engine, RING_START));
1508
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1509
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1510
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1511
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1512
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1513 1514
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1515
	if (GRAPHICS_VER(engine->i915) > 2) {
1516
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1517 1518
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1519
	}
1520

1521
	if (GRAPHICS_VER(dev_priv) >= 6) {
1522
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1523
			   ENGINE_READ(engine, RING_IMR));
1524 1525 1526 1527 1528 1529
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1530 1531
	}

1532 1533 1534 1535 1536 1537
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1538
	if (GRAPHICS_VER(dev_priv) >= 8)
1539
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1540
	else if (GRAPHICS_VER(dev_priv) >= 4)
1541
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1542
	else
1543
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1544 1545
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1546
	if (GRAPHICS_VER(dev_priv) >= 4) {
1547
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1548
			   ENGINE_READ(engine, RING_IPEIR));
1549
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1550
			   ENGINE_READ(engine, RING_IPEHR));
1551
	} else {
1552 1553
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1554
	}
1555

1556
	if (intel_engine_uses_guc(engine)) {
1557 1558
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1559
		struct i915_request * const *port, *rq;
1560 1561
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1562
		const u8 num_entries = execlists->csb_size;
1563
		unsigned int idx;
1564
		u8 read, write;
1565

1566
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1567
			   yesno(test_bit(TASKLET_STATE_SCHED,
1568 1569
					  &engine->sched_engine->tasklet.state)),
			   enableddisabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1570
			   repr_timer(&engine->execlists.preempt),
1571
			   repr_timer(&engine->execlists.timer));
1572

1573 1574 1575
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1576 1577 1578 1579 1580
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1581
		if (read >= num_entries)
1582
			read = 0;
1583
		if (write >= num_entries)
1584 1585
			write = 0;
		if (read > write)
1586
			write += num_entries;
1587
		while (read < write) {
1588 1589 1590
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1591 1592
		}

1593
		i915_sched_engine_active_lock_bh(engine->sched_engine);
1594
		rcu_read_lock();
1595
		for (port = execlists->active; (rq = *port); port++) {
1596
			char hdr[160];
1597 1598
			int len;

1599
			len = scnprintf(hdr, sizeof(hdr),
1600
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1601
					(int)(port - execlists->active),
1602 1603 1604
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1605
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1606
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1607
			i915_request_show(m, rq, hdr, 0);
1608 1609
		}
		for (port = execlists->pending; (rq = *port); port++) {
1610 1611
			char hdr[160];
			int len;
1612

1613
			len = scnprintf(hdr, sizeof(hdr),
1614
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1615
					(int)(port - execlists->pending),
1616 1617 1618
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1619 1620
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1621
			i915_request_show(m, rq, hdr, 0);
1622
		}
1623
		rcu_read_unlock();
1624
		i915_sched_engine_active_unlock_bh(engine->sched_engine);
1625
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1626
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1627
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1628
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1629
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1630
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1631
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1632
	}
1633 1634
}

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
	struct intel_timeline *tl = get_timeline(rq);

	i915_request_show(m, rq, msg, 0);

	drm_printf(m, "\t\tring->start:  0x%08x\n",
		   i915_ggtt_offset(rq->ring->vma));
	drm_printf(m, "\t\tring->head:   0x%08x\n",
		   rq->ring->head);
	drm_printf(m, "\t\tring->tail:   0x%08x\n",
		   rq->ring->tail);
	drm_printf(m, "\t\tring->emit:   0x%08x\n",
		   rq->ring->emit);
	drm_printf(m, "\t\tring->space:  0x%08x\n",
		   rq->ring->space);

	if (tl) {
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   tl->hwsp_offset);
		intel_timeline_put(tl);
	}

	print_request_ring(m, rq);

	if (rq->context->lrc_reg_state) {
		drm_printf(m, "Logical Ring Context:\n");
		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
	}
}

void intel_engine_dump_active_requests(struct list_head *requests,
				       struct i915_request *hung_rq,
				       struct drm_printer *m)
{
	struct i915_request *rq;
	const char *msg;
	enum i915_request_state state;

	list_for_each_entry(rq, requests, sched.link) {
		if (rq == hung_rq)
			continue;

		state = i915_test_request_state(rq);
		if (state < I915_REQUEST_QUEUED)
			continue;

		if (state == I915_REQUEST_ACTIVE)
			msg = "\t\tactive on engine";
		else
			msg = "\t\tactive in queue";

		engine_dump_request(rq, m, msg);
	}
}

static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
{
	struct i915_request *hung_rq = NULL;
	struct intel_context *ce;
	bool guc;

	/*
	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
	 * The GPU is still running so requests are still executing and any
	 * hardware reads will be out of date by the time they are reported.
	 * But the intention here is just to report an instantaneous snapshot
	 * so that's fine.
	 */
	lockdep_assert_held(&engine->sched_engine->lock);

	drm_printf(m, "\tRequests:\n");

	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
	if (guc) {
		ce = intel_engine_get_hung_context(engine);
		if (ce)
			hung_rq = intel_context_find_active_request(ce);
	} else {
		hung_rq = intel_engine_execlist_find_hung_request(engine);
	}

	if (hung_rq)
		engine_dump_request(hung_rq, m, "\t\thung");

	if (guc)
		intel_guc_dump_active_requests(engine, hung_rq, m);
	else
		intel_engine_dump_active_requests(&engine->sched_engine->requests,
						  hung_rq, m);
}

1806 1807 1808 1809 1810
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1811
	struct i915_request *rq;
1812
	intel_wakeref_t wakeref;
1813
	unsigned long flags;
1814
	ktime_t dummy;
1815 1816 1817 1818 1819 1820 1821 1822 1823

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1824
	if (intel_gt_is_wedged(engine->gt))
1825 1826
		drm_printf(m, "*** WEDGED ***\n");

1827
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1828 1829
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1830 1831
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1832 1833 1834 1835
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1836
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1837
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1838 1839 1840 1841 1842 1843 1844

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1845 1846 1847
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1848
	print_properties(engine, m);
1849

1850
	spin_lock_irqsave(&engine->sched_engine->lock, flags);
1851
	engine_dump_active_requests(engine, m);
1852

1853 1854 1855
	drm_printf(m, "\tOn hold?: %lu\n",
		   list_count(&engine->sched_engine->hold));
	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
1856

1857
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1858
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1859
	if (wakeref) {
1860
		intel_engine_print_registers(engine, m);
1861
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1862 1863 1864
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1865

C
Chris Wilson 已提交
1866
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1867

1868
	drm_printf(m, "HWSP:\n");
1869
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1870

1871
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1872 1873

	intel_engine_print_breadcrumbs(engine, m);
1874 1875
}

1876 1877
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1878 1879 1880 1881 1882 1883 1884
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1885
	*now = ktime_get();
1886
	if (READ_ONCE(engine->stats.active))
1887
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1888 1889 1890 1891 1892 1893 1894

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1895
 * @now: monotonic timestamp of sampling
1896 1897 1898
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1899
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1900
{
1901
	unsigned int seq;
1902 1903
	ktime_t total;

1904
	do {
1905
		seq = read_seqcount_begin(&engine->stats.lock);
1906
		total = __intel_engine_get_busy_time(engine, now);
1907
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1908 1909 1910 1911

	return total;
}

1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
			    unsigned int count)
{
	if (count == 0)
		return ERR_PTR(-EINVAL);

	if (count == 1)
		return intel_context_create(siblings[0]);

	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
	return siblings[0]->cops->create_virtual(siblings, count);
}

1926
struct i915_request *
1927
intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
1928 1929 1930
{
	struct i915_request *request, *active = NULL;

1931 1932 1933 1934 1935 1936 1937
	/*
	 * This search does not work in GuC submission mode. However, the GuC
	 * will report the hanging context directly to the driver itself. So
	 * the driver should never get here when in GuC mode.
	 */
	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));

1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948
	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1949
	lockdep_assert_held(&engine->sched_engine->lock);
1950 1951 1952 1953 1954 1955 1956

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1957
			if (__i915_request_is_complete(request))
1958 1959 1960 1961 1962 1963 1964 1965 1966
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1967 1968
	list_for_each_entry(request, &engine->sched_engine->requests,
			    sched.link) {
1969
		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
1970
			continue;
1971 1972 1973 1974 1975 1976 1977 1978

		active = request;
		break;
	}

	return active;
}

1979
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1980
#include "mock_engine.c"
1981
#include "selftest_engine.c"
1982
#include "selftest_engine_cs.c"
1983
#endif