intel_engine_cs.c 48.2 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	unsigned int hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56 57
	[RCS0] = {
		.hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64 65
	[BCS0] = {
		.hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72 73
	[VCS0] = {
		.hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82 83
	[VCS1] = {
		.hw_id = VCS1_HW,
84 85
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
86
		.mmio_bases = {
87 88
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89
		},
90
	},
91 92
	[VCS2] = {
		.hw_id = VCS2_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97
		},
98
	},
99 100
	[VCS3] = {
		.hw_id = VCS3_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
103
		.mmio_bases = {
104
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105
		},
106
	},
107 108
	[VECS0] = {
		.hw_id = VECS0_HW,
109 110
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
111
		.mmio_bases = {
112 113
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
114
		},
115
	},
116 117
	[VECS1] = {
		.hw_id = VECS1_HW,
118 119
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
120
		.mmio_bases = {
121
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122
		},
123
	},
124 125
};

126
/**
127
 * intel_engine_context_size() - return the size of the context for an engine
128
 * @gt: the gt
129 130 131 132 133 134 135 136 137 138 139
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
140
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141
{
142
	struct intel_uncore *uncore = gt->uncore;
143 144 145 146 147 148
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
149
		switch (GRAPHICS_VER(gt->i915)) {
150
		default:
151
			MISSING_CASE(GRAPHICS_VER(gt->i915));
152
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153
		case 12:
154 155
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
156
		case 10:
O
Oscar Mateo 已提交
157
			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 159 160
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
161
			return GEN8_LR_CONTEXT_RENDER_SIZE;
162
		case 7:
163
			if (IS_HASWELL(gt->i915))
164 165
				return HSW_CXT_TOTAL_SIZE;

166
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 168 169
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
170
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 172 173
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
174
		case 4:
175 176 177 178 179 180 181 182 183 184
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
185
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186
			drm_dbg(&gt->i915->drm,
187 188
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
189
				cxt_size - 1);
190
			return round_up(cxt_size * 64, PAGE_SIZE);
191 192 193 194 195 196 197 198 199
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
200
		fallthrough;
201 202 203
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
204
		if (GRAPHICS_VER(gt->i915) < 8)
205 206 207 208 209
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

210 211 212 213 214 215
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
216
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217 218 219 220 221 222 223 224
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

225
static void __sprint_engine_name(struct intel_engine_cs *engine)
226
{
227 228 229 230 231 232 233 234
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
235 236
}

237 238 239 240 241 242
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
243
	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 245
		return;

246
	if (GRAPHICS_VER(engine->i915) >= 3)
247
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248
	else
249
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 251 252 253 254 255 256 257
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

258 259 260 261 262
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

263
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
264 265
{
	const struct engine_info *info = &intel_engines[id];
266
	struct drm_i915_private *i915 = gt->i915;
267
	struct intel_engine_cs *engine;
268
	u8 guc_class;
269

270 271 272
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

273 274 275
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

276
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 278
		return -EINVAL;

279
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 281
		return -EINVAL;

282
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
283 284
		return -EINVAL;

285 286 287
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
288

289 290
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

291
	engine->id = id;
292
	engine->legacy_idx = INVALID_ENGINE;
293
	engine->mask = BIT(id);
294
	engine->i915 = i915;
295 296
	engine->gt = gt;
	engine->uncore = gt->uncore;
297
	engine->hw_id = info->hw_id;
298 299 300
	guc_class = engine_class_to_guc_class(info->class);
	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
301

302 303
	engine->irq_handler = nop_irq_handler;

304 305
	engine->class = info->class;
	engine->instance = info->instance;
306
	__sprint_engine_name(engine);
307

308 309
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
310 311
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
312 313
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
314 315
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
316 317
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
318

319
	/* Override to uninterruptible for OpenCL workloads. */
320
	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
321 322
		engine->props.preempt_timeout_ms = 0;

323 324
	engine->defaults = engine->props; /* never to change again */

325
	engine->context_size = intel_engine_context_size(gt, engine->class);
326 327
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
328
	if (engine->context_size)
329
		DRIVER_CAPS(i915)->has_logical_contexts = true;
330

331 332 333
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

334
	ewma__engine_latency_init(&engine->latency);
335
	seqcount_init(&engine->stats.lock);
336

337 338
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

339 340 341
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

342
	gt->engine_class[info->class][info->instance] = engine;
343
	gt->engine[id] = engine;
344

345
	return 0;
346 347
}

348 349 350 351 352 353 354 355 356
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
357 358
		if (GRAPHICS_VER(i915) >= 11 ||
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
359 360 361 362 363 364 365
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
366
		if ((GRAPHICS_VER(i915) >= 11 &&
367 368
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
369
		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
370 371 372
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
373
		if (GRAPHICS_VER(i915) >= 9)
374 375 376 377 378
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

379
static void intel_setup_engine_capabilities(struct intel_gt *gt)
380 381 382 383
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

384
	for_each_engine(engine, gt, id)
385 386 387
		__setup_engine_capabilities(engine);
}

388
/**
389
 * intel_engines_release() - free the resources allocated for Command Streamers
390
 * @gt: pointer to struct intel_gt
391
 */
392
void intel_engines_release(struct intel_gt *gt)
393 394 395 396
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

397 398 399 400 401 402 403 404 405 406 407 408 409
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

410
	/* Decouple the backend; but keep the layout for late GPU resets */
411
	for_each_engine(engine, gt, id) {
412 413 414
		if (!engine->release)
			continue;

415 416 417
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

418 419 420 421
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
422 423 424
	}
}

425 426 427 428 429 430 431 432
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

433 434 435 436 437
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

438 439 440
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

441
	for_each_engine(engine, gt, id) {
442
		intel_engine_free_request_pool(engine);
443 444 445 446 447
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

448 449 450 451 452 453 454 455 456 457 458 459 460
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
461
	struct intel_gt_info *info = &gt->info;
462 463 464 465 466 467 468
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

469 470
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

471
	if (GRAPHICS_VER(i915) < 11)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
497
		if (GRAPHICS_VER(i915) >= 12 || logical_vdbox++ % 2 == 0)
498
			gt->info.vdbox_sfc_access |= BIT(i);
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

522
/**
523
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
524
 * @gt: pointer to struct intel_gt
525 526 527
 *
 * Return: non-zero if the initialization failed.
 */
528
int intel_engines_init_mmio(struct intel_gt *gt)
529
{
530
	struct drm_i915_private *i915 = gt->i915;
531
	const unsigned int engine_mask = init_engine_mask(gt);
532
	unsigned int mask = 0;
533
	unsigned int i;
534
	int err;
535

536 537 538
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
539

540
	if (i915_inject_probe_failure(i915))
541 542
		return -ENODEV;

543
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
544
		if (!HAS_ENGINE(gt, i))
545 546
			continue;

547
		err = intel_engine_setup(gt, i);
548 549 550
		if (err)
			goto cleanup;

551
		mask |= BIT(i);
552 553 554 555 556 557 558
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
559
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
560
		gt->info.engine_mask = mask;
561

562
	gt->info.num_engines = hweight32(mask);
563

564
	intel_gt_check_and_clear_faults(gt);
565

566
	intel_setup_engine_capabilities(gt);
567

568 569
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

570 571 572
	return 0;

cleanup:
573
	intel_engines_free(gt);
574 575 576
	return err;
}

577
void intel_engine_init_execlists(struct intel_engine_cs *engine)
578 579 580
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

581
	execlists->port_mask = 1;
582
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
583 584
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

585 586 587
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));
588 589
}

590
static void cleanup_status_page(struct intel_engine_cs *engine)
591
{
592 593
	struct i915_vma *vma;

594 595 596
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

597 598 599
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
600

601 602 603 604
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
605
	i915_gem_object_put(vma->obj);
606 607 608
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
609
				struct i915_gem_ww_ctx *ww,
610 611 612 613
				struct i915_vma *vma)
{
	unsigned int flags;

614
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
615 616 617 618 619 620 621 622 623 624 625
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
626
		flags = PIN_MAPPABLE;
627
	else
628
		flags = PIN_HIGH;
629

630
	return i915_ggtt_pin(vma, ww, 0, flags);
631 632 633 634 635
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
636
	struct i915_gem_ww_ctx ww;
637 638 639 640
	struct i915_vma *vma;
	void *vaddr;
	int ret;

641 642
	INIT_LIST_HEAD(&engine->status_page.timelines);

643 644 645 646 647 648 649
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
650 651
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
652 653
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
654 655 656
		return PTR_ERR(obj);
	}

657
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
658

659
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
660 661
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
662
		goto err_put;
663 664
	}

665 666 667 668 669 670 671 672
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

673 674 675
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
676
		goto err_unpin;
677 678
	}

679
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
680
	engine->status_page.vma = vma;
681

682
err_unpin:
683 684
	if (ret)
		i915_vma_unpin(vma);
685
err:
686 687 688 689 690 691 692 693 694
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
695 696 697
	return ret;
}

698
static int engine_setup_common(struct intel_engine_cs *engine)
699 700 701
{
	int err;

702 703
	init_llist_head(&engine->barrier_tasks);

704 705 706 707
	err = init_status_page(engine);
	if (err)
		return err;

708 709 710 711 712 713
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

714 715 716 717 718 719
	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
	if (!engine->sched_engine) {
		err = -ENOMEM;
		goto err_sched_engine;
	}

720 721 722 723
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

724
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
725 726
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
727
	intel_engine_init_retire(engine);
728

729 730
	/* Use the whole device by default */
	engine->sseu =
731
		intel_sseu_from_device_info(&engine->gt->info.sseu);
732

733 734 735 736
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

737
	if (GRAPHICS_VER(engine->i915) >= 12)
738 739
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

740
	return 0;
741

742
err_cmd_parser:
743 744
	i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
745
	intel_breadcrumbs_free(engine->breadcrumbs);
746 747 748
err_status:
	cleanup_status_page(engine);
	return err;
749 750
}

751 752 753
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
754
	u32 cs[2048];
755 756
};

757
static int measure_breadcrumb_dw(struct intel_context *ce)
758
{
759
	struct intel_engine_cs *engine = ce->engine;
760
	struct measure_breadcrumb *frame;
761
	int dw;
762

763
	GEM_BUG_ON(!engine->gt->scratch);
764 765 766 767 768

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

769 770 771
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
772
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
773

774 775
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
776 777
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
778 779 780
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
781

782
	mutex_lock(&ce->timeline->mutex);
783
	spin_lock_irq(&engine->active.lock);
784

785
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
786

787
	spin_unlock_irq(&engine->active.lock);
788
	mutex_unlock(&ce->timeline->mutex);
789

790
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
791

792
	kfree(frame);
793 794 795
	return dw;
}

796 797 798 799
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
800
	INIT_LIST_HEAD(&engine->active.hold);
801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

818 819 820 821 822 823 824
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
				   struct i915_address_space *vm,
				   unsigned int ring_size,
				   unsigned int hwsp,
				   struct lock_class_key *key,
				   const char *name)
825 826 827 828
{
	struct intel_context *ce;
	int err;

829
	ce = intel_context_create(engine);
830 831 832
	if (IS_ERR(ce))
		return ce;

833
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
834
	ce->timeline = page_pack_bits(NULL, hwsp);
835 836 837 838
	ce->ring = __intel_context_ring_size(ring_size);

	i915_vm_put(ce->vm);
	ce->vm = i915_vm_get(vm);
839

840
	err = intel_context_pin(ce); /* perma-pin so it is always available */
841 842 843 844 845
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

846 847 848 849 850 851
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
852
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
853

854 855 856
	return ce;
}

857
void intel_engine_destroy_pinned_context(struct intel_context *ce)
858 859 860 861 862 863 864 865 866 867 868 869 870 871
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

872 873 874 875 876
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

877 878 879
	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
						  I915_GEM_HWS_SEQNO_ADDR,
						  &kernel, "kernel_context");
880 881
}

882 883 884 885 886 887 888 889 890 891 892
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
893
static int engine_init_common(struct intel_engine_cs *engine)
894
{
895
	struct intel_context *ce;
896 897
	int ret;

898 899
	engine->set_default_submission(engine);

900 901
	/*
	 * We may need to do things with the shrinker which
902 903 904 905 906 907
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
908 909 910 911
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

912 913 914 915 916
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
917
	engine->kernel_context = ce;
918

919
	return 0;
920 921

err_context:
922
	intel_engine_destroy_pinned_context(ce);
923
	return ret;
924
}
925

926 927 928 929 930 931 932
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

933 934
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
935
		setup = intel_guc_submission_setup;
936 937
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
938
		setup = intel_execlists_submission_setup;
939 940
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
941
		setup = intel_ring_submission_setup;
942
	}
943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

963 964 965 966 967 968 969 970 971
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
972
	GEM_BUG_ON(!list_empty(&engine->active.requests));
973
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
974

975
	i915_sched_engine_put(engine->sched_engine);
976
	intel_breadcrumbs_free(engine->breadcrumbs);
977

978
	intel_engine_fini_retire(engine);
979
	intel_engine_cleanup_cmd_parser(engine);
980

981
	if (engine->default_state)
982
		fput(engine->default_state);
983

984
	if (engine->kernel_context)
985
		intel_engine_destroy_pinned_context(engine->kernel_context);
986

987
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
988
	cleanup_status_page(engine);
989

990
	intel_wa_list_free(&engine->ctx_wa_list);
991
	intel_wa_list_free(&engine->wa_list);
992
	intel_wa_list_free(&engine->whitelist);
993
}
994

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

1009
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1010
{
1011 1012
	struct drm_i915_private *i915 = engine->i915;

1013 1014
	u64 acthd;

1015
	if (GRAPHICS_VER(i915) >= 8)
1016
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1017
	else if (GRAPHICS_VER(i915) >= 4)
1018
		acthd = ENGINE_READ(engine, RING_ACTHD);
1019
	else
1020
		acthd = ENGINE_READ(engine, ACTHD);
1021 1022 1023 1024

	return acthd;
}

1025
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1026 1027 1028
{
	u64 bbaddr;

1029
	if (GRAPHICS_VER(engine->i915) >= 8)
1030
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1031
	else
1032
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1033 1034 1035

	return bbaddr;
}
1036

1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1052 1053 1054
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1055
{
1056
	struct intel_uncore *uncore = engine->uncore;
1057
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1058 1059
	int err;

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1076
	if (GRAPHICS_VER(engine->i915) < 3)
1077 1078
		return -ENODEV;

1079
	ENGINE_TRACE(engine, "\n");
1080
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1094 1095 1096 1097 1098
	}

	return err;
}

1099 1100
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1101
	ENGINE_TRACE(engine, "\n");
1102

1103
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1117
static u32
1118 1119
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1120
{
1121 1122
	return intel_uncore_read_with_mcr_steering(engine->uncore, reg,
						   slice, subslice);
1123 1124 1125
}

/* NB: please notice the memset */
1126
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1127 1128
			       struct intel_instdone *instdone)
{
1129
	struct drm_i915_private *i915 = engine->i915;
1130
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1131
	struct intel_uncore *uncore = engine->uncore;
1132 1133 1134 1135 1136 1137
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1138
	switch (GRAPHICS_VER(i915)) {
1139
	default:
1140 1141
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1142

1143
		if (engine->id != RCS0)
1144 1145
			break;

1146 1147
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1148
		if (GRAPHICS_VER(i915) >= 12) {
1149 1150 1151 1152 1153
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1154
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1155
			instdone->sampler[slice][subslice] =
1156
				read_subslice_reg(engine, slice, subslice,
1157 1158
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1159
				read_subslice_reg(engine, slice, subslice,
1160 1161 1162 1163
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1164 1165
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1166

1167
		if (engine->id != RCS0)
1168 1169
			break;

1170 1171 1172 1173 1174 1175
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1176 1177 1178 1179 1180

		break;
	case 6:
	case 5:
	case 4:
1181 1182
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1183
		if (engine->id == RCS0)
1184
			/* HACK: Using the wrong struct member */
1185 1186
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1187 1188 1189
		break;
	case 3:
	case 2:
1190
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1191 1192 1193
		break;
	}
}
1194

1195 1196 1197 1198
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1199 1200 1201
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1202
	if (!intel_engine_pm_get_if_awake(engine))
1203
		return true;
1204

1205
	/* First check that no commands are left in the ring */
1206 1207
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1208
		idle = false;
1209

1210
	/* No bit for gen2, so assume the CS parser is idle */
1211
	if (GRAPHICS_VER(engine->i915) > 2 &&
1212
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1213 1214
		idle = false;

1215
	intel_engine_pm_put(engine);
1216 1217 1218 1219

	return idle;
}

1220
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1221 1222 1223
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1224
	if (!t->callback)
1225 1226
		return;

1227 1228 1229 1230
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1231
			t->callback(t);
1232
		tasklet_unlock(t);
1233
	}
1234
	local_bh_enable();
1235 1236 1237 1238

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1239 1240
}

1241 1242 1243 1244 1245 1246 1247 1248 1249
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1250
	/* More white lies, if wedged, hw state is inconsistent */
1251
	if (intel_gt_is_wedged(engine->gt))
1252 1253
		return true;

1254
	if (!intel_engine_pm_is_awake(engine))
1255 1256
		return true;

1257
	/* Waiting to drain ELSP? */
1258 1259
	synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
	intel_engine_flush_submission(engine);
1260

1261
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1262
	if (!RB_EMPTY_ROOT(&engine->sched_engine->queue.rb_root))
1263 1264
		return false;

1265
	/* Ring stopped? */
1266
	return ring_is_idle(engine);
1267 1268
}

1269
bool intel_engines_are_idle(struct intel_gt *gt)
1270 1271 1272 1273
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1274 1275
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1276 1277
	 * report that it is still busy, even though we have stopped using it.
	 */
1278
	if (intel_gt_is_wedged(gt))
1279 1280
		return true;

1281
	/* Already parked (and passed an idleness test); must still be idle */
1282
	if (!READ_ONCE(gt->awake))
1283 1284
		return true;

1285
	for_each_engine(engine, gt, id) {
1286 1287 1288 1289 1290 1291 1292
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1293
void intel_engines_reset_default_submission(struct intel_gt *gt)
1294 1295 1296 1297
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1298 1299 1300 1301
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1302
		engine->set_default_submission(engine);
1303
	}
1304 1305
}

1306 1307
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
1308
	switch (GRAPHICS_VER(engine->i915)) {
1309 1310 1311 1312 1313
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1314 1315
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1316 1317 1318 1319 1320 1321 1322
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1388
		drm_printf(m, "[%04zx] %s\n", pos, line);
1389 1390 1391 1392 1393 1394

		prev = buf + pos;
		skip = false;
	}
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1406
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1407
					 struct drm_printer *m)
1408 1409
{
	struct drm_i915_private *dev_priv = engine->i915;
1410
	struct intel_engine_execlists * const execlists = &engine->execlists;
1411 1412
	u64 addr;

1413
	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1414
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1415 1416 1417 1418 1419 1420
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1421
	drm_printf(m, "\tRING_START: 0x%08x\n",
1422
		   ENGINE_READ(engine, RING_START));
1423
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1424
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1425
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1426
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1427
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1428 1429
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1430
	if (GRAPHICS_VER(engine->i915) > 2) {
1431
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1432 1433
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1434
	}
1435

1436
	if (GRAPHICS_VER(dev_priv) >= 6) {
1437
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1438
			   ENGINE_READ(engine, RING_IMR));
1439 1440 1441 1442 1443 1444
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1445 1446
	}

1447 1448 1449 1450 1451 1452
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1453
	if (GRAPHICS_VER(dev_priv) >= 8)
1454
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1455
	else if (GRAPHICS_VER(dev_priv) >= 4)
1456
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1457
	else
1458
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1459 1460
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1461
	if (GRAPHICS_VER(dev_priv) >= 4) {
1462
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1463
			   ENGINE_READ(engine, RING_IPEIR));
1464
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1465
			   ENGINE_READ(engine, RING_IPEHR));
1466
	} else {
1467 1468
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1469
	}
1470

1471
	if (intel_engine_uses_guc(engine)) {
1472 1473
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1474
		struct i915_request * const *port, *rq;
1475 1476
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1477
		const u8 num_entries = execlists->csb_size;
1478
		unsigned int idx;
1479
		u8 read, write;
1480

1481
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1482 1483 1484
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1485
			   repr_timer(&engine->execlists.preempt),
1486
			   repr_timer(&engine->execlists.timer));
1487

1488 1489 1490
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1491 1492 1493 1494 1495
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1496
		if (read >= num_entries)
1497
			read = 0;
1498
		if (write >= num_entries)
1499 1500
			write = 0;
		if (read > write)
1501
			write += num_entries;
1502
		while (read < write) {
1503 1504 1505
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1506 1507
		}

1508
		execlists_active_lock_bh(execlists);
1509
		rcu_read_lock();
1510
		for (port = execlists->active; (rq = *port); port++) {
1511
			char hdr[160];
1512 1513
			int len;

1514
			len = scnprintf(hdr, sizeof(hdr),
1515
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1516
					(int)(port - execlists->active),
1517 1518 1519
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1520
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1521
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1522
			i915_request_show(m, rq, hdr, 0);
1523 1524
		}
		for (port = execlists->pending; (rq = *port); port++) {
1525 1526
			char hdr[160];
			int len;
1527

1528
			len = scnprintf(hdr, sizeof(hdr),
1529
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1530
					(int)(port - execlists->pending),
1531 1532 1533
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1534 1535
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1536
			i915_request_show(m, rq, hdr, 0);
1537
		}
1538
		rcu_read_unlock();
1539
		execlists_active_unlock_bh(execlists);
1540
	} else if (GRAPHICS_VER(dev_priv) > 6) {
1541
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1542
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1543
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1544
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1545
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1546
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1547
	}
1548 1549
}

1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1629 1630 1631 1632 1633
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1634
	struct i915_request *rq;
1635
	intel_wakeref_t wakeref;
1636
	unsigned long flags;
1637
	ktime_t dummy;
1638 1639 1640 1641 1642 1643 1644 1645 1646

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1647
	if (intel_gt_is_wedged(engine->gt))
1648 1649
		drm_printf(m, "*** WEDGED ***\n");

1650
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1651 1652
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1653 1654
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1655 1656 1657 1658
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1659
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1660
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1661 1662 1663 1664 1665 1666 1667

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1668 1669 1670
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1671
	print_properties(engine, m);
1672 1673 1674

	drm_printf(m, "\tRequests:\n");

1675
	spin_lock_irqsave(&engine->active.lock, flags);
1676
	rq = intel_engine_find_active_request(engine);
1677
	if (rq) {
1678 1679
		struct intel_timeline *tl = get_timeline(rq);

1680
		i915_request_show(m, rq, "\t\tactive ", 0);
1681

1682
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1683
			   i915_ggtt_offset(rq->ring->vma));
1684
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1685
			   rq->ring->head);
1686
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1687
			   rq->ring->tail);
1688 1689 1690 1691
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1692 1693 1694 1695 1696 1697

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1698 1699

		print_request_ring(m, rq);
1700

1701
		if (rq->context->lrc_reg_state) {
1702
			drm_printf(m, "Logical Ring Context:\n");
1703
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1704
		}
1705
	}
1706
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1707
	spin_unlock_irqrestore(&engine->active.lock, flags);
1708

1709
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1710
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1711
	if (wakeref) {
1712
		intel_engine_print_registers(engine, m);
1713
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1714 1715 1716
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1717

C
Chris Wilson 已提交
1718
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1719

1720
	drm_printf(m, "HWSP:\n");
1721
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1722

1723
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1724 1725

	intel_engine_print_breadcrumbs(engine, m);
1726 1727
}

1728 1729
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1730 1731 1732 1733 1734 1735 1736
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1737
	*now = ktime_get();
1738
	if (READ_ONCE(engine->stats.active))
1739
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1740 1741 1742 1743 1744 1745 1746

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1747
 * @now: monotonic timestamp of sampling
1748 1749 1750
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1751
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1752
{
1753
	unsigned int seq;
1754 1755
	ktime_t total;

1756
	do {
1757
		seq = read_seqcount_begin(&engine->stats.lock);
1758
		total = __intel_engine_get_busy_time(engine, now);
1759
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1760 1761 1762 1763

	return total;
}

1764 1765
static bool match_ring(struct i915_request *rq)
{
1766
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1787
	lockdep_assert_held(&engine->active.lock);
1788 1789 1790 1791 1792 1793 1794

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1795
			if (__i915_request_is_complete(request))
1796 1797 1798 1799 1800 1801 1802 1803 1804
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1805
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1806
		if (__i915_request_is_complete(request))
1807 1808
			continue;

1809
		if (!__i915_request_has_started(request))
1810
			continue;
1811 1812 1813

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1814
			continue;
1815 1816 1817 1818 1819 1820 1821 1822

		active = request;
		break;
	}

	return active;
}

1823
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1824
#include "mock_engine.c"
1825
#include "selftest_engine.c"
1826
#include "selftest_engine_cs.c"
1827
#endif