intel_engine_cs.c 44.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30 31

#include "intel_engine.h"
32
#include "intel_engine_pm.h"
33
#include "intel_context.h"
34
#include "intel_lrc.h"
35
#include "intel_reset.h"
36

37 38 39 40 41 42 43 44 45
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

46
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
47 48
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
49
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
50
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
51 52 53

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

54
struct engine_class_info {
55
	const char *name;
56
	u8 uabi_class;
57 58 59 60 61
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
62
		.uabi_class = I915_ENGINE_CLASS_RENDER,
63 64 65
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
66
		.uabi_class = I915_ENGINE_CLASS_COPY,
67 68 69
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
70
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
71 72 73
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
74
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
75 76 77
	},
};

78
#define MAX_MMIO_BASES 3
79
struct engine_info {
80
	unsigned int hw_id;
81 82
	u8 class;
	u8 instance;
83 84 85 86 87
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
88 89 90
};

static const struct engine_info intel_engines[] = {
91 92
	[RCS0] = {
		.hw_id = RCS0_HW,
93 94
		.class = RENDER_CLASS,
		.instance = 0,
95 96 97
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
98
	},
99 100
	[BCS0] = {
		.hw_id = BCS0_HW,
101 102
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
103 104 105
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
106
	},
107 108
	[VCS0] = {
		.hw_id = VCS0_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
111 112 113 114 115
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
116
	},
117 118
	[VCS1] = {
		.hw_id = VCS1_HW,
119 120
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
121 122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
125
	},
126 127
	[VCS2] = {
		.hw_id = VCS2_HW,
128 129
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
130 131 132
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
133
	},
134 135
	[VCS3] = {
		.hw_id = VCS3_HW,
136 137
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
138 139 140
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
141
	},
142 143
	[VECS0] = {
		.hw_id = VECS0_HW,
144 145
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
146 147 148 149
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
150
	},
151 152
	[VECS1] = {
		.hw_id = VECS1_HW,
153 154
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
155 156 157
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
158
	},
159 160
};

161
/**
162
 * intel_engine_context_size() - return the size of the context for an engine
163 164 165 166 167 168 169 170 171 172 173 174
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
175
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
176 177 178 179 180 181 182 183 184 185
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
186
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
187 188
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
189
		case 10:
O
Oscar Mateo 已提交
190
			return GEN10_LR_CONTEXT_RENDER_SIZE;
191 192 193
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
194
			return GEN8_LR_CONTEXT_RENDER_SIZE;
195 196 197 198 199 200 201 202 203 204 205 206
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
207
		case 4:
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
224 225 226 227 228 229 230 231 232
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
233
		/* fall through */
234 235 236 237 238 239 240 241 242
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

258 259 260 261 262 263 264
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

265 266 267 268 269 270
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
271
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
272 273
		return;

274 275
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
276
	else
277
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
278 279 280 281 282 283 284 285
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

286
static int
287 288 289 290
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
291 292
	struct intel_engine_cs *engine;

293 294
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

295 296 297
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

298
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
299 300
		return -EINVAL;

301
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
302 303
		return -EINVAL;

304
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
305 306
		return -EINVAL;

307 308 309 310
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
311

312 313
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

314
	engine->id = id;
315
	engine->mask = BIT(id);
316
	engine->i915 = dev_priv;
317
	engine->uncore = &dev_priv->uncore;
318
	__sprint_engine_name(engine->name, info);
319
	engine->hw_id = engine->guc_id = info->hw_id;
320
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
321 322
	engine->class = info->class;
	engine->instance = info->instance;
323

324 325 326 327 328 329
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

330
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
331

332 333
	engine->context_size = intel_engine_context_size(dev_priv,
							 engine->class);
334 335
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
336 337
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
338

339 340 341
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

342
	seqlock_init(&engine->stats.lock);
343

344 345
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

346 347 348
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

349
	dev_priv->engine_class[info->class][info->instance] = engine;
350 351
	dev_priv->engine[id] = engine;
	return 0;
352 353
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

static void intel_setup_engine_capabilities(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		__setup_engine_capabilities(engine);
}

393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 * @i915: the i915 devic
 */
void intel_engines_cleanup(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		engine->destroy(engine);
		i915->engine[id] = NULL;
	}
}

408
/**
409
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
410
 * @i915: the i915 device
411 412 413
 *
 * Return: non-zero if the initialization failed.
 */
414
int intel_engines_init_mmio(struct drm_i915_private *i915)
415
{
416 417
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
418
	unsigned int mask = 0;
419
	unsigned int i;
420
	int err;
421

422 423
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
424
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
425

426 427 428
	if (i915_inject_load_failure())
		return -ENODEV;

429
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
430
		if (!HAS_ENGINE(i915, i))
431 432
			continue;

433
		err = intel_engine_setup(i915, i);
434 435 436
		if (err)
			goto cleanup;

437
		mask |= BIT(i);
438 439 440 441 442 443 444
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
445 446
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
447

448
	/* We always presume we have at least RCS available for later probing */
449
	if (WARN_ON(!HAS_ENGINE(i915, RCS0))) {
450 451 452 453
		err = -ENODEV;
		goto cleanup;
	}

454
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
455

456
	i915_check_and_clear_faults(i915);
457

458 459
	intel_setup_engine_capabilities(i915);

460 461 462
	return 0;

cleanup:
463
	intel_engines_cleanup(i915);
464 465 466 467
	return err;
}

/**
468
 * intel_engines_init() - init the Engine Command Streamers
469
 * @i915: i915 device private
470 471 472
 *
 * Return: non-zero if the initialization failed.
 */
473
int intel_engines_init(struct drm_i915_private *i915)
474
{
475
	int (*init)(struct intel_engine_cs *engine);
476
	struct intel_engine_cs *engine;
477
	enum intel_engine_id id;
478
	int err;
479

480 481 482 483
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
484

485
	for_each_engine(engine, i915, id) {
486
		err = init(engine);
487
		if (err)
488 489 490 491 492 493
			goto cleanup;
	}

	return 0;

cleanup:
494
	intel_engines_cleanup(i915);
495
	return err;
496 497
}

498 499 500 501 502
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

503
void intel_engine_init_execlists(struct intel_engine_cs *engine)
504 505 506
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

507
	execlists->port_mask = 1;
508
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
509 510
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

511
	execlists->queue_priority_hint = INT_MIN;
512
	execlists->queue = RB_ROOT_CACHED;
513 514
}

515
static void cleanup_status_page(struct intel_engine_cs *engine)
516
{
517 518
	struct i915_vma *vma;

519 520 521
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

522 523 524
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
525

526 527 528 529
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
530
	i915_gem_object_put(vma->obj);
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
554

555
	return i915_vma_pin(vma, 0, 0, flags);
556 557 558 559 560 561 562 563 564
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

565 566 567 568 569 570 571
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
572 573 574 575 576 577
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

578
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
579

580
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
581 582 583 584 585 586 587 588
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
589
		goto err;
590 591
	}

592
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
593
	engine->status_page.vma = vma;
594 595 596 597 598 599 600

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

601 602 603
	return 0;

err_unpin:
604
	i915_gem_object_unpin_map(obj);
605 606 607 608 609
err:
	i915_gem_object_put(obj);
	return ret;
}

610
static int intel_engine_setup_common(struct intel_engine_cs *engine)
611 612 613
{
	int err;

614 615
	init_llist_head(&engine->barrier_tasks);

616 617 618 619
	err = init_status_page(engine);
	if (err)
		return err;

620
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
621
	intel_engine_init_breadcrumbs(engine);
622
	intel_engine_init_execlists(engine);
623 624 625
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);
626
	intel_engine_init__pm(engine);
627

628 629 630 631
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

632 633 634
	return 0;
}

635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

665 666 667
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

668 669 670 671 672 673
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
674
	intel_engines_cleanup(i915);
675 676 677
	return err;
}

678 679 680 681 682 683 684 685
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
686
		MAP(SEMAPHORES, SEMAPHORES),
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

718 719 720 721 722 723 724
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

725
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
726 727
{
	struct measure_breadcrumb *frame;
728
	int dw = -ENOMEM;
729 730 731 732 733 734 735

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

736
	if (i915_timeline_init(engine->i915,
737
			       &frame->timeline,
738 739
			       engine->status_page.vma))
		goto out_frame;
740 741 742 743 744 745 746 747 748 749 750 751 752

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

753 754 755 756
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

757
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
758
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
759

760
	i915_timeline_unpin(&frame->timeline);
761

762 763
out_timeline:
	i915_timeline_fini(&frame->timeline);
764 765
out_frame:
	kfree(frame);
766 767 768
	return dw;
}

769 770 771 772 773
static int pin_context(struct i915_gem_context *ctx,
		       struct intel_engine_cs *engine,
		       struct intel_context **out)
{
	struct intel_context *ce;
774
	int err;
775

776
	ce = i915_gem_context_get_engine(ctx, engine->id);
777 778 779
	if (IS_ERR(ce))
		return PTR_ERR(ce);

780 781 782 783 784
	err = intel_context_pin(ce);
	intel_context_put(ce);
	if (err)
		return err;

785 786 787 788
	*out = ce;
	return 0;
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

810 811 812 813 814 815 816 817 818 819 820 821 822
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
823
	struct drm_i915_private *i915 = engine->i915;
824 825
	int ret;

826 827 828 829 830 831 832
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
833 834 835 836
	ret = pin_context(i915->kernel_context, engine,
			  &engine->kernel_context);
	if (ret)
		return ret;
837

838 839
	/*
	 * Similarly the preempt context must always be available so that
840 841
	 * we can interrupt the engine at any time. However, as preemption
	 * is optional, we allow it to fail.
842
	 */
843 844 845
	if (i915->preempt_context)
		pin_context(i915->preempt_context, engine,
			    &engine->preempt_context);
846

847
	ret = measure_breadcrumb_dw(engine);
848
	if (ret < 0)
849
		goto err_unpin;
850

851
	engine->emit_fini_breadcrumb_dw = ret;
852

853
	engine->set_default_submission(engine);
854

855
	return 0;
856

857 858 859 860
err_unpin:
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
861
	return ret;
862
}
863 864 865 866 867 868 869 870 871 872

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
873 874
	GEM_BUG_ON(!list_empty(&engine->active.requests));

875
	cleanup_status_page(engine);
876

877
	intel_engine_fini_breadcrumbs(engine);
878
	intel_engine_cleanup_cmd_parser(engine);
879
	i915_gem_batch_pool_fini(&engine->batch_pool);
880

881 882 883
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

884 885 886
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
887
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
888

889
	intel_wa_list_free(&engine->ctx_wa_list);
890
	intel_wa_list_free(&engine->wa_list);
891
	intel_wa_list_free(&engine->whitelist);
892
}
893

894
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
895
{
896 897
	struct drm_i915_private *i915 = engine->i915;

898 899
	u64 acthd;

900 901 902 903
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
904
	else
905
		acthd = ENGINE_READ(engine, ACTHD);
906 907 908 909

	return acthd;
}

910
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
911 912 913
{
	u64 bbaddr;

914 915
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
916
	else
917
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
918 919 920

	return bbaddr;
}
921

922 923
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
924
	struct intel_uncore *uncore = engine->uncore;
925 926 927 928
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

929
	if (INTEL_GEN(engine->i915) < 3)
930 931 932 933
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

934
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
935 936

	err = 0;
937
	if (__intel_wait_for_register_fw(uncore,
938 939 940 941 942 943 944 945
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
946
	intel_uncore_posting_read_fw(uncore, mode);
947 948 949 950

	return err;
}

951 952 953 954
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

955
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
956 957
}

958 959 960 961 962 963 964 965 966 967 968
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

969 970
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
971
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
972 973
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
974
	u32 subslice = fls(sseu->subslice_mask[slice]);
975

976
	if (IS_GEN(dev_priv, 10))
977 978
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
979 980 981
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
982 983 984 985 986 987
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

988 989 990
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
991
{
992 993
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
994 995 996 997 998
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
999 1000
	enum forcewake_domains fw_domains;

1001
	if (INTEL_GEN(i915) >= 11) {
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

1013
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(i915);
1014

1015
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1016
						    FW_REG_READ);
1017
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1018 1019 1020
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1021 1022
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1023

1024
	mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1025 1026 1027 1028

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

1029 1030
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
1031
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1032

1033
	ret = intel_uncore_read_fw(uncore, reg);
1034

1035
	mcr &= ~mcr_slice_subslice_mask;
1036 1037
	mcr |= default_mcr_s_ss_select;

1038
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1039

1040 1041
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1042 1043 1044 1045 1046 1047 1048 1049

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
1050
	struct drm_i915_private *i915 = engine->i915;
1051
	struct intel_uncore *uncore = engine->uncore;
1052 1053 1054 1055 1056 1057
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1058
	switch (INTEL_GEN(i915)) {
1059
	default:
1060 1061
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1062

1063
		if (engine->id != RCS0)
1064 1065
			break;

1066 1067
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1068
		for_each_instdone_slice_subslice(i915, slice, subslice) {
1069
			instdone->sampler[slice][subslice] =
1070
				read_subslice_reg(engine, slice, subslice,
1071 1072
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1073
				read_subslice_reg(engine, slice, subslice,
1074 1075 1076 1077
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1078 1079
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1080

1081
		if (engine->id != RCS0)
1082 1083
			break;

1084 1085 1086 1087 1088 1089
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1090 1091 1092 1093 1094

		break;
	case 6:
	case 5:
	case 4:
1095 1096
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1097
		if (engine->id == RCS0)
1098
			/* HACK: Using the wrong struct member */
1099 1100
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1101 1102 1103
		break;
	case 3:
	case 2:
1104
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1105 1106 1107
		break;
	}
}
1108

1109 1110 1111
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1112
	intel_wakeref_t wakeref;
1113 1114
	bool idle = true;

1115 1116 1117
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1118
	/* If the whole device is asleep, the engine must be idle */
1119
	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
1120
	if (!wakeref)
1121
		return true;
1122

1123
	/* First check that no commands are left in the ring */
1124 1125
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1126
		idle = false;
1127

1128
	/* No bit for gen2, so assume the CS parser is idle */
1129 1130
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1131 1132
		idle = false;

1133
	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1134 1135 1136 1137

	return idle;
}

1138 1139 1140 1141 1142 1143 1144 1145 1146
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1147
	/* More white lies, if wedged, hw state is inconsistent */
1148
	if (i915_reset_failed(engine->i915))
1149 1150
		return true;

1151 1152 1153
	if (!intel_wakeref_active(&engine->wakeref))
		return true;

1154
	/* Waiting to drain ELSP? */
1155
	if (READ_ONCE(engine->execlists.active)) {
1156
		struct tasklet_struct *t = &engine->execlists.tasklet;
1157

1158 1159
		synchronize_hardirq(engine->i915->drm.irq);

1160
		local_bh_disable();
1161 1162 1163 1164 1165
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1166
		}
1167
		local_bh_enable();
1168

1169 1170 1171
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1172
		if (READ_ONCE(engine->execlists.active))
1173 1174
			return false;
	}
1175

1176
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1177
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1178 1179
		return false;

1180
	/* Ring stopped? */
1181
	return ring_is_idle(engine);
1182 1183
}

1184
bool intel_engines_are_idle(struct drm_i915_private *i915)
1185 1186 1187 1188
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1189 1190
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1191 1192
	 * report that it is still busy, even though we have stopped using it.
	 */
1193
	if (i915_reset_failed(i915))
1194 1195
		return true;

1196 1197 1198 1199 1200
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1201 1202 1203 1204 1205 1206 1207
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1208 1209 1210 1211 1212 1213 1214 1215 1216
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1246 1247 1248
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1249 1250
{
	if (attr->priority == I915_PRIORITY_INVALID)
1251 1252 1253 1254
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1255

1256
	return x;
1257 1258
}

1259
static void print_request(struct drm_printer *m,
1260
			  struct i915_request *rq,
1261 1262
			  const char *prefix)
{
1263
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1264
	char buf[80] = "";
1265 1266 1267
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1268

1269
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1270
		   prefix,
1271
		   rq->fence.context, rq->fence.seqno,
1272 1273 1274
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1275 1276
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1277
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1278 1279
			    &rq->fence.flags) ? "-" :
		   "",
1280
		   buf,
1281
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1282
		   name);
1283 1284
}

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1307
		drm_printf(m, "[%04zx] %s\n", pos, line);
1308 1309 1310 1311 1312 1313

		prev = buf + pos;
		skip = false;
	}
}

1314 1315
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1316 1317
{
	struct drm_i915_private *dev_priv = engine->i915;
1318 1319
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1320 1321
	u64 addr;

1322
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1323
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1324
	drm_printf(m, "\tRING_START: 0x%08x\n",
1325
		   ENGINE_READ(engine, RING_START));
1326
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1327
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1328
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1329
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1330
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1331 1332
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1333 1334
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1335 1336
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1337
	}
1338 1339

	if (INTEL_GEN(dev_priv) >= 6) {
1340 1341
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1342 1343
	}

1344 1345 1346 1347 1348 1349
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1350
	if (INTEL_GEN(dev_priv) >= 8)
1351
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1352
	else if (INTEL_GEN(dev_priv) >= 4)
1353
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1354
	else
1355
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1356 1357 1358 1359
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1360
			   ENGINE_READ(engine, RING_IPEIR));
1361
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1362
			   ENGINE_READ(engine, RING_IPEHR));
1363
	} else {
1364 1365
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1366
	}
1367

1368
	if (HAS_EXECLISTS(dev_priv)) {
1369 1370
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1371
		const u8 num_entries = execlists->csb_size;
1372
		unsigned int idx;
1373
		u8 read, write;
1374

1375
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1376
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1377 1378
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1379

1380 1381 1382
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1383
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1384
			   read, write,
1385 1386 1387
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1388
		if (read >= num_entries)
1389
			read = 0;
1390
		if (write >= num_entries)
1391 1392
			write = 0;
		if (read > write)
1393
			write += num_entries;
1394
		while (read < write) {
1395 1396 1397
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1398 1399 1400 1401
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1402
			struct i915_request *rq;
1403 1404 1405 1406
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1407 1408
				char hdr[80];

1409
				snprintf(hdr, sizeof(hdr),
1410
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1411
					 idx, count,
1412
					 i915_ggtt_offset(rq->ring->vma),
1413 1414
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1415
				print_request(m, rq, hdr);
1416
			} else {
1417
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1418 1419
			}
		}
1420
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1421 1422 1423
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1424
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1425
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1426
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1427
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1428
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1429
	}
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1465 1466 1467 1468 1469
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1470
	struct i915_request *rq;
1471
	intel_wakeref_t wakeref;
1472 1473 1474 1475 1476 1477 1478 1479 1480

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1481
	if (i915_reset_failed(engine->i915))
1482 1483
		drm_printf(m, "*** WEDGED ***\n");

1484
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1485
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1486
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1487 1488 1489 1490 1491 1492 1493 1494
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1495
	rq = intel_engine_find_active_request(engine);
1496 1497
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1498

1499
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1500
			   i915_ggtt_offset(rq->ring->vma));
1501
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1502
			   rq->ring->head);
1503
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1504
			   rq->ring->tail);
1505 1506 1507 1508
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1509 1510
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1511 1512

		print_request_ring(m, rq);
1513 1514 1515 1516
	}

	rcu_read_unlock();

1517
	wakeref = intel_runtime_pm_get_if_in_use(&engine->i915->runtime_pm);
1518
	if (wakeref) {
1519
		intel_engine_print_registers(engine, m);
1520
		intel_runtime_pm_put(&engine->i915->runtime_pm, wakeref);
1521 1522 1523
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1524

1525
	intel_execlists_show_requests(engine, m, print_request, 8);
1526

1527
	drm_printf(m, "HWSP:\n");
1528
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1529

1530
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1531 1532

	intel_engine_print_breadcrumbs(engine, m);
1533 1534
}

1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1568
	struct intel_engine_execlists *execlists = &engine->execlists;
1569
	unsigned long flags;
1570
	int err = 0;
1571

1572
	if (!intel_engine_supports_stats(engine))
1573 1574
		return -ENODEV;

1575
	spin_lock_irqsave(&engine->active.lock, flags);
1576
	write_seqlock(&engine->stats.lock);
1577 1578 1579 1580 1581 1582

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1583 1584 1585 1586
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1587
		engine->stats.enabled_at = ktime_get();
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1598

1599
unlock:
1600
	write_sequnlock(&engine->stats.lock);
1601
	spin_unlock_irqrestore(&engine->active.lock, flags);
1602

1603
	return err;
1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1629
	unsigned int seq;
1630 1631
	ktime_t total;

1632 1633 1634 1635
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1650
	if (!intel_engine_supports_stats(engine))
1651 1652
		return;

1653
	write_seqlock_irqsave(&engine->stats.lock, flags);
1654 1655 1656 1657 1658
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1659
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1660 1661
}

1662 1663
static bool match_ring(struct i915_request *rq)
{
1664
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;
	unsigned long flags;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1686 1687
	spin_lock_irqsave(&engine->active.lock, flags);
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1688 1689 1690 1691
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1692
			continue;
1693 1694 1695

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1696
			continue;
1697 1698 1699 1700

		active = request;
		break;
	}
1701
	spin_unlock_irqrestore(&engine->active.lock, flags);
1702 1703 1704 1705

	return active;
}

1706
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1707
#include "selftest_engine_cs.c"
1708
#endif