intel_engine_cs.c 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_user.h"
35 36
#include "intel_gt.h"
#include "intel_gt_requests.h"
37
#include "intel_gt_pm.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40
#include "intel_ring.h"
41

42 43 44 45 46 47 48 49 50
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

51
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
52 53
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
55
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
56 57 58

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

59
#define MAX_MMIO_BASES 3
60
struct engine_info {
61
	unsigned int hw_id;
62 63
	u8 class;
	u8 instance;
64 65 66 67 68
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
69 70 71
};

static const struct engine_info intel_engines[] = {
72 73
	[RCS0] = {
		.hw_id = RCS0_HW,
74 75
		.class = RENDER_CLASS,
		.instance = 0,
76 77 78
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
79
	},
80 81
	[BCS0] = {
		.hw_id = BCS0_HW,
82 83
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
84 85 86
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
87
	},
88 89
	[VCS0] = {
		.hw_id = VCS0_HW,
90 91
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
92 93 94 95 96
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
97
	},
98 99
	[VCS1] = {
		.hw_id = VCS1_HW,
100 101
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
102 103 104 105
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
106
	},
107 108
	[VCS2] = {
		.hw_id = VCS2_HW,
109 110
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
111 112 113
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
114
	},
115 116
	[VCS3] = {
		.hw_id = VCS3_HW,
117 118
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
122
	},
123 124
	[VECS0] = {
		.hw_id = VECS0_HW,
125 126
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
127 128 129 130
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
131
	},
132 133
	[VECS1] = {
		.hw_id = VECS1_HW,
134 135
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
136 137 138
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
139
	},
140 141
};

142
/**
143
 * intel_engine_context_size() - return the size of the context for an engine
144
 * @gt: the gt
145 146 147 148 149 150 151 152 153 154 155
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
156
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157
{
158
	struct intel_uncore *uncore = gt->uncore;
159 160 161 162 163 164
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
165
		switch (INTEL_GEN(gt->i915)) {
166
		default:
167
			MISSING_CASE(INTEL_GEN(gt->i915));
168
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169
		case 12:
170 171
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
172
		case 10:
O
Oscar Mateo 已提交
173
			return GEN10_LR_CONTEXT_RENDER_SIZE;
174 175 176
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
177
			return GEN8_LR_CONTEXT_RENDER_SIZE;
178
		case 7:
179
			if (IS_HASWELL(gt->i915))
180 181
				return HSW_CXT_TOTAL_SIZE;

182
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183 184 185
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
186
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187 188 189
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
190
		case 4:
191 192 193 194 195 196 197 198 199 200
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
201
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202 203 204 205
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
206
			return round_up(cxt_size * 64, PAGE_SIZE);
207 208 209 210 211 212 213 214 215
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
216
		/* fall through */
217 218 219
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
220
		if (INTEL_GEN(gt->i915) < 8)
221 222 223 224 225
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

241
static void __sprint_engine_name(struct intel_engine_cs *engine)
242
{
243 244 245 246 247 248 249 250
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
251 252
}

253 254 255 256 257 258
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
259
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260 261
		return;

262 263
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
264
	else
265
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 267 268 269 270 271 272 273
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

274
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 276
{
	const struct engine_info *info = &intel_engines[id];
277
	struct drm_i915_private *i915 = gt->i915;
278 279
	struct intel_engine_cs *engine;

280 281 282
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

283 284 285
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 294
		return -EINVAL;

295 296 297
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
298

299 300
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

301
	engine->id = id;
302
	engine->legacy_idx = INVALID_ENGINE;
303
	engine->mask = BIT(id);
304
	engine->i915 = i915;
305 306
	engine->gt = gt;
	engine->uncore = gt->uncore;
307
	engine->hw_id = engine->guc_id = info->hw_id;
308
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309

310 311
	engine->class = info->class;
	engine->instance = info->instance;
312
	__sprint_engine_name(engine);
313

314 315
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 317
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
318 319
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
320 321
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
322 323
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
324

325 326 327 328
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

329
	engine->context_size = intel_engine_context_size(gt, engine->class);
330 331
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
332
	if (engine->context_size)
333
		DRIVER_CAPS(i915)->has_logical_contexts = true;
334

335 336 337
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

338
	ewma__engine_latency_init(&engine->latency);
339
	seqlock_init(&engine->stats.lock);
340

341 342
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

343 344 345
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

346
	gt->engine_class[info->class][info->instance] = engine;
347
	gt->engine[id] = engine;
348

349
	return 0;
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

382
static void intel_setup_engine_capabilities(struct intel_gt *gt)
383 384 385 386
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

387
	for_each_engine(engine, gt, id)
388 389 390
		__setup_engine_capabilities(engine);
}

391
/**
392
 * intel_engines_release() - free the resources allocated for Command Streamers
393
 * @gt: pointer to struct intel_gt
394
 */
395
void intel_engines_release(struct intel_gt *gt)
396 397 398 399
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

400 401 402 403 404 405 406 407 408 409 410 411 412
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

413
	/* Decouple the backend; but keep the layout for late GPU resets */
414
	for_each_engine(engine, gt, id) {
415
		intel_wakeref_wait_for_idle(&engine->wakeref);
416 417
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

418 419 420 421 422 423 424
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
425 426 427
	}
}

428 429 430 431 432 433 434 435
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

436 437 438 439 440
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

441 442 443
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

444
	for_each_engine(engine, gt, id) {
445
		intel_engine_free_request_pool(engine);
446 447 448 449 450
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

451
/**
452
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
453
 * @gt: pointer to struct intel_gt
454 455 456
 *
 * Return: non-zero if the initialization failed.
 */
457
int intel_engines_init_mmio(struct intel_gt *gt)
458
{
459
	struct drm_i915_private *i915 = gt->i915;
460 461
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
462
	unsigned int mask = 0;
463
	unsigned int i;
464
	int err;
465

466 467 468
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
469

470
	if (i915_inject_probe_failure(i915))
471 472
		return -ENODEV;

473
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
474
		if (!HAS_ENGINE(i915, i))
475 476
			continue;

477
		err = intel_engine_setup(gt, i);
478 479 480
		if (err)
			goto cleanup;

481
		mask |= BIT(i);
482 483 484 485 486 487 488
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
489
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
490
		device_info->engine_mask = mask;
491

492
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
493

494
	intel_gt_check_and_clear_faults(gt);
495

496
	intel_setup_engine_capabilities(gt);
497

498 499 500
	return 0;

cleanup:
501
	intel_engines_free(gt);
502 503 504
	return err;
}

505
void intel_engine_init_execlists(struct intel_engine_cs *engine)
506 507 508
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

509
	execlists->port_mask = 1;
510
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
511 512
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

513 514 515 516
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

517
	execlists->queue_priority_hint = INT_MIN;
518
	execlists->queue = RB_ROOT_CACHED;
519 520
}

521
static void cleanup_status_page(struct intel_engine_cs *engine)
522
{
523 524
	struct i915_vma *vma;

525 526 527
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

528 529 530
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
531

532 533 534 535
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
536
	i915_gem_object_put(vma->obj);
537 538 539 540 541 542 543
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

544
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
545 546 547 548 549 550 551 552 553 554 555
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
556
		flags = PIN_MAPPABLE;
557
	else
558
		flags = PIN_HIGH;
559

560
	return i915_ggtt_pin(vma, 0, flags);
561 562 563 564 565 566 567 568 569
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

570 571 572 573 574 575 576
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
577 578
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
579 580
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
581 582 583
		return PTR_ERR(obj);
	}

584
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
585

586
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
587 588 589 590 591 592 593 594
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
595
		goto err;
596 597
	}

598
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
599
	engine->status_page.vma = vma;
600 601 602 603 604 605 606

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

607 608 609
	return 0;

err_unpin:
610
	i915_gem_object_unpin_map(obj);
611 612 613 614 615
err:
	i915_gem_object_put(obj);
	return ret;
}

616
static int engine_setup_common(struct intel_engine_cs *engine)
617 618 619
{
	int err;

620 621
	init_llist_head(&engine->barrier_tasks);

622 623 624 625
	err = init_status_page(engine);
	if (err)
		return err;

626
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
627
	intel_engine_init_breadcrumbs(engine);
628
	intel_engine_init_execlists(engine);
629
	intel_engine_init_cmd_parser(engine);
630
	intel_engine_init__pm(engine);
631
	intel_engine_init_retire(engine);
632

633 634 635 636
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

637 638 639 640
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

641 642 643
	return 0;
}

644 645 646 647 648 649
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
	u32 cs[1024];
};

650
static int measure_breadcrumb_dw(struct intel_context *ce)
651
{
652
	struct intel_engine_cs *engine = ce->engine;
653
	struct measure_breadcrumb *frame;
654
	int dw;
655

656
	GEM_BUG_ON(!engine->gt->scratch);
657 658 659 660 661

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

662 663 664 665
	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
666

667 668 669 670 671
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
672

673
	mutex_lock(&ce->timeline->mutex);
674
	spin_lock_irq(&engine->active.lock);
675

676
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
677

678
	spin_unlock_irq(&engine->active.lock);
679
	mutex_unlock(&ce->timeline->mutex);
680

681
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
682

683
	kfree(frame);
684 685 686
	return dw;
}

687 688 689 690
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
691
	INIT_LIST_HEAD(&engine->active.hold);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

709 710 711
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
712
	static struct lock_class_key kernel;
713 714 715
	struct intel_context *ce;
	int err;

716
	ce = intel_context_create(engine);
717 718 719
	if (IS_ERR(ce))
		return ce;

720
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
721

722
	err = intel_context_pin(ce); /* perma-pin so it is always available */
723 724 725 726 727
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

728 729 730 731 732 733 734 735
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

736 737 738
	return ce;
}

739 740 741 742 743 744 745 746 747 748 749
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
750
static int engine_init_common(struct intel_engine_cs *engine)
751
{
752
	struct intel_context *ce;
753 754
	int ret;

755 756
	engine->set_default_submission(engine);

757 758
	/*
	 * We may need to do things with the shrinker which
759 760 761 762 763 764
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
765 766 767 768
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

769 770 771 772 773
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
774
	engine->kernel_context = ce;
775

776
	return 0;
777 778 779 780

err_context:
	intel_context_put(ce);
	return ret;
781
}
782

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

814 815 816 817 818 819 820 821 822
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
823
	GEM_BUG_ON(!list_empty(&engine->active.requests));
824
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
825

826
	cleanup_status_page(engine);
827

828
	intel_engine_fini_retire(engine);
829
	intel_engine_fini_breadcrumbs(engine);
830
	intel_engine_cleanup_cmd_parser(engine);
831

832
	if (engine->default_state)
833
		fput(engine->default_state);
834

835 836 837 838
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
839
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
840

841
	intel_wa_list_free(&engine->ctx_wa_list);
842
	intel_wa_list_free(&engine->wa_list);
843
	intel_wa_list_free(&engine->whitelist);
844
}
845

846 847 848 849 850 851 852 853 854 855 856 857 858 859
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

860
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
861
{
862 863
	struct drm_i915_private *i915 = engine->i915;

864 865
	u64 acthd;

866 867 868 869
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
870
	else
871
		acthd = ENGINE_READ(engine, ACTHD);
872 873 874 875

	return acthd;
}

876
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
877 878 879
{
	u64 bbaddr;

880 881
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
882
	else
883
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
884 885 886

	return bbaddr;
}
887

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

903 904
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
905
	struct intel_uncore *uncore = engine->uncore;
906 907 908 909
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

910
	if (INTEL_GEN(engine->i915) < 3)
911 912
		return -ENODEV;

913
	ENGINE_TRACE(engine, "\n");
914

915
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
916 917

	err = 0;
918
	if (__intel_wait_for_register_fw(uncore,
919
					 mode, MODE_IDLE, MODE_IDLE,
920
					 1000, stop_timeout(engine),
921
					 NULL)) {
922
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
923 924 925 926
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
927
	intel_uncore_posting_read_fw(uncore, mode);
928 929 930 931

	return err;
}

932 933
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
934
	ENGINE_TRACE(engine, "\n");
935

936
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
937 938
}

939 940 941 942 943 944 945 946 947 948 949
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

950
static u32
951 952
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
953
{
954 955
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
956
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
957 958
	enum forcewake_domains fw_domains;

959
	if (INTEL_GEN(i915) >= 11) {
960 961
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
962
	} else {
963 964
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
965 966
	}

967
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
968
						    FW_REG_READ);
969
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
970 971 972
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

973 974
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
975

976
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
977

978 979
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
980
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
981

982
	val = intel_uncore_read_fw(uncore, reg);
983

984 985
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
986

987
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
988

989 990
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
991

992
	return val;
993 994 995
}

/* NB: please notice the memset */
996
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
997 998
			       struct intel_instdone *instdone)
{
999
	struct drm_i915_private *i915 = engine->i915;
1000
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
1001
	struct intel_uncore *uncore = engine->uncore;
1002 1003 1004 1005 1006 1007
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1008
	switch (INTEL_GEN(i915)) {
1009
	default:
1010 1011
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1012

1013
		if (engine->id != RCS0)
1014 1015
			break;

1016 1017
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1018 1019 1020 1021 1022 1023
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1024
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1025
			instdone->sampler[slice][subslice] =
1026
				read_subslice_reg(engine, slice, subslice,
1027 1028
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1029
				read_subslice_reg(engine, slice, subslice,
1030 1031 1032 1033
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1034 1035
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1036

1037
		if (engine->id != RCS0)
1038 1039
			break;

1040 1041 1042 1043 1044 1045
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1046 1047 1048 1049 1050

		break;
	case 6:
	case 5:
	case 4:
1051 1052
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1053
		if (engine->id == RCS0)
1054
			/* HACK: Using the wrong struct member */
1055 1056
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1057 1058 1059
		break;
	case 3:
	case 2:
1060
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1061 1062 1063
		break;
	}
}
1064

1065 1066 1067 1068
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1069 1070 1071
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1072
	if (!intel_engine_pm_get_if_awake(engine))
1073
		return true;
1074

1075
	/* First check that no commands are left in the ring */
1076 1077
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1078
		idle = false;
1079

1080
	/* No bit for gen2, so assume the CS parser is idle */
1081
	if (INTEL_GEN(engine->i915) > 2 &&
1082
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1083 1084
		idle = false;

1085
	intel_engine_pm_put(engine);
1086 1087 1088 1089

	return idle;
}

1090
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1109 1110 1111 1112 1113 1114 1115 1116 1117
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1118
	/* More white lies, if wedged, hw state is inconsistent */
1119
	if (intel_gt_is_wedged(engine->gt))
1120 1121
		return true;

1122
	if (!intel_engine_pm_is_awake(engine))
1123 1124
		return true;

1125
	/* Waiting to drain ELSP? */
1126
	if (execlists_active(&engine->execlists)) {
1127
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1128

1129
		intel_engine_flush_submission(engine);
1130

1131
		if (execlists_active(&engine->execlists))
1132 1133
			return false;
	}
1134

1135
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1136
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1137 1138
		return false;

1139
	/* Ring stopped? */
1140
	return ring_is_idle(engine);
1141 1142
}

1143
bool intel_engines_are_idle(struct intel_gt *gt)
1144 1145 1146 1147
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1148 1149
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1150 1151
	 * report that it is still busy, even though we have stopped using it.
	 */
1152
	if (intel_gt_is_wedged(gt))
1153 1154
		return true;

1155
	/* Already parked (and passed an idleness test); must still be idle */
1156
	if (!READ_ONCE(gt->awake))
1157 1158
		return true;

1159
	for_each_engine(engine, gt, id) {
1160 1161 1162 1163 1164 1165 1166
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1167
void intel_engines_reset_default_submission(struct intel_gt *gt)
1168 1169 1170 1171
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1172
	for_each_engine(engine, gt, id)
1173 1174 1175
		engine->set_default_submission(engine);
}

1176 1177 1178 1179 1180 1181 1182 1183
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1184 1185
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1186 1187 1188 1189 1190 1191 1192
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1193 1194 1195
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1196 1197
{
	if (attr->priority == I915_PRIORITY_INVALID)
1198 1199 1200 1201
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1202

1203
	return x;
1204 1205
}

1206
static void print_request(struct drm_printer *m,
1207
			  struct i915_request *rq,
1208 1209
			  const char *prefix)
{
1210
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1211
	char buf[80] = "";
1212 1213 1214
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1215

1216
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1217
		   prefix,
1218
		   rq->fence.context, rq->fence.seqno,
1219 1220 1221
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1222 1223
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1224
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1225 1226
			    &rq->fence.flags) ? "-" :
		   "",
1227
		   buf,
1228
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1229
		   name);
1230 1231
}

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1297
		drm_printf(m, "[%04zx] %s\n", pos, line);
1298 1299 1300 1301 1302 1303

		prev = buf + pos;
		skip = false;
	}
}

1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1315
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1316
					 struct drm_printer *m)
1317 1318
{
	struct drm_i915_private *dev_priv = engine->i915;
1319
	struct intel_engine_execlists * const execlists = &engine->execlists;
1320 1321
	u64 addr;

1322
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1323
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1324 1325 1326 1327 1328 1329
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1330
	drm_printf(m, "\tRING_START: 0x%08x\n",
1331
		   ENGINE_READ(engine, RING_START));
1332
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1333
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1334
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1335
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1336
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1337 1338
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1339 1340
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1341 1342
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1343
	}
1344 1345

	if (INTEL_GEN(dev_priv) >= 6) {
1346
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1347
			   ENGINE_READ(engine, RING_IMR));
1348 1349 1350 1351 1352 1353
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1354 1355
	}

1356 1357 1358 1359 1360 1361
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1362
	if (INTEL_GEN(dev_priv) >= 8)
1363
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1364
	else if (INTEL_GEN(dev_priv) >= 4)
1365
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1366
	else
1367
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1368 1369 1370 1371
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1372
			   ENGINE_READ(engine, RING_IPEIR));
1373
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1374
			   ENGINE_READ(engine, RING_IPEHR));
1375
	} else {
1376 1377
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1378
	}
1379

1380
	if (HAS_EXECLISTS(dev_priv)) {
1381
		struct i915_request * const *port, *rq;
1382 1383
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1384
		const u8 num_entries = execlists->csb_size;
1385
		unsigned int idx;
1386
		u8 read, write;
1387

1388
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1389 1390 1391
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1392
			   repr_timer(&engine->execlists.preempt),
1393
			   repr_timer(&engine->execlists.timer));
1394

1395 1396 1397
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1398 1399 1400 1401 1402
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1403
		if (read >= num_entries)
1404
			read = 0;
1405
		if (write >= num_entries)
1406 1407
			write = 0;
		if (read > write)
1408
			write += num_entries;
1409
		while (read < write) {
1410 1411 1412
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1413 1414
		}

1415
		execlists_active_lock_bh(execlists);
1416
		rcu_read_lock();
1417
		for (port = execlists->active; (rq = *port); port++) {
1418
			char hdr[160];
1419 1420
			int len;

1421
			len = scnprintf(hdr, sizeof(hdr),
1422
					"\t\tActive[%d]:  ccid:%08x, ",
1423
					(int)(port - execlists->active),
1424
					rq->context->lrc.ccid);
1425
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1426
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1427 1428 1429
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1430 1431
			char hdr[160];
			int len;
1432

1433 1434 1435
			len = scnprintf(hdr, sizeof(hdr),
					"\t\tPending[%d]: ccid:%08x, ",
					(int)(port - execlists->pending),
1436
					rq->context->lrc.ccid);
1437 1438 1439
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
1440
		}
1441
		rcu_read_unlock();
1442
		execlists_active_unlock_bh(execlists);
1443 1444
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1445
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1446
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1447
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1448
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1449
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1450
	}
1451 1452
}

1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1497 1498 1499 1500 1501
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1502
	struct i915_request *rq;
1503
	intel_wakeref_t wakeref;
1504
	unsigned long flags;
1505 1506 1507 1508 1509 1510 1511 1512 1513

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1514
	if (intel_gt_is_wedged(engine->gt))
1515 1516
		drm_printf(m, "*** WEDGED ***\n");

1517
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1518 1519
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1520 1521
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1522 1523 1524 1525 1526 1527 1528

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1529 1530 1531 1532 1533 1534
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1535
	spin_lock_irqsave(&engine->active.lock, flags);
1536
	rq = intel_engine_find_active_request(engine);
1537
	if (rq) {
1538 1539
		struct intel_timeline *tl = get_timeline(rq);

1540
		print_request(m, rq, "\t\tactive ");
1541

1542
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1543
			   i915_ggtt_offset(rq->ring->vma));
1544
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1545
			   rq->ring->head);
1546
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1547
			   rq->ring->tail);
1548 1549 1550 1551
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1552 1553 1554 1555 1556 1557

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1558 1559

		print_request_ring(m, rq);
1560

1561
		if (rq->context->lrc_reg_state) {
1562
			drm_printf(m, "Logical Ring Context:\n");
1563
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1564
		}
1565
	}
1566
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1567
	spin_unlock_irqrestore(&engine->active.lock, flags);
1568

1569
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1570
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1571
	if (wakeref) {
1572
		intel_engine_print_registers(engine, m);
1573
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1574 1575 1576
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1577

1578
	intel_execlists_show_requests(engine, m, print_request, 8);
1579

1580
	drm_printf(m, "HWSP:\n");
1581
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1582

1583
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1584 1585

	intel_engine_print_breadcrumbs(engine, m);
1586 1587
}

1588 1589 1590 1591 1592 1593 1594 1595
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1596
	if (atomic_read(&engine->stats.active))
1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1611
	unsigned int seq;
1612 1613
	ktime_t total;

1614 1615 1616 1617
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1618 1619 1620 1621

	return total;
}

1622 1623
static bool match_ring(struct i915_request *rq)
{
1624
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1645
	lockdep_assert_held(&engine->active.lock);
1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1663
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1664 1665 1666 1667
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1668
			continue;
1669 1670 1671

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1672
			continue;
1673 1674 1675 1676 1677 1678 1679 1680

		active = request;
		break;
	}

	return active;
}

1681
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1682
#include "mock_engine.c"
1683
#include "selftest_engine.c"
1684
#include "selftest_engine_cs.c"
1685
#endif