intel_engine_cs.c 42.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31 32
#include "gt/intel_gt.h"

33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_pool.h"
36
#include "intel_engine_user.h"
37
#include "intel_context.h"
38
#include "intel_lrc.h"
39
#include "intel_reset.h"
40

41 42 43 44 45 46 47 48 49
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

50
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
51 52
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
54
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
55 56 57

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

58
#define MAX_MMIO_BASES 3
59
struct engine_info {
60
	unsigned int hw_id;
61 62
	u8 class;
	u8 instance;
63 64 65 66 67
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
68 69 70
};

static const struct engine_info intel_engines[] = {
71 72
	[RCS0] = {
		.hw_id = RCS0_HW,
73 74
		.class = RENDER_CLASS,
		.instance = 0,
75 76 77
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
78
	},
79 80
	[BCS0] = {
		.hw_id = BCS0_HW,
81 82
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
83 84 85
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
86
	},
87 88
	[VCS0] = {
		.hw_id = VCS0_HW,
89 90
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
91 92 93 94 95
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
96
	},
97 98
	[VCS1] = {
		.hw_id = VCS1_HW,
99 100
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
101 102 103 104
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
105
	},
106 107
	[VCS2] = {
		.hw_id = VCS2_HW,
108 109
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
110 111 112
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
113
	},
114 115
	[VCS3] = {
		.hw_id = VCS3_HW,
116 117
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
118 119 120
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
121
	},
122 123
	[VECS0] = {
		.hw_id = VECS0_HW,
124 125
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
126 127 128 129
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
130
	},
131 132
	[VECS1] = {
		.hw_id = VECS1_HW,
133 134
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
135 136 137
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
138
	},
139 140
};

141
/**
142
 * intel_engine_context_size() - return the size of the context for an engine
143 144 145 146 147 148 149 150 151 152 153 154
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
155
u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
156 157 158 159 160 161 162 163 164 165
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
166
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
167
		case 12:
168 169
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
170
		case 10:
O
Oscar Mateo 已提交
171
			return GEN10_LR_CONTEXT_RENDER_SIZE;
172 173 174
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
175
			return GEN8_LR_CONTEXT_RENDER_SIZE;
176 177 178 179 180 181 182 183 184 185 186 187
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
188
		case 4:
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
205 206 207 208 209 210 211 212 213
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
214
		/* fall through */
215 216 217 218 219 220 221 222 223
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

239
static void __sprint_engine_name(struct intel_engine_cs *engine)
240
{
241 242 243 244 245 246 247 248
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
249 250
}

251 252 253 254 255 256
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
257
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
258 259
		return;

260 261
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
262
	else
263
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
264 265 266 267 268 269 270 271
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

272
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
273 274
{
	const struct engine_info *info = &intel_engines[id];
275 276
	struct intel_engine_cs *engine;

277 278 279
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

280
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
281 282
		return -EINVAL;

283
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
284 285
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
287 288
		return -EINVAL;

289 290 291
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
292

293 294
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

295
	engine->id = id;
296
	engine->mask = BIT(id);
297 298 299
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
300
	engine->hw_id = engine->guc_id = info->hw_id;
301
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
302

303 304
	engine->class = info->class;
	engine->instance = info->instance;
305
	__sprint_engine_name(engine);
306

307 308 309 310 311 312
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

313
	engine->context_size = intel_engine_context_size(gt->i915,
314
							 engine->class);
315 316
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
317
	if (engine->context_size)
318
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
319

320 321 322
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

323
	seqlock_init(&engine->stats.lock);
324

325 326
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

327 328 329
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

330 331 332 333 334
	gt->engine_class[info->class][info->instance] = engine;

	intel_engine_add_user(engine);
	gt->i915->engine[id] = engine;

335
	return 0;
336 337
}

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

static void intel_setup_engine_capabilities(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		__setup_engine_capabilities(engine);
}

377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 * @i915: the i915 devic
 */
void intel_engines_cleanup(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		engine->destroy(engine);
		i915->engine[id] = NULL;
	}
}

392
/**
393
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
394
 * @i915: the i915 device
395 396 397
 *
 * Return: non-zero if the initialization failed.
 */
398
int intel_engines_init_mmio(struct drm_i915_private *i915)
399
{
400 401
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
402
	unsigned int mask = 0;
403
	unsigned int i;
404
	int err;
405

406 407
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
408
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
409

410
	if (i915_inject_probe_failure(i915))
411 412
		return -ENODEV;

413
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
414
		if (!HAS_ENGINE(i915, i))
415 416
			continue;

417
		err = intel_engine_setup(&i915->gt, i);
418 419 420
		if (err)
			goto cleanup;

421
		mask |= BIT(i);
422 423 424 425 426 427 428
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
429 430
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
431

432
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
433

434
	intel_gt_check_and_clear_faults(&i915->gt);
435

436 437
	intel_setup_engine_capabilities(i915);

438 439 440
	return 0;

cleanup:
441
	intel_engines_cleanup(i915);
442 443 444 445
	return err;
}

/**
446
 * intel_engines_init() - init the Engine Command Streamers
447
 * @i915: i915 device private
448 449 450
 *
 * Return: non-zero if the initialization failed.
 */
451
int intel_engines_init(struct drm_i915_private *i915)
452
{
453
	int (*init)(struct intel_engine_cs *engine);
454
	struct intel_engine_cs *engine;
455
	enum intel_engine_id id;
456
	int err;
457

458 459 460 461
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
462

463
	for_each_engine(engine, i915, id) {
464
		err = init(engine);
465
		if (err)
466 467 468 469 470 471
			goto cleanup;
	}

	return 0;

cleanup:
472
	intel_engines_cleanup(i915);
473
	return err;
474 475
}

476
void intel_engine_init_execlists(struct intel_engine_cs *engine)
477 478 479
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

480
	execlists->port_mask = 1;
481
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
482 483
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

484 485 486 487
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

488
	execlists->queue_priority_hint = INT_MIN;
489
	execlists->queue = RB_ROOT_CACHED;
490 491
}

492
static void cleanup_status_page(struct intel_engine_cs *engine)
493
{
494 495
	struct i915_vma *vma;

496 497 498
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

499 500 501
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
502

503 504 505 506
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
507
	i915_gem_object_put(vma->obj);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
531

532
	return i915_vma_pin(vma, 0, 0, flags);
533 534 535 536 537 538 539 540 541
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

542 543 544 545 546 547 548
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
549 550 551 552 553 554
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

555
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
556

557
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
558 559 560 561 562 563 564 565
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
566
		goto err;
567 568
	}

569
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
570
	engine->status_page.vma = vma;
571 572 573 574 575 576 577

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

578 579 580
	return 0;

err_unpin:
581
	i915_gem_object_unpin_map(obj);
582 583 584 585 586
err:
	i915_gem_object_put(obj);
	return ret;
}

587
static int intel_engine_setup_common(struct intel_engine_cs *engine)
588 589 590
{
	int err;

591 592
	init_llist_head(&engine->barrier_tasks);

593 594 595 596
	err = init_status_page(engine);
	if (err)
		return err;

597
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
598
	intel_engine_init_breadcrumbs(engine);
599
	intel_engine_init_execlists(engine);
600 601
	intel_engine_init_hangcheck(engine);
	intel_engine_init_cmd_parser(engine);
602
	intel_engine_init__pm(engine);
603

604 605
	intel_engine_pool_init(&engine->pool);

606 607 608 609
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

610 611 612 613
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

614 615 616
	return 0;
}

617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

647 648 649
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

650 651 652 653 654 655
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
656
	intel_engines_cleanup(i915);
657 658 659
	return err;
}

660 661
struct measure_breadcrumb {
	struct i915_request rq;
662
	struct intel_timeline timeline;
663 664 665 666
	struct intel_ring ring;
	u32 cs[1024];
};

667
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
668 669
{
	struct measure_breadcrumb *frame;
670
	int dw = -ENOMEM;
671

672
	GEM_BUG_ON(!engine->gt->scratch);
673 674 675 676 677

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

678 679 680
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
681
		goto out_frame;
682

683 684
	mutex_lock(&frame->timeline.mutex);

685 686 687 688 689 690 691 692
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
693
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
694

695
	dw = intel_timeline_pin(&frame->timeline);
696 697 698
	if (dw < 0)
		goto out_timeline;

699
	spin_lock_irq(&engine->active.lock);
700
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
701 702
	spin_unlock_irq(&engine->active.lock);

703
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
704

705
	intel_timeline_unpin(&frame->timeline);
706

707
out_timeline:
708
	mutex_unlock(&frame->timeline.mutex);
709
	intel_timeline_fini(&frame->timeline);
710 711
out_frame:
	kfree(frame);
712 713 714
	return dw;
}

715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

736 737 738 739 740 741 742 743 744 745
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	struct intel_context *ce;
	int err;

	ce = intel_context_create(engine->i915->kernel_context, engine);
	if (IS_ERR(ce))
		return ce;

746 747
	ce->ring = __intel_context_ring_size(SZ_4K);

748 749 750 751 752 753 754 755 756
	err = intel_context_pin(ce);
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

	return ce;
}

757 758 759 760 761 762 763 764 765 766 767 768 769
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
770
	struct intel_context *ce;
771 772
	int ret;

773 774
	engine->set_default_submission(engine);

775 776
	/*
	 * We may need to do things with the shrinker which
777 778 779 780 781 782
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
783 784 785 786 787
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
788

789
	ret = measure_breadcrumb_dw(engine);
790
	if (ret < 0)
791
		goto err_unpin;
792

793
	engine->emit_fini_breadcrumb_dw = ret;
794

795
	return 0;
796

797
err_unpin:
798 799
	intel_context_unpin(ce);
	intel_context_put(ce);
800
	return ret;
801
}
802 803 804 805 806 807 808 809 810 811

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
812 813
	GEM_BUG_ON(!list_empty(&engine->active.requests));

814
	cleanup_status_page(engine);
815

816
	intel_engine_pool_fini(&engine->pool);
817
	intel_engine_fini_breadcrumbs(engine);
818
	intel_engine_cleanup_cmd_parser(engine);
819

820 821 822
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

823 824 825 826
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
827
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
828

829
	intel_wa_list_free(&engine->ctx_wa_list);
830
	intel_wa_list_free(&engine->wa_list);
831
	intel_wa_list_free(&engine->whitelist);
832
}
833

834
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
835
{
836 837
	struct drm_i915_private *i915 = engine->i915;

838 839
	u64 acthd;

840 841 842 843
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
844
	else
845
		acthd = ENGINE_READ(engine, ACTHD);
846 847 848 849

	return acthd;
}

850
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
851 852 853
{
	u64 bbaddr;

854 855
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
856
	else
857
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
858 859 860

	return bbaddr;
}
861

862 863
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
864
	struct intel_uncore *uncore = engine->uncore;
865 866 867 868
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

869
	if (INTEL_GEN(engine->i915) < 3)
870 871 872 873
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

874
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
875 876

	err = 0;
877
	if (__intel_wait_for_register_fw(uncore,
878 879 880 881 882 883 884 885
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
886
	intel_uncore_posting_read_fw(uncore, mode);
887 888 889 890

	return err;
}

891 892 893 894
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

895
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
896 897
}

898 899 900 901 902 903 904 905 906 907 908
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

909 910 911
static u32
read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
		  i915_reg_t reg)
912
{
913 914
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
915
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
916 917
	enum forcewake_domains fw_domains;

918
	if (INTEL_GEN(i915) >= 11) {
919 920
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
921
	} else {
922 923
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
924 925
	}

926
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
927
						    FW_REG_READ);
928
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
929 930 931
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

932 933
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
934

935
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
936

937 938
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
939
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
940

941
	val = intel_uncore_read_fw(uncore, reg);
942

943 944
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
945

946
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
947

948 949
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
950

951
	return val;
952 953 954 955 956 957
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
958
	struct drm_i915_private *i915 = engine->i915;
959
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
960
	struct intel_uncore *uncore = engine->uncore;
961 962 963 964 965 966
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

967
	switch (INTEL_GEN(i915)) {
968
	default:
969 970
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
971

972
		if (engine->id != RCS0)
973 974
			break;

975 976
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
977
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
978
			instdone->sampler[slice][subslice] =
979
				read_subslice_reg(engine, slice, subslice,
980 981
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
982
				read_subslice_reg(engine, slice, subslice,
983 984 985 986
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
987 988
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
989

990
		if (engine->id != RCS0)
991 992
			break;

993 994 995 996 997 998
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
999 1000 1001 1002 1003

		break;
	case 6:
	case 5:
	case 4:
1004 1005
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1006
		if (engine->id == RCS0)
1007
			/* HACK: Using the wrong struct member */
1008 1009
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1010 1011 1012
		break;
	case 3:
	case 2:
1013
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1014 1015 1016
		break;
	}
}
1017

1018 1019 1020 1021
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1022 1023 1024
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1025
	if (!intel_engine_pm_get_if_awake(engine))
1026
		return true;
1027

1028
	/* First check that no commands are left in the ring */
1029 1030
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1031
		idle = false;
1032

1033
	/* No bit for gen2, so assume the CS parser is idle */
1034
	if (INTEL_GEN(engine->i915) > 2 &&
1035
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1036 1037
		idle = false;

1038
	intel_engine_pm_put(engine);
1039 1040 1041 1042

	return idle;
}

1043 1044 1045 1046 1047 1048 1049 1050 1051
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1052
	/* More white lies, if wedged, hw state is inconsistent */
1053
	if (intel_gt_is_wedged(engine->gt))
1054 1055
		return true;

1056
	if (!intel_engine_pm_is_awake(engine))
1057 1058
		return true;

1059
	/* Waiting to drain ELSP? */
1060
	if (execlists_active(&engine->execlists)) {
1061
		struct tasklet_struct *t = &engine->execlists.tasklet;
1062

1063
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1064

1065
		local_bh_disable();
1066 1067 1068 1069 1070
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1071
		}
1072
		local_bh_enable();
1073

1074 1075 1076
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1077
		if (execlists_active(&engine->execlists))
1078 1079
			return false;
	}
1080

1081
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1082
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1083 1084
		return false;

1085
	/* Ring stopped? */
1086
	return ring_is_idle(engine);
1087 1088
}

1089
bool intel_engines_are_idle(struct intel_gt *gt)
1090 1091 1092 1093
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1094 1095
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1096 1097
	 * report that it is still busy, even though we have stopped using it.
	 */
1098
	if (intel_gt_is_wedged(gt))
1099 1100
		return true;

1101
	/* Already parked (and passed an idleness test); must still be idle */
1102
	if (!READ_ONCE(gt->awake))
1103 1104
		return true;

1105
	for_each_engine(engine, gt->i915, id) {
1106 1107 1108 1109 1110 1111 1112
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1113
void intel_engines_reset_default_submission(struct intel_gt *gt)
1114 1115 1116 1117
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1118
	for_each_engine(engine, gt->i915, id)
1119 1120 1121
		engine->set_default_submission(engine);
}

1122 1123 1124 1125 1126 1127 1128 1129
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1130 1131
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1132 1133 1134 1135 1136 1137 1138
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1139 1140 1141
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1142 1143
{
	if (attr->priority == I915_PRIORITY_INVALID)
1144 1145 1146 1147
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1148

1149
	return x;
1150 1151
}

1152
static void print_request(struct drm_printer *m,
1153
			  struct i915_request *rq,
1154 1155
			  const char *prefix)
{
1156
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1157
	char buf[80] = "";
1158 1159 1160
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1161

1162
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1163
		   prefix,
1164
		   rq->fence.context, rq->fence.seqno,
1165 1166 1167
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1168 1169
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1170
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1171 1172
			    &rq->fence.flags) ? "-" :
		   "",
1173
		   buf,
1174
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1175
		   name);
1176 1177
}

1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1200
		drm_printf(m, "[%04zx] %s\n", pos, line);
1201 1202 1203 1204 1205 1206

		prev = buf + pos;
		skip = false;
	}
}

1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1228
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1229
					 struct drm_printer *m)
1230 1231
{
	struct drm_i915_private *dev_priv = engine->i915;
1232 1233
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1234
	unsigned long flags;
1235 1236
	u64 addr;

1237
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1238
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1239
	drm_printf(m, "\tRING_START: 0x%08x\n",
1240
		   ENGINE_READ(engine, RING_START));
1241
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1242
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1243
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1244
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1245
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1246 1247
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1248 1249
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1250 1251
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1252
	}
1253 1254

	if (INTEL_GEN(dev_priv) >= 6) {
1255 1256
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1257 1258
	}

1259 1260 1261 1262 1263 1264
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1265
	if (INTEL_GEN(dev_priv) >= 8)
1266
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1267
	else if (INTEL_GEN(dev_priv) >= 4)
1268
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1269
	else
1270
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1271 1272 1273 1274
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1275
			   ENGINE_READ(engine, RING_IPEIR));
1276
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1277
			   ENGINE_READ(engine, RING_IPEHR));
1278
	} else {
1279 1280
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1281
	}
1282

1283
	if (HAS_EXECLISTS(dev_priv)) {
1284
		struct i915_request * const *port, *rq;
1285 1286
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1287
		const u8 num_entries = execlists->csb_size;
1288
		unsigned int idx;
1289
		u8 read, write;
1290

1291
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1292
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1293 1294
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1295

1296 1297 1298
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1299
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1300
			   read, write,
1301 1302 1303
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1304
		if (read >= num_entries)
1305
			read = 0;
1306
		if (write >= num_entries)
1307 1308
			write = 0;
		if (read > write)
1309
			write += num_entries;
1310
		while (read < write) {
1311 1312 1313
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1314 1315
		}

1316
		spin_lock_irqsave(&engine->active.lock, flags);
1317 1318 1319 1320 1321
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1322
				       "\t\tActive[%d]: ",
1323
				       (int)(port - execlists->active));
1324 1325 1326
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1327 1328 1329
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1330
						tl ? tl->hwsp_offset : 0,
1331
						hwsp_seqno(rq));
1332 1333 1334 1335

				if (tl)
					intel_timeline_put(tl);
			}
1336 1337 1338 1339
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1340
			struct intel_timeline *tl = get_timeline(rq);
1341
			char hdr[80];
1342

1343 1344 1345 1346
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1347
				 tl ? tl->hwsp_offset : 0,
1348 1349
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1350 1351 1352

			if (tl)
				intel_timeline_put(tl);
1353
		}
1354
		spin_unlock_irqrestore(&engine->active.lock, flags);
1355 1356
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1357
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1358
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1359
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1360
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1361
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1362
	}
1363 1364
}

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1398 1399 1400 1401 1402
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1403
	struct i915_request *rq;
1404
	intel_wakeref_t wakeref;
1405
	unsigned long flags;
1406 1407 1408 1409 1410 1411 1412 1413 1414

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1415
	if (intel_gt_is_wedged(engine->gt))
1416 1417
		drm_printf(m, "*** WEDGED ***\n");

1418
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1419
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1420
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1421 1422 1423 1424 1425 1426
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1427
	spin_lock_irqsave(&engine->active.lock, flags);
1428
	rq = intel_engine_find_active_request(engine);
1429
	if (rq) {
1430 1431
		struct intel_timeline *tl = get_timeline(rq);

1432
		print_request(m, rq, "\t\tactive ");
1433

1434
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1435
			   i915_ggtt_offset(rq->ring->vma));
1436
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1437
			   rq->ring->head);
1438
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1439
			   rq->ring->tail);
1440 1441 1442 1443
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1444 1445 1446 1447 1448 1449

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1450 1451

		print_request_ring(m, rq);
1452 1453 1454 1455 1456

		if (rq->hw_context->lrc_reg_state) {
			drm_printf(m, "Logical Ring Context:\n");
			hexdump(m, rq->hw_context->lrc_reg_state, PAGE_SIZE);
		}
1457
	}
1458
	spin_unlock_irqrestore(&engine->active.lock, flags);
1459

1460
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1461
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1462
	if (wakeref) {
1463
		intel_engine_print_registers(engine, m);
1464
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1465 1466 1467
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1468

1469
	intel_execlists_show_requests(engine, m, print_request, 8);
1470

1471
	drm_printf(m, "HWSP:\n");
1472
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1473

1474
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1475 1476

	intel_engine_print_breadcrumbs(engine, m);
1477 1478
}

1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1489
	struct intel_engine_execlists *execlists = &engine->execlists;
1490
	unsigned long flags;
1491
	int err = 0;
1492

1493
	if (!intel_engine_supports_stats(engine))
1494 1495
		return -ENODEV;

1496
	spin_lock_irqsave(&engine->active.lock, flags);
1497
	write_seqlock(&engine->stats.lock);
1498 1499 1500 1501 1502 1503

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1504
	if (engine->stats.enabled++ == 0) {
1505 1506
		struct i915_request * const *port;
		struct i915_request *rq;
1507

1508
		engine->stats.enabled_at = ktime_get();
1509 1510

		/* XXX submission method oblivious? */
1511
		for (port = execlists->active; (rq = *port); port++)
1512
			engine->stats.active++;
1513 1514 1515

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1516
			if (!intel_context_inflight_count(rq->hw_context))
1517
				engine->stats.active++;
1518 1519 1520 1521 1522
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1523

1524
unlock:
1525
	write_sequnlock(&engine->stats.lock);
1526
	spin_unlock_irqrestore(&engine->active.lock, flags);
1527

1528
	return err;
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1554
	unsigned int seq;
1555 1556
	ktime_t total;

1557 1558 1559 1560
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1575
	if (!intel_engine_supports_stats(engine))
1576 1577
		return;

1578
	write_seqlock_irqsave(&engine->stats.lock, flags);
1579 1580 1581 1582 1583
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1584
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1585 1586
}

1587 1588
static bool match_ring(struct i915_request *rq)
{
1589
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1610
	lockdep_assert_held(&engine->active.lock);
1611
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1612 1613 1614 1615
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1616
			continue;
1617 1618 1619

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1620
			continue;
1621 1622 1623 1624 1625 1626 1627 1628

		active = request;
		break;
	}

	return active;
}

1629
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1630
#include "mock_engine.c"
1631
#include "selftest_engine.c"
1632
#include "selftest_engine_cs.c"
1633
#endif