intel_engine_cs.c 48.7 KB
Newer Older
C
Chris Wilson 已提交
1
// SPDX-License-Identifier: MIT
2 3 4 5
/*
 * Copyright © 2016 Intel Corporation
 */

6 7
#include <drm/drm_print.h>

8 9
#include "gem/i915_gem_context.h"

10
#include "i915_drv.h"
11

12
#include "intel_breadcrumbs.h"
13
#include "intel_context.h"
14
#include "intel_engine.h"
15
#include "intel_engine_pm.h"
16
#include "intel_engine_user.h"
17
#include "intel_execlists_submission.h"
18 19
#include "intel_gt.h"
#include "intel_gt_requests.h"
20
#include "intel_gt_pm.h"
21
#include "intel_lrc_reg.h"
22
#include "intel_reset.h"
23
#include "intel_ring.h"
24
#include "uc/intel_guc_submission.h"
25

26 27 28 29 30 31 32 33 34
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

35
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 37
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 41 42

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

43
#define MAX_MMIO_BASES 3
44
struct engine_info {
45
	unsigned int hw_id;
46 47
	u8 class;
	u8 instance;
48
	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49
	struct engine_mmio_base {
50
		u32 graphics_ver : 8;
51 52
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
53 54 55
};

static const struct engine_info intel_engines[] = {
56 57
	[RCS0] = {
		.hw_id = RCS0_HW,
58 59
		.class = RENDER_CLASS,
		.instance = 0,
60
		.mmio_bases = {
61
			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62
		},
63
	},
64 65
	[BCS0] = {
		.hw_id = BCS0_HW,
66 67
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
68
		.mmio_bases = {
69
			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70
		},
71
	},
72 73
	[VCS0] = {
		.hw_id = VCS0_HW,
74 75
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
76
		.mmio_bases = {
77 78 79
			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80
		},
81
	},
82 83
	[VCS1] = {
		.hw_id = VCS1_HW,
84 85
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
86
		.mmio_bases = {
87 88
			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89
		},
90
	},
91 92
	[VCS2] = {
		.hw_id = VCS2_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
95
		.mmio_bases = {
96
			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97
		},
98
	},
99 100
	[VCS3] = {
		.hw_id = VCS3_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
103
		.mmio_bases = {
104
			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105
		},
106
	},
107 108
	[VECS0] = {
		.hw_id = VECS0_HW,
109 110
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
111
		.mmio_bases = {
112 113
			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
114
		},
115
	},
116 117
	[VECS1] = {
		.hw_id = VECS1_HW,
118 119
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
120
		.mmio_bases = {
121
			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122
		},
123
	},
124 125
};

126
/**
127
 * intel_engine_context_size() - return the size of the context for an engine
128
 * @gt: the gt
129 130 131 132 133 134 135 136 137 138 139
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
140
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141
{
142
	struct intel_uncore *uncore = gt->uncore;
143 144 145 146 147 148
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
149
		switch (GRAPHICS_VER(gt->i915)) {
150
		default:
151
			MISSING_CASE(GRAPHICS_VER(gt->i915));
152
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153
		case 12:
154 155
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
156
		case 10:
O
Oscar Mateo 已提交
157
			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 159 160
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
161
			return GEN8_LR_CONTEXT_RENDER_SIZE;
162
		case 7:
163
			if (IS_HASWELL(gt->i915))
164 165
				return HSW_CXT_TOTAL_SIZE;

166
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 168 169
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
170
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 172 173
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
174
		case 4:
175 176 177 178 179 180 181 182 183 184
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
185
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186
			drm_dbg(&gt->i915->drm,
187 188
				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
				GRAPHICS_VER(gt->i915), cxt_size * 64,
189
				cxt_size - 1);
190
			return round_up(cxt_size * 64, PAGE_SIZE);
191 192 193 194 195 196 197 198 199
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
200
		fallthrough;
201 202 203
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
204
		if (GRAPHICS_VER(gt->i915) < 8)
205 206 207 208 209
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

210 211 212 213 214 215
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
216
		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217 218 219 220 221 222 223 224
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

225
static void __sprint_engine_name(struct intel_engine_cs *engine)
226
{
227 228 229 230 231 232 233 234
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
235 236
}

237 238 239 240 241 242
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
243
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 245
		return;

246 247
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248
	else
249
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 251 252 253 254 255 256 257
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

258 259 260 261 262
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
	GEM_DEBUG_WARN_ON(iir);
}

263
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
264 265
{
	const struct engine_info *info = &intel_engines[id];
266
	struct drm_i915_private *i915 = gt->i915;
267 268
	struct intel_engine_cs *engine;

269 270 271
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

272 273 274
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

275
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
276 277
		return -EINVAL;

278
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
279 280
		return -EINVAL;

281
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
282 283
		return -EINVAL;

284 285 286
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
287

288 289
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

290
	engine->id = id;
291
	engine->legacy_idx = INVALID_ENGINE;
292
	engine->mask = BIT(id);
293
	engine->i915 = i915;
294 295
	engine->gt = gt;
	engine->uncore = gt->uncore;
296
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
297 298
	engine->hw_id = info->hw_id;
	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
299

300 301
	engine->irq_handler = nop_irq_handler;

302 303
	engine->class = info->class;
	engine->instance = info->instance;
304
	__sprint_engine_name(engine);
305

306 307
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
308 309
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
310 311
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
312 313
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
314 315
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
316

317 318 319 320
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

321 322
	engine->defaults = engine->props; /* never to change again */

323
	engine->context_size = intel_engine_context_size(gt, engine->class);
324 325
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
326
	if (engine->context_size)
327
		DRIVER_CAPS(i915)->has_logical_contexts = true;
328

329 330 331
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

332
	ewma__engine_latency_init(&engine->latency);
333
	seqcount_init(&engine->stats.lock);
334

335 336
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

337 338 339
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

340
	gt->engine_class[info->class][info->instance] = engine;
341
	gt->engine[id] = engine;
342

343
	return 0;
344 345
}

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
365 366
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
367 368 369 370 371 372 373 374 375 376
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

377
static void intel_setup_engine_capabilities(struct intel_gt *gt)
378 379 380 381
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

382
	for_each_engine(engine, gt, id)
383 384 385
		__setup_engine_capabilities(engine);
}

386
/**
387
 * intel_engines_release() - free the resources allocated for Command Streamers
388
 * @gt: pointer to struct intel_gt
389
 */
390
void intel_engines_release(struct intel_gt *gt)
391 392 393 394
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

395 396 397 398 399 400 401 402 403 404 405 406 407
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

408
	/* Decouple the backend; but keep the layout for late GPU resets */
409
	for_each_engine(engine, gt, id) {
410 411 412
		if (!engine->release)
			continue;

413 414 415
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

416 417 418 419
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
420 421 422
	}
}

423 424 425 426 427 428 429 430
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

431 432 433 434 435
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

436 437 438
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

439
	for_each_engine(engine, gt, id) {
440
		intel_engine_free_request_pool(engine);
441 442 443 444 445
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

446 447 448 449 450 451 452 453 454 455 456 457 458
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
459
	struct intel_gt_info *info = &gt->info;
460 461 462 463 464 465 466
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

467 468
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
496
			gt->info.vdbox_sfc_access |= BIT(i);
497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

520
/**
521
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
522
 * @gt: pointer to struct intel_gt
523 524 525
 *
 * Return: non-zero if the initialization failed.
 */
526
int intel_engines_init_mmio(struct intel_gt *gt)
527
{
528
	struct drm_i915_private *i915 = gt->i915;
529
	const unsigned int engine_mask = init_engine_mask(gt);
530
	unsigned int mask = 0;
531
	unsigned int i;
532
	int err;
533

534 535 536
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
537

538
	if (i915_inject_probe_failure(i915))
539 540
		return -ENODEV;

541
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
542
		if (!HAS_ENGINE(gt, i))
543 544
			continue;

545
		err = intel_engine_setup(gt, i);
546 547 548
		if (err)
			goto cleanup;

549
		mask |= BIT(i);
550 551 552 553 554 555 556
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
557
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
558
		gt->info.engine_mask = mask;
559

560
	gt->info.num_engines = hweight32(mask);
561

562
	intel_gt_check_and_clear_faults(gt);
563

564
	intel_setup_engine_capabilities(gt);
565

566 567
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

568 569 570
	return 0;

cleanup:
571
	intel_engines_free(gt);
572 573 574
	return err;
}

575
void intel_engine_init_execlists(struct intel_engine_cs *engine)
576 577 578
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

579
	execlists->port_mask = 1;
580
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
581 582
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

583 584 585 586
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

587
	execlists->queue_priority_hint = INT_MIN;
588
	execlists->queue = RB_ROOT_CACHED;
589 590
}

591
static void cleanup_status_page(struct intel_engine_cs *engine)
592
{
593 594
	struct i915_vma *vma;

595 596 597
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

598 599 600
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
601

602 603 604 605
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
606
	i915_gem_object_put(vma->obj);
607 608 609
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
610
				struct i915_gem_ww_ctx *ww,
611 612 613 614
				struct i915_vma *vma)
{
	unsigned int flags;

615
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
616 617 618 619 620 621 622 623 624 625 626
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
627
		flags = PIN_MAPPABLE;
628
	else
629
		flags = PIN_HIGH;
630

631
	return i915_ggtt_pin(vma, ww, 0, flags);
632 633 634 635 636
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
637
	struct i915_gem_ww_ctx ww;
638 639 640 641
	struct i915_vma *vma;
	void *vaddr;
	int ret;

642 643
	INIT_LIST_HEAD(&engine->status_page.timelines);

644 645 646 647 648 649 650
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
651 652
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
653 654
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
655 656 657
		return PTR_ERR(obj);
	}

658
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
659

660
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
661 662
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
663
		goto err_put;
664 665
	}

666 667 668 669 670 671 672 673
	i915_gem_ww_ctx_init(&ww, true);
retry:
	ret = i915_gem_object_lock(obj, &ww);
	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
		ret = pin_ggtt_status_page(engine, &ww, vma);
	if (ret)
		goto err;

674 675 676
	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
677
		goto err_unpin;
678 679
	}

680
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
681
	engine->status_page.vma = vma;
682

683
err_unpin:
684 685
	if (ret)
		i915_vma_unpin(vma);
686
err:
687 688 689 690 691 692 693 694 695
	if (ret == -EDEADLK) {
		ret = i915_gem_ww_ctx_backoff(&ww);
		if (!ret)
			goto retry;
	}
	i915_gem_ww_ctx_fini(&ww);
err_put:
	if (ret)
		i915_gem_object_put(obj);
696 697 698
	return ret;
}

699
static int engine_setup_common(struct intel_engine_cs *engine)
700 701 702
{
	int err;

703 704
	init_llist_head(&engine->barrier_tasks);

705 706 707 708
	err = init_status_page(engine);
	if (err)
		return err;

709 710 711 712 713 714
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

715 716 717 718
	err = intel_engine_init_cmd_parser(engine);
	if (err)
		goto err_cmd_parser;

719
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
720 721
	intel_engine_init_execlists(engine);
	intel_engine_init__pm(engine);
722
	intel_engine_init_retire(engine);
723

724 725
	/* Use the whole device by default */
	engine->sseu =
726
		intel_sseu_from_device_info(&engine->gt->info.sseu);
727

728 729 730 731
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

732 733 734
	if (INTEL_GEN(engine->i915) >= 12)
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

735
	return 0;
736

737 738
err_cmd_parser:
	intel_breadcrumbs_free(engine->breadcrumbs);
739 740 741
err_status:
	cleanup_status_page(engine);
	return err;
742 743
}

744 745 746
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
747
	u32 cs[2048];
748 749
};

750
static int measure_breadcrumb_dw(struct intel_context *ce)
751
{
752
	struct intel_engine_cs *engine = ce->engine;
753
	struct measure_breadcrumb *frame;
754
	int dw;
755

756
	GEM_BUG_ON(!engine->gt->scratch);
757 758 759 760 761

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

762 763 764
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
765
	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
766

767 768
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
769 770
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
771 772 773
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
774

775
	mutex_lock(&ce->timeline->mutex);
776
	spin_lock_irq(&engine->active.lock);
777

778
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
779

780
	spin_unlock_irq(&engine->active.lock);
781
	mutex_unlock(&ce->timeline->mutex);
782

783
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
784

785
	kfree(frame);
786 787 788
	return dw;
}

789 790 791 792
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
793
	INIT_LIST_HEAD(&engine->active.hold);
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

811
static struct intel_context *
812 813 814 815
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
816 817 818 819
{
	struct intel_context *ce;
	int err;

820
	ce = intel_context_create(engine);
821 822 823
	if (IS_ERR(ce))
		return ce;

824
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
825
	ce->timeline = page_pack_bits(NULL, hwsp);
826

827
	err = intel_context_pin(ce); /* perma-pin so it is always available */
828 829 830 831 832
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

833 834 835 836 837 838
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
839
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
840

841 842 843
	return ce;
}

844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
static void destroy_pinned_context(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

859 860 861 862 863 864 865 866 867
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

868 869 870 871 872 873 874 875 876 877 878
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
879
static int engine_init_common(struct intel_engine_cs *engine)
880
{
881
	struct intel_context *ce;
882 883
	int ret;

884 885
	engine->set_default_submission(engine);

886 887
	/*
	 * We may need to do things with the shrinker which
888 889 890 891 892 893
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
894 895 896 897
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

898 899 900 901 902
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
903
	engine->kernel_context = ce;
904

905
	return 0;
906 907

err_context:
908
	destroy_pinned_context(ce);
909
	return ret;
910
}
911

912 913 914 915 916 917 918
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

919 920
	if (intel_uc_uses_guc_submission(&gt->uc)) {
		gt->submission_method = INTEL_SUBMISSION_GUC;
921
		setup = intel_guc_submission_setup;
922 923
	} else if (HAS_EXECLISTS(gt->i915)) {
		gt->submission_method = INTEL_SUBMISSION_ELSP;
924
		setup = intel_execlists_submission_setup;
925 926
	} else {
		gt->submission_method = INTEL_SUBMISSION_RING;
927
		setup = intel_ring_submission_setup;
928
	}
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

949 950 951 952 953 954 955 956 957
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
958
	GEM_BUG_ON(!list_empty(&engine->active.requests));
959
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
960

961
	intel_breadcrumbs_free(engine->breadcrumbs);
962

963
	intel_engine_fini_retire(engine);
964
	intel_engine_cleanup_cmd_parser(engine);
965

966
	if (engine->default_state)
967
		fput(engine->default_state);
968

969 970 971
	if (engine->kernel_context)
		destroy_pinned_context(engine->kernel_context);

972
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
973
	cleanup_status_page(engine);
974

975
	intel_wa_list_free(&engine->ctx_wa_list);
976
	intel_wa_list_free(&engine->wa_list);
977
	intel_wa_list_free(&engine->whitelist);
978
}
979

980 981 982 983 984 985 986 987 988 989 990 991 992 993
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

994
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
995
{
996 997
	struct drm_i915_private *i915 = engine->i915;

998 999
	u64 acthd;

1000 1001 1002 1003
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
1004
	else
1005
		acthd = ENGINE_READ(engine, ACTHD);
1006 1007 1008 1009

	return acthd;
}

1010
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1011 1012 1013
{
	u64 bbaddr;

1014 1015
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1016
	else
1017
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1018 1019 1020

	return bbaddr;
}
1021

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1037 1038 1039
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1040
{
1041
	struct intel_uncore *uncore = engine->uncore;
1042
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1043 1044
	int err;

1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1061
	if (INTEL_GEN(engine->i915) < 3)
1062 1063
		return -ENODEV;

1064
	ENGINE_TRACE(engine, "\n");
1065
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1079 1080 1081 1082 1083
	}

	return err;
}

1084 1085
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1086
	ENGINE_TRACE(engine, "\n");
1087

1088
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1102
static u32
1103 1104
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1105
{
1106 1107
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1108
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1109 1110
	enum forcewake_domains fw_domains;

1111
	if (INTEL_GEN(i915) >= 11) {
1112 1113
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1114
	} else {
1115 1116
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1117 1118
	}

1119
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1120
						    FW_REG_READ);
1121
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1122 1123 1124
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1125 1126
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1127

1128
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1129

1130 1131
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1132
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1133

1134
	val = intel_uncore_read_fw(uncore, reg);
1135

1136 1137
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1138

1139
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1140

1141 1142
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1143

1144
	return val;
1145 1146 1147
}

/* NB: please notice the memset */
1148
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1149 1150
			       struct intel_instdone *instdone)
{
1151
	struct drm_i915_private *i915 = engine->i915;
1152
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1153
	struct intel_uncore *uncore = engine->uncore;
1154 1155 1156 1157 1158 1159
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1160
	switch (INTEL_GEN(i915)) {
1161
	default:
1162 1163
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1164

1165
		if (engine->id != RCS0)
1166 1167
			break;

1168 1169
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1170 1171 1172 1173 1174 1175
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1176
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1177
			instdone->sampler[slice][subslice] =
1178
				read_subslice_reg(engine, slice, subslice,
1179 1180
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1181
				read_subslice_reg(engine, slice, subslice,
1182 1183 1184 1185
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1186 1187
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1188

1189
		if (engine->id != RCS0)
1190 1191
			break;

1192 1193 1194 1195 1196 1197
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1198 1199 1200 1201 1202

		break;
	case 6:
	case 5:
	case 4:
1203 1204
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1205
		if (engine->id == RCS0)
1206
			/* HACK: Using the wrong struct member */
1207 1208
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1209 1210 1211
		break;
	case 3:
	case 2:
1212
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1213 1214 1215
		break;
	}
}
1216

1217 1218 1219 1220
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1221 1222 1223
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1224
	if (!intel_engine_pm_get_if_awake(engine))
1225
		return true;
1226

1227
	/* First check that no commands are left in the ring */
1228 1229
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1230
		idle = false;
1231

1232
	/* No bit for gen2, so assume the CS parser is idle */
1233
	if (INTEL_GEN(engine->i915) > 2 &&
1234
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1235 1236
		idle = false;

1237
	intel_engine_pm_put(engine);
1238 1239 1240 1241

	return idle;
}

1242
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1243 1244 1245
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1246
	if (!t->callback)
1247 1248
		return;

1249 1250 1251 1252
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
1253
			t->callback(t);
1254
		tasklet_unlock(t);
1255
	}
1256
	local_bh_enable();
1257 1258 1259 1260

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1261 1262
}

1263 1264 1265 1266 1267 1268 1269 1270 1271
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1272
	/* More white lies, if wedged, hw state is inconsistent */
1273
	if (intel_gt_is_wedged(engine->gt))
1274 1275
		return true;

1276
	if (!intel_engine_pm_is_awake(engine))
1277 1278
		return true;

1279
	/* Waiting to drain ELSP? */
1280 1281
	synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
	intel_engine_flush_submission(engine);
1282

1283
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1284
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1285 1286
		return false;

1287
	/* Ring stopped? */
1288
	return ring_is_idle(engine);
1289 1290
}

1291
bool intel_engines_are_idle(struct intel_gt *gt)
1292 1293 1294 1295
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1296 1297
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1298 1299
	 * report that it is still busy, even though we have stopped using it.
	 */
1300
	if (intel_gt_is_wedged(gt))
1301 1302
		return true;

1303
	/* Already parked (and passed an idleness test); must still be idle */
1304
	if (!READ_ONCE(gt->awake))
1305 1306
		return true;

1307
	for_each_engine(engine, gt, id) {
1308 1309 1310 1311 1312 1313 1314
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1315
void intel_engines_reset_default_submission(struct intel_gt *gt)
1316 1317 1318 1319
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1320 1321 1322 1323
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1324
		engine->set_default_submission(engine);
1325
	}
1326 1327
}

1328 1329 1330 1331 1332 1333 1334 1335
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1336 1337
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1338 1339 1340 1341 1342 1343 1344
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1410
		drm_printf(m, "[%04zx] %s\n", pos, line);
1411 1412 1413 1414 1415 1416

		prev = buf + pos;
		skip = false;
	}
}

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1428
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1429
					 struct drm_printer *m)
1430 1431
{
	struct drm_i915_private *dev_priv = engine->i915;
1432
	struct intel_engine_execlists * const execlists = &engine->execlists;
1433 1434
	u64 addr;

1435
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1436
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1437 1438 1439 1440 1441 1442
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1443
	drm_printf(m, "\tRING_START: 0x%08x\n",
1444
		   ENGINE_READ(engine, RING_START));
1445
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1446
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1447
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1448
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1449
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1450 1451
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1452 1453
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1454 1455
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1456
	}
1457 1458

	if (INTEL_GEN(dev_priv) >= 6) {
1459
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1460
			   ENGINE_READ(engine, RING_IMR));
1461 1462 1463 1464 1465 1466
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1467 1468
	}

1469 1470 1471 1472 1473 1474
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1475
	if (INTEL_GEN(dev_priv) >= 8)
1476
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1477
	else if (INTEL_GEN(dev_priv) >= 4)
1478
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1479
	else
1480
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1481 1482 1483 1484
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1485
			   ENGINE_READ(engine, RING_IPEIR));
1486
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1487
			   ENGINE_READ(engine, RING_IPEHR));
1488
	} else {
1489 1490
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1491
	}
1492

1493
	if (intel_engine_uses_guc(engine)) {
1494 1495
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1496
		struct i915_request * const *port, *rq;
1497 1498
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1499
		const u8 num_entries = execlists->csb_size;
1500
		unsigned int idx;
1501
		u8 read, write;
1502

1503
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1504 1505 1506
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1507
			   repr_timer(&engine->execlists.preempt),
1508
			   repr_timer(&engine->execlists.timer));
1509

1510 1511 1512
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1513 1514 1515 1516 1517
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1518
		if (read >= num_entries)
1519
			read = 0;
1520
		if (write >= num_entries)
1521 1522
			write = 0;
		if (read > write)
1523
			write += num_entries;
1524
		while (read < write) {
1525 1526 1527
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1528 1529
		}

1530
		execlists_active_lock_bh(execlists);
1531
		rcu_read_lock();
1532
		for (port = execlists->active; (rq = *port); port++) {
1533
			char hdr[160];
1534 1535
			int len;

1536
			len = scnprintf(hdr, sizeof(hdr),
1537
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1538
					(int)(port - execlists->active),
1539 1540 1541
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1542
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1543
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1544
			i915_request_show(m, rq, hdr, 0);
1545 1546
		}
		for (port = execlists->pending; (rq = *port); port++) {
1547 1548
			char hdr[160];
			int len;
1549

1550
			len = scnprintf(hdr, sizeof(hdr),
1551
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1552
					(int)(port - execlists->pending),
1553 1554 1555
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1556 1557
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1558
			i915_request_show(m, rq, hdr, 0);
1559
		}
1560
		rcu_read_unlock();
1561
		execlists_active_unlock_bh(execlists);
1562 1563
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1564
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1565
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1566
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1567
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1568
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1569
	}
1570 1571
}

1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1651 1652 1653 1654 1655
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1656
	struct i915_request *rq;
1657
	intel_wakeref_t wakeref;
1658
	unsigned long flags;
1659
	ktime_t dummy;
1660 1661 1662 1663 1664 1665 1666 1667 1668

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1669
	if (intel_gt_is_wedged(engine->gt))
1670 1671
		drm_printf(m, "*** WEDGED ***\n");

1672
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1673 1674
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1675 1676
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1677 1678 1679 1680
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1681
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1682
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1683 1684 1685 1686 1687 1688 1689

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1690 1691 1692
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1693
	print_properties(engine, m);
1694 1695 1696

	drm_printf(m, "\tRequests:\n");

1697
	spin_lock_irqsave(&engine->active.lock, flags);
1698
	rq = intel_engine_find_active_request(engine);
1699
	if (rq) {
1700 1701
		struct intel_timeline *tl = get_timeline(rq);

1702
		i915_request_show(m, rq, "\t\tactive ", 0);
1703

1704
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1705
			   i915_ggtt_offset(rq->ring->vma));
1706
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1707
			   rq->ring->head);
1708
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1709
			   rq->ring->tail);
1710 1711 1712 1713
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1714 1715 1716 1717 1718 1719

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1720 1721

		print_request_ring(m, rq);
1722

1723
		if (rq->context->lrc_reg_state) {
1724
			drm_printf(m, "Logical Ring Context:\n");
1725
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1726
		}
1727
	}
1728
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1729
	spin_unlock_irqrestore(&engine->active.lock, flags);
1730

1731
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1732
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1733
	if (wakeref) {
1734
		intel_engine_print_registers(engine, m);
1735
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1736 1737 1738
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1739

C
Chris Wilson 已提交
1740
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1741

1742
	drm_printf(m, "HWSP:\n");
1743
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1744

1745
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1746 1747

	intel_engine_print_breadcrumbs(engine, m);
1748 1749
}

1750 1751
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1752 1753 1754 1755 1756 1757 1758
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1759
	*now = ktime_get();
1760
	if (READ_ONCE(engine->stats.active))
1761
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1762 1763 1764 1765 1766 1767 1768

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1769
 * @now: monotonic timestamp of sampling
1770 1771 1772
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1773
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1774
{
1775
	unsigned int seq;
1776 1777
	ktime_t total;

1778
	do {
1779
		seq = read_seqcount_begin(&engine->stats.lock);
1780
		total = __intel_engine_get_busy_time(engine, now);
1781
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1782 1783 1784 1785

	return total;
}

1786 1787
static bool match_ring(struct i915_request *rq)
{
1788
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1809
	lockdep_assert_held(&engine->active.lock);
1810 1811 1812 1813 1814 1815 1816

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1817
			if (__i915_request_is_complete(request))
1818 1819 1820 1821 1822 1823 1824 1825 1826
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1827
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1828
		if (__i915_request_is_complete(request))
1829 1830
			continue;

1831
		if (!__i915_request_has_started(request))
1832
			continue;
1833 1834 1835

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1836
			continue;
1837 1838 1839 1840 1841 1842 1843 1844

		active = request;
		break;
	}

	return active;
}

1845
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1846
#include "mock_engine.c"
1847
#include "selftest_engine.c"
1848
#include "selftest_engine_cs.c"
1849
#endif