intel_engine_cs.c 44.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30 31

#include "intel_engine.h"
32
#include "intel_engine_pm.h"
33
#include "intel_context.h"
34
#include "intel_lrc.h"
35
#include "intel_reset.h"
36

37 38 39 40 41 42 43 44 45
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

46
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
47 48
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
49
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
50
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
51 52 53

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

54
struct engine_class_info {
55
	const char *name;
56
	u8 uabi_class;
57 58 59 60 61
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
62
		.uabi_class = I915_ENGINE_CLASS_RENDER,
63 64 65
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
66
		.uabi_class = I915_ENGINE_CLASS_COPY,
67 68 69
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
70
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
71 72 73
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
74
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
75 76 77
	},
};

78
#define MAX_MMIO_BASES 3
79
struct engine_info {
80
	unsigned int hw_id;
81 82
	u8 class;
	u8 instance;
83 84 85 86 87
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
88 89 90
};

static const struct engine_info intel_engines[] = {
91 92
	[RCS0] = {
		.hw_id = RCS0_HW,
93 94
		.class = RENDER_CLASS,
		.instance = 0,
95 96 97
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
98
	},
99 100
	[BCS0] = {
		.hw_id = BCS0_HW,
101 102
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
103 104 105
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
106
	},
107 108
	[VCS0] = {
		.hw_id = VCS0_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
111 112 113 114 115
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
116
	},
117 118
	[VCS1] = {
		.hw_id = VCS1_HW,
119 120
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
125
	},
126 127
	[VCS2] = {
		.hw_id = VCS2_HW,
128 129
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
130 131 132
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
133
	},
134 135
	[VCS3] = {
		.hw_id = VCS3_HW,
136 137
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
138 139 140
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
141
	},
142 143
	[VECS0] = {
		.hw_id = VECS0_HW,
144 145
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
146 147 148 149
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
150
	},
151 152
	[VECS1] = {
		.hw_id = VECS1_HW,
153 154
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
155 156 157
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
158
	},
159 160
};

161
/**
162
 * intel_engine_context_size() - return the size of the context for an engine
163 164 165 166 167 168 169 170 171 172 173 174
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
175
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
176 177 178 179 180 181 182 183 184 185
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
186
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
187 188
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
189
		case 10:
O
Oscar Mateo 已提交
190
			return GEN10_LR_CONTEXT_RENDER_SIZE;
191 192 193
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
194
			return GEN8_LR_CONTEXT_RENDER_SIZE;
195 196 197 198 199 200 201 202 203 204 205 206
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
207
		case 4:
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
224 225 226 227 228 229 230 231 232
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
233
		/* fall through */
234 235 236 237 238 239 240 241 242
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

258 259 260 261 262 263 264
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

265 266 267 268 269 270
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
271
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
272 273
		return;

274 275
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
276
	else
277
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
278 279 280 281 282 283 284 285
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

286
static int
287 288 289 290
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
291 292
	struct intel_engine_cs *engine;

293 294
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

295 296 297
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

298
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
299 300
		return -EINVAL;

301
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
302 303
		return -EINVAL;

304
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
305 306
		return -EINVAL;

307 308 309 310
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
311

312 313
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

314
	engine->id = id;
315
	engine->mask = BIT(id);
316
	engine->i915 = dev_priv;
317
	engine->uncore = &dev_priv->uncore;
318
	__sprint_engine_name(engine->name, info);
319
	engine->hw_id = engine->guc_id = info->hw_id;
320
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
321 322
	engine->class = info->class;
	engine->instance = info->instance;
323

324 325 326 327 328 329
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

330
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
331

332 333
	engine->context_size = intel_engine_context_size(dev_priv,
							 engine->class);
334 335
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
336 337
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
338

339 340 341
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

342
	seqlock_init(&engine->stats.lock);
343

344 345
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

346 347 348
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

349
	dev_priv->engine_class[info->class][info->instance] = engine;
350 351
	dev_priv->engine[id] = engine;
	return 0;
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

static void intel_setup_engine_capabilities(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		__setup_engine_capabilities(engine);
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 * @i915: the i915 devic
 */
void intel_engines_cleanup(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		engine->destroy(engine);
		i915->engine[id] = NULL;
	}
}

408
/**
409
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
410
 * @i915: the i915 device
411 412 413
 *
 * Return: non-zero if the initialization failed.
 */
414
int intel_engines_init_mmio(struct drm_i915_private *i915)
415
{
416 417
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
418
	unsigned int mask = 0;
419
	unsigned int i;
420
	int err;
421

422 423
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
424
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
425

426 427 428
	if (i915_inject_load_failure())
		return -ENODEV;

429
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
430
		if (!HAS_ENGINE(i915, i))
431 432
			continue;

433
		err = intel_engine_setup(i915, i);
434 435 436
		if (err)
			goto cleanup;

437
		mask |= BIT(i);
438 439 440 441 442 443 444
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
445 446
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
447

448
	/* We always presume we have at least RCS available for later probing */
449
	if (WARN_ON(!HAS_ENGINE(i915, RCS0))) {
450 451 452 453
		err = -ENODEV;
		goto cleanup;
	}

454
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
455

456
	i915_check_and_clear_faults(i915);
457

458 459
	intel_setup_engine_capabilities(i915);

460 461 462
	return 0;

cleanup:
463
	intel_engines_cleanup(i915);
464 465 466 467
	return err;
}

/**
468
 * intel_engines_init() - init the Engine Command Streamers
469
 * @i915: i915 device private
470 471 472
 *
 * Return: non-zero if the initialization failed.
 */
473
int intel_engines_init(struct drm_i915_private *i915)
474
{
475
	int (*init)(struct intel_engine_cs *engine);
476
	struct intel_engine_cs *engine;
477
	enum intel_engine_id id;
478
	int err;
479

480 481 482 483
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
484

485
	for_each_engine(engine, i915, id) {
486
		err = init(engine);
487
		if (err)
488 489 490 491 492 493
			goto cleanup;
	}

	return 0;

cleanup:
494
	intel_engines_cleanup(i915);
495
	return err;
496 497
}

498 499 500 501 502
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

503
void intel_engine_init_execlists(struct intel_engine_cs *engine)
504 505 506
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

507
	execlists->port_mask = 1;
508
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
509 510
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

511
	execlists->queue_priority_hint = INT_MIN;
512
	execlists->queue = RB_ROOT_CACHED;
513 514
}

515
static void cleanup_status_page(struct intel_engine_cs *engine)
516
{
517 518
	struct i915_vma *vma;

519 520 521
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

522 523 524
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
	__i915_gem_object_release_unless_active(vma->obj);
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
554

555
	return i915_vma_pin(vma, 0, 0, flags);
556 557 558 559 560 561 562 563 564
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

565 566 567 568 569 570 571
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
572 573 574 575 576 577
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

578
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
579

580
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
581 582 583 584 585 586 587 588
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
589
		goto err;
590 591
	}

592
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
593
	engine->status_page.vma = vma;
594 595 596 597 598 599 600

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

601 602 603
	return 0;

err_unpin:
604
	i915_gem_object_unpin_map(obj);
605 606 607 608 609
err:
	i915_gem_object_put(obj);
	return ret;
}

610
static int intel_engine_setup_common(struct intel_engine_cs *engine)
611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
{
	int err;

	err = init_status_page(engine);
	if (err)
		return err;

	err = i915_timeline_init(engine->i915,
				 &engine->timeline,
				 engine->status_page.vma);
	if (err)
		goto err_hwsp;

	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);

626
	intel_engine_init_breadcrumbs(engine);
627
	intel_engine_init_execlists(engine);
628 629 630
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);
631
	intel_engine_init__pm(engine);
632

633 634 635 636
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

637 638 639 640 641 642 643
	return 0;

err_hwsp:
	cleanup_status_page(engine);
	return err;
}

644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

674 675 676
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

677 678 679 680 681 682
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
683
	intel_engines_cleanup(i915);
684 685 686
	return err;
}

687 688 689 690 691 692 693 694
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
695
		MAP(SEMAPHORES, SEMAPHORES),
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

727 728 729 730 731 732 733
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

734
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
735 736
{
	struct measure_breadcrumb *frame;
737
	int dw = -ENOMEM;
738 739 740 741 742 743 744

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

745
	if (i915_timeline_init(engine->i915,
746
			       &frame->timeline,
747 748
			       engine->status_page.vma))
		goto out_frame;
749 750 751 752 753 754 755 756 757 758 759 760 761

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

762 763 764 765
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

766
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
767
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
768

769
	i915_timeline_unpin(&frame->timeline);
770

771 772
out_timeline:
	i915_timeline_fini(&frame->timeline);
773 774
out_frame:
	kfree(frame);
775 776 777
	return dw;
}

778 779 780 781 782
static int pin_context(struct i915_gem_context *ctx,
		       struct intel_engine_cs *engine,
		       struct intel_context **out)
{
	struct intel_context *ce;
783
	int err;
784

785
	ce = i915_gem_context_get_engine(ctx, engine->id);
786 787 788
	if (IS_ERR(ce))
		return PTR_ERR(ce);

789 790 791 792 793
	err = intel_context_pin(ce);
	intel_context_put(ce);
	if (err)
		return err;

794 795 796 797
	*out = ce;
	return 0;
}

798 799 800 801 802 803 804 805 806 807 808 809 810
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
811
	struct drm_i915_private *i915 = engine->i915;
812 813
	int ret;

814 815 816 817 818 819 820
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
821 822 823 824
	ret = pin_context(i915->kernel_context, engine,
			  &engine->kernel_context);
	if (ret)
		return ret;
825

826 827
	/*
	 * Similarly the preempt context must always be available so that
828 829
	 * we can interrupt the engine at any time. However, as preemption
	 * is optional, we allow it to fail.
830
	 */
831 832 833
	if (i915->preempt_context)
		pin_context(i915->preempt_context, engine,
			    &engine->preempt_context);
834

835
	ret = measure_breadcrumb_dw(engine);
836
	if (ret < 0)
837
		goto err_unpin;
838

839
	engine->emit_fini_breadcrumb_dw = ret;
840

841
	engine->set_default_submission(engine);
842

843
	return 0;
844

845 846 847 848
err_unpin:
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
849
	return ret;
850
}
851 852 853 854 855 856 857 858 859 860

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
861
	cleanup_status_page(engine);
862

863
	intel_engine_fini_breadcrumbs(engine);
864
	intel_engine_cleanup_cmd_parser(engine);
865
	i915_gem_batch_pool_fini(&engine->batch_pool);
866

867 868 869
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

870 871 872
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
873 874

	i915_timeline_fini(&engine->timeline);
875

876
	intel_wa_list_free(&engine->ctx_wa_list);
877
	intel_wa_list_free(&engine->wa_list);
878
	intel_wa_list_free(&engine->whitelist);
879
}
880

881
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
882
{
883 884
	struct drm_i915_private *i915 = engine->i915;

885 886
	u64 acthd;

887 888 889 890
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
891
	else
892
		acthd = ENGINE_READ(engine, ACTHD);
893 894 895 896

	return acthd;
}

897
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
898 899 900
{
	u64 bbaddr;

901 902
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
903
	else
904
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
905 906 907

	return bbaddr;
}
908

909 910
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
911
	struct intel_uncore *uncore = engine->uncore;
912 913 914 915
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

916
	if (INTEL_GEN(engine->i915) < 3)
917 918 919 920
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

921
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
922 923

	err = 0;
924
	if (__intel_wait_for_register_fw(uncore,
925 926 927 928 929 930 931 932
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
933
	intel_uncore_posting_read_fw(uncore, mode);
934 935 936 937

	return err;
}

938 939 940 941
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

942
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
943 944
}

945 946 947 948 949 950 951 952 953 954 955
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

956 957
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
958
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
959 960 961 962
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

963
	if (IS_GEN(dev_priv, 10))
964 965
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
966 967 968
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
969 970 971 972 973 974
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

975
static inline u32
976 977 978
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
979
	struct intel_uncore *uncore = &dev_priv->uncore;
980 981 982 983 984
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
985 986
	enum forcewake_domains fw_domains;

987 988 989 990 991 992 993 994 995 996 997 998
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

999 1000
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

1001
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1002
						    FW_REG_READ);
1003
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1004 1005 1006
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1007 1008
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1009

1010
	mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1011 1012 1013 1014

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

1015 1016
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
1017
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1018

1019
	ret = intel_uncore_read_fw(uncore, reg);
1020

1021
	mcr &= ~mcr_slice_subslice_mask;
1022 1023
	mcr |= default_mcr_s_ss_select;

1024
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1025

1026 1027
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1028 1029 1030 1031 1032 1033 1034 1035 1036

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
1037
	struct intel_uncore *uncore = engine->uncore;
1038 1039 1040 1041 1042 1043 1044 1045
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
1046 1047
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1048

1049
		if (engine->id != RCS0)
1050 1051
			break;

1052 1053
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1064 1065
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1066

1067
		if (engine->id != RCS0)
1068 1069
			break;

1070 1071 1072 1073 1074 1075
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1076 1077 1078 1079 1080

		break;
	case 6:
	case 5:
	case 4:
1081 1082
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1083
		if (engine->id == RCS0)
1084
			/* HACK: Using the wrong struct member */
1085 1086
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1087 1088 1089
		break;
	case 3:
	case 2:
1090
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1091 1092 1093
		break;
	}
}
1094

1095 1096 1097
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1098
	intel_wakeref_t wakeref;
1099 1100
	bool idle = true;

1101 1102 1103
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1104
	/* If the whole device is asleep, the engine must be idle */
1105 1106
	wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
	if (!wakeref)
1107
		return true;
1108

1109
	/* First check that no commands are left in the ring */
1110 1111
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1112
		idle = false;
1113

1114
	/* No bit for gen2, so assume the CS parser is idle */
1115 1116
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1117 1118
		idle = false;

1119
	intel_runtime_pm_put(dev_priv, wakeref);
1120 1121 1122 1123

	return idle;
}

1124 1125 1126 1127 1128 1129 1130 1131 1132
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1133
	/* More white lies, if wedged, hw state is inconsistent */
1134
	if (i915_reset_failed(engine->i915))
1135 1136
		return true;

1137 1138 1139
	if (!intel_wakeref_active(&engine->wakeref))
		return true;

1140
	/* Waiting to drain ELSP? */
1141
	if (READ_ONCE(engine->execlists.active)) {
1142
		struct tasklet_struct *t = &engine->execlists.tasklet;
1143

1144 1145
		synchronize_hardirq(engine->i915->drm.irq);

1146
		local_bh_disable();
1147 1148 1149 1150 1151
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1152
		}
1153
		local_bh_enable();
1154

1155 1156 1157
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1158
		if (READ_ONCE(engine->execlists.active))
1159 1160
			return false;
	}
1161

1162
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1163
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1164 1165
		return false;

1166
	/* Ring stopped? */
1167
	return ring_is_idle(engine);
1168 1169
}

1170
bool intel_engines_are_idle(struct drm_i915_private *i915)
1171 1172 1173 1174
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1175 1176
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1177 1178
	 * report that it is still busy, even though we have stopped using it.
	 */
1179
	if (i915_reset_failed(i915))
1180 1181
		return true;

1182 1183 1184 1185 1186
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1187 1188 1189 1190 1191 1192 1193
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1194 1195 1196 1197 1198 1199 1200 1201 1202
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1214
	struct intel_context *ce;
1215 1216 1217

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1218 1219 1220
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1221 1222
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1252 1253 1254
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1255 1256
{
	if (attr->priority == I915_PRIORITY_INVALID)
1257 1258 1259 1260
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1261

1262
	return x;
1263 1264
}

1265
static void print_request(struct drm_printer *m,
1266
			  struct i915_request *rq,
1267 1268
			  const char *prefix)
{
1269
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1270
	char buf[80] = "";
1271 1272 1273
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1274

1275
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1276
		   prefix,
1277
		   rq->fence.context, rq->fence.seqno,
1278 1279 1280
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1281 1282
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1283
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1284 1285
			    &rq->fence.flags) ? "-" :
		   "",
1286
		   buf,
1287
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1288
		   name);
1289 1290
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1313
		drm_printf(m, "[%04zx] %s\n", pos, line);
1314 1315 1316 1317 1318 1319

		prev = buf + pos;
		skip = false;
	}
}

1320 1321
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1322 1323
{
	struct drm_i915_private *dev_priv = engine->i915;
1324 1325
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1326 1327
	u64 addr;

1328
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1329
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1330
	drm_printf(m, "\tRING_START: 0x%08x\n",
1331
		   ENGINE_READ(engine, RING_START));
1332
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1333
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1334
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1335
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1336
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1337 1338
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1339 1340
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1341 1342
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1343
	}
1344 1345

	if (INTEL_GEN(dev_priv) >= 6) {
1346 1347
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1348 1349
	}

1350 1351 1352 1353 1354 1355
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1356
	if (INTEL_GEN(dev_priv) >= 8)
1357
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1358
	else if (INTEL_GEN(dev_priv) >= 4)
1359
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1360
	else
1361
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1362 1363 1364 1365
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1366
			   ENGINE_READ(engine, RING_IPEIR));
1367
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1368
			   ENGINE_READ(engine, RING_IPEHR));
1369
	} else {
1370 1371
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1372
	}
1373

1374
	if (HAS_EXECLISTS(dev_priv)) {
1375 1376
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1377
		const u8 num_entries = execlists->csb_size;
1378
		unsigned int idx;
1379
		u8 read, write;
1380

1381
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1382
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1383 1384
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1385

1386 1387 1388
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1389
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1390
			   read, write,
1391 1392 1393
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1394
		if (read >= num_entries)
1395
			read = 0;
1396
		if (write >= num_entries)
1397 1398
			write = 0;
		if (read > write)
1399
			write += num_entries;
1400
		while (read < write) {
1401 1402 1403
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1404 1405 1406 1407
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1408
			struct i915_request *rq;
1409 1410 1411 1412
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1413 1414
				char hdr[80];

1415
				snprintf(hdr, sizeof(hdr),
1416
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1417
					 idx, count,
1418
					 i915_ggtt_offset(rq->ring->vma),
1419 1420
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1421
				print_request(m, rq, hdr);
1422
			} else {
1423
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1424 1425
			}
		}
1426
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1427 1428 1429
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1430
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1431
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1432
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1433
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1434
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1435
	}
1436 1437
}

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1471 1472 1473 1474 1475
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1476
	struct i915_request *rq;
1477
	intel_wakeref_t wakeref;
1478 1479 1480 1481 1482 1483 1484 1485 1486

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1487
	if (i915_reset_failed(engine->i915))
1488 1489
		drm_printf(m, "*** WEDGED ***\n");

1490
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1491
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1492
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1493 1494 1495 1496 1497 1498 1499 1500
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1501
	rq = list_first_entry(&engine->timeline.requests,
1502
			      struct i915_request, link);
1503
	if (&rq->link != &engine->timeline.requests)
1504 1505
		print_request(m, rq, "\t\tfirst  ");

1506
	rq = list_last_entry(&engine->timeline.requests,
1507
			     struct i915_request, link);
1508
	if (&rq->link != &engine->timeline.requests)
1509 1510
		print_request(m, rq, "\t\tlast   ");

1511
	rq = intel_engine_find_active_request(engine);
1512 1513
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1514

1515
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1516
			   i915_ggtt_offset(rq->ring->vma));
1517
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1518
			   rq->ring->head);
1519
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1520
			   rq->ring->tail);
1521 1522 1523 1524
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1525 1526
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1527 1528

		print_request_ring(m, rq);
1529 1530 1531 1532
	}

	rcu_read_unlock();

1533 1534
	wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
	if (wakeref) {
1535
		intel_engine_print_registers(engine, m);
1536
		intel_runtime_pm_put(engine->i915, wakeref);
1537 1538 1539
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1540

1541
	intel_execlists_show_requests(engine, m, print_request, 8);
1542

1543
	drm_printf(m, "HWSP:\n");
1544
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1545

1546
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1547 1548

	intel_engine_print_breadcrumbs(engine, m);
1549 1550
}

1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1584
	struct intel_engine_execlists *execlists = &engine->execlists;
1585
	unsigned long flags;
1586
	int err = 0;
1587

1588
	if (!intel_engine_supports_stats(engine))
1589 1590
		return -ENODEV;

1591 1592
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1593 1594 1595 1596 1597 1598

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1599 1600 1601 1602
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1603
		engine->stats.enabled_at = ktime_get();
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1614

1615
unlock:
1616 1617
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1618

1619
	return err;
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1645
	unsigned int seq;
1646 1647
	ktime_t total;

1648 1649 1650 1651
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1666
	if (!intel_engine_supports_stats(engine))
1667 1668
		return;

1669
	write_seqlock_irqsave(&engine->stats.lock, flags);
1670 1671 1672 1673 1674
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1675
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1676 1677
}

1678 1679
static bool match_ring(struct i915_request *rq)
{
1680
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;
	unsigned long flags;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
			break;

		/* More than one preemptible request may match! */
		if (!match_ring(request))
			break;

		active = request;
		break;
	}
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	return active;
}

1722
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1723
#include "selftest_engine_cs.c"
1724
#endif