intel_engine_cs.c 46.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		/* fall through */
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278
	struct drm_i915_private *i915 = gt->i915;
279 280
	struct intel_engine_cs *engine;

281 282 283
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

284 285 286
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

287
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 289
		return -EINVAL;

290
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 292
		return -EINVAL;

293
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 295
		return -EINVAL;

296 297 298
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
299

300 301
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

302
	engine->id = id;
303
	engine->legacy_idx = INVALID_ENGINE;
304
	engine->mask = BIT(id);
305
	engine->i915 = i915;
306 307
	engine->gt = gt;
	engine->uncore = gt->uncore;
308
	engine->hw_id = engine->guc_id = info->hw_id;
309
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310

311 312
	engine->class = info->class;
	engine->instance = info->instance;
313
	__sprint_engine_name(engine);
314

315 316
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 318
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 320
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 322
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
323 324
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
325

326 327 328 329
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

330
	engine->context_size = intel_engine_context_size(gt, engine->class);
331 332
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
333
	if (engine->context_size)
334
		DRIVER_CAPS(i915)->has_logical_contexts = true;
335

336 337 338
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

339
	ewma__engine_latency_init(&engine->latency);
340
	seqlock_init(&engine->stats.lock);
341

342 343
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

344 345 346
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

347
	gt->engine_class[info->class][info->instance] = engine;
348
	gt->engine[id] = engine;
349

350
	return 0;
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

383
static void intel_setup_engine_capabilities(struct intel_gt *gt)
384 385 386 387
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

388
	for_each_engine(engine, gt, id)
389 390 391
		__setup_engine_capabilities(engine);
}

392
/**
393
 * intel_engines_release() - free the resources allocated for Command Streamers
394
 * @gt: pointer to struct intel_gt
395
 */
396
void intel_engines_release(struct intel_gt *gt)
397 398 399 400
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

401 402 403 404 405 406 407 408 409 410 411 412 413
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

414
	/* Decouple the backend; but keep the layout for late GPU resets */
415
	for_each_engine(engine, gt, id) {
416
		intel_wakeref_wait_for_idle(&engine->wakeref);
417 418
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

419 420 421 422 423 424 425
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
426 427 428
	}
}

429 430 431 432 433 434 435 436
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

437 438 439 440 441
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

442 443 444
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

445
	for_each_engine(engine, gt, id) {
446
		intel_engine_free_request_pool(engine);
447 448 449 450 451
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

452
/**
453
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
454
 * @gt: pointer to struct intel_gt
455 456 457
 *
 * Return: non-zero if the initialization failed.
 */
458
int intel_engines_init_mmio(struct intel_gt *gt)
459
{
460
	struct drm_i915_private *i915 = gt->i915;
461 462
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
463
	unsigned int mask = 0;
464
	unsigned int i;
465
	int err;
466

467 468 469
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
470

471
	if (i915_inject_probe_failure(i915))
472 473
		return -ENODEV;

474
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
475
		if (!HAS_ENGINE(i915, i))
476 477
			continue;

478
		err = intel_engine_setup(gt, i);
479 480 481
		if (err)
			goto cleanup;

482
		mask |= BIT(i);
483 484 485 486 487 488 489
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
490
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
491
		device_info->engine_mask = mask;
492

493
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
494

495
	intel_gt_check_and_clear_faults(gt);
496

497
	intel_setup_engine_capabilities(gt);
498

499 500 501
	return 0;

cleanup:
502
	intel_engines_free(gt);
503 504 505
	return err;
}

506
void intel_engine_init_execlists(struct intel_engine_cs *engine)
507 508 509
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

510
	execlists->port_mask = 1;
511
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
512 513
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

514 515 516 517
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

518
	execlists->queue_priority_hint = INT_MIN;
519
	execlists->queue = RB_ROOT_CACHED;
520 521
}

522
static void cleanup_status_page(struct intel_engine_cs *engine)
523
{
524 525
	struct i915_vma *vma;

526 527 528
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

529 530 531
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
532

533 534 535 536
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
537
	i915_gem_object_put(vma->obj);
538 539 540 541 542 543 544
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

545
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
546 547 548 549 550 551 552 553 554 555 556
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
557
		flags = PIN_MAPPABLE;
558
	else
559
		flags = PIN_HIGH;
560

561
	return i915_ggtt_pin(vma, 0, flags);
562 563 564 565 566 567 568 569 570
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

571 572 573 574 575 576 577
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
578 579
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
580 581
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
582 583 584
		return PTR_ERR(obj);
	}

585
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
586

587
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
588 589 590 591 592 593 594 595
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
596
		goto err;
597 598
	}

599
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
600
	engine->status_page.vma = vma;
601 602 603 604 605 606 607

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

608 609 610
	return 0;

err_unpin:
611
	i915_gem_object_unpin_map(obj);
612 613 614 615 616
err:
	i915_gem_object_put(obj);
	return ret;
}

617
static int engine_setup_common(struct intel_engine_cs *engine)
618 619 620
{
	int err;

621 622
	init_llist_head(&engine->barrier_tasks);

623 624 625 626
	err = init_status_page(engine);
	if (err)
		return err;

627
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
628
	intel_engine_init_breadcrumbs(engine);
629
	intel_engine_init_execlists(engine);
630
	intel_engine_init_cmd_parser(engine);
631
	intel_engine_init__pm(engine);
632
	intel_engine_init_retire(engine);
633

634 635
	intel_engine_pool_init(&engine->pool);

636 637 638 639
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

640 641 642 643
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

644 645 646
	return 0;
}

647 648 649 650 651 652
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
	u32 cs[1024];
};

653
static int measure_breadcrumb_dw(struct intel_context *ce)
654
{
655
	struct intel_engine_cs *engine = ce->engine;
656
	struct measure_breadcrumb *frame;
657
	int dw;
658

659
	GEM_BUG_ON(!engine->gt->scratch);
660 661 662 663 664

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

665 666 667 668
	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
669

670 671 672 673 674
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
675

676
	mutex_lock(&ce->timeline->mutex);
677
	spin_lock_irq(&engine->active.lock);
678

679
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
680

681
	spin_unlock_irq(&engine->active.lock);
682
	mutex_unlock(&ce->timeline->mutex);
683

684
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
685

686
	kfree(frame);
687 688 689
	return dw;
}

690 691 692 693
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
694
	INIT_LIST_HEAD(&engine->active.hold);
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

712 713 714
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
715
	static struct lock_class_key kernel;
716 717 718
	struct intel_context *ce;
	int err;

719
	ce = intel_context_create(engine);
720 721 722
	if (IS_ERR(ce))
		return ce;

723
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
724

725
	err = intel_context_pin(ce); /* perma-pin so it is always available */
726 727 728 729 730
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

731 732 733 734 735 736 737 738
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

739 740 741
	return ce;
}

742 743 744 745 746 747 748 749 750 751 752
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
753
static int engine_init_common(struct intel_engine_cs *engine)
754
{
755
	struct intel_context *ce;
756 757
	int ret;

758 759
	engine->set_default_submission(engine);

760 761
	/*
	 * We may need to do things with the shrinker which
762 763 764 765 766 767
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
768 769 770 771
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

772 773 774 775 776
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
777
	engine->kernel_context = ce;
778

779
	return 0;
780 781 782 783

err_context:
	intel_context_put(ce);
	return ret;
784
}
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

817 818 819 820 821 822 823 824 825
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
826
	GEM_BUG_ON(!list_empty(&engine->active.requests));
827
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
828

829
	cleanup_status_page(engine);
830

831
	intel_engine_fini_retire(engine);
832
	intel_engine_pool_fini(&engine->pool);
833
	intel_engine_fini_breadcrumbs(engine);
834
	intel_engine_cleanup_cmd_parser(engine);
835

836 837 838
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

839 840 841 842
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
843
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
844

845
	intel_wa_list_free(&engine->ctx_wa_list);
846
	intel_wa_list_free(&engine->wa_list);
847
	intel_wa_list_free(&engine->whitelist);
848
}
849

850 851 852 853 854 855 856 857 858 859 860 861 862 863
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

864
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
865
{
866 867
	struct drm_i915_private *i915 = engine->i915;

868 869
	u64 acthd;

870 871 872 873
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
874
	else
875
		acthd = ENGINE_READ(engine, ACTHD);
876 877 878 879

	return acthd;
}

880
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
881 882 883
{
	u64 bbaddr;

884 885
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
886
	else
887
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
888 889 890

	return bbaddr;
}
891

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

907 908
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
909
	struct intel_uncore *uncore = engine->uncore;
910 911 912 913
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

914
	if (INTEL_GEN(engine->i915) < 3)
915 916
		return -ENODEV;

917
	ENGINE_TRACE(engine, "\n");
918

919
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
920 921

	err = 0;
922
	if (__intel_wait_for_register_fw(uncore,
923
					 mode, MODE_IDLE, MODE_IDLE,
924
					 1000, stop_timeout(engine),
925
					 NULL)) {
926
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
927 928 929 930
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
931
	intel_uncore_posting_read_fw(uncore, mode);
932 933 934 935

	return err;
}

936 937
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
938
	ENGINE_TRACE(engine, "\n");
939

940
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
941 942
}

943 944 945 946 947 948 949 950 951 952 953
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

954
static u32
955 956
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
957
{
958 959
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
960
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
961 962
	enum forcewake_domains fw_domains;

963
	if (INTEL_GEN(i915) >= 11) {
964 965
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
966
	} else {
967 968
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
969 970
	}

971
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
972
						    FW_REG_READ);
973
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
974 975 976
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

977 978
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
979

980
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
981

982 983
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
984
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
985

986
	val = intel_uncore_read_fw(uncore, reg);
987

988 989
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
990

991
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
992

993 994
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
995

996
	return val;
997 998 999
}

/* NB: please notice the memset */
1000
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1001 1002
			       struct intel_instdone *instdone)
{
1003
	struct drm_i915_private *i915 = engine->i915;
1004
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
1005
	struct intel_uncore *uncore = engine->uncore;
1006 1007 1008 1009 1010 1011
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1012
	switch (INTEL_GEN(i915)) {
1013
	default:
1014 1015
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1016

1017
		if (engine->id != RCS0)
1018 1019
			break;

1020 1021
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1022 1023 1024 1025 1026 1027
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1028
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1029
			instdone->sampler[slice][subslice] =
1030
				read_subslice_reg(engine, slice, subslice,
1031 1032
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1033
				read_subslice_reg(engine, slice, subslice,
1034 1035 1036 1037
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1038 1039
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1040

1041
		if (engine->id != RCS0)
1042 1043
			break;

1044 1045 1046 1047 1048 1049
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1050 1051 1052 1053 1054

		break;
	case 6:
	case 5:
	case 4:
1055 1056
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1057
		if (engine->id == RCS0)
1058
			/* HACK: Using the wrong struct member */
1059 1060
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1061 1062 1063
		break;
	case 3:
	case 2:
1064
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1065 1066 1067
		break;
	}
}
1068

1069 1070 1071 1072
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1073 1074 1075
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1076
	if (!intel_engine_pm_get_if_awake(engine))
1077
		return true;
1078

1079
	/* First check that no commands are left in the ring */
1080 1081
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1082
		idle = false;
1083

1084
	/* No bit for gen2, so assume the CS parser is idle */
1085
	if (INTEL_GEN(engine->i915) > 2 &&
1086
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1087 1088
		idle = false;

1089
	intel_engine_pm_put(engine);
1090 1091 1092 1093

	return idle;
}

1094
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1113 1114 1115 1116 1117 1118 1119 1120 1121
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1122
	/* More white lies, if wedged, hw state is inconsistent */
1123
	if (intel_gt_is_wedged(engine->gt))
1124 1125
		return true;

1126
	if (!intel_engine_pm_is_awake(engine))
1127 1128
		return true;

1129
	/* Waiting to drain ELSP? */
1130
	if (execlists_active(&engine->execlists)) {
1131
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1132

1133
		intel_engine_flush_submission(engine);
1134

1135
		if (execlists_active(&engine->execlists))
1136 1137
			return false;
	}
1138

1139
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1140
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1141 1142
		return false;

1143
	/* Ring stopped? */
1144
	return ring_is_idle(engine);
1145 1146
}

1147
bool intel_engines_are_idle(struct intel_gt *gt)
1148 1149 1150 1151
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1152 1153
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1154 1155
	 * report that it is still busy, even though we have stopped using it.
	 */
1156
	if (intel_gt_is_wedged(gt))
1157 1158
		return true;

1159
	/* Already parked (and passed an idleness test); must still be idle */
1160
	if (!READ_ONCE(gt->awake))
1161 1162
		return true;

1163
	for_each_engine(engine, gt, id) {
1164 1165 1166 1167 1168 1169 1170
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1171
void intel_engines_reset_default_submission(struct intel_gt *gt)
1172 1173 1174 1175
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1176
	for_each_engine(engine, gt, id)
1177 1178 1179
		engine->set_default_submission(engine);
}

1180 1181 1182 1183 1184 1185 1186 1187
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1188 1189
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1190 1191 1192 1193 1194 1195 1196
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1197 1198 1199
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1200 1201
{
	if (attr->priority == I915_PRIORITY_INVALID)
1202 1203 1204 1205
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1206

1207
	return x;
1208 1209
}

1210
static void print_request(struct drm_printer *m,
1211
			  struct i915_request *rq,
1212 1213
			  const char *prefix)
{
1214
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1215
	char buf[80] = "";
1216 1217 1218
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1219

1220
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1221
		   prefix,
1222
		   rq->fence.context, rq->fence.seqno,
1223 1224 1225
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1226 1227
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1228
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1229 1230
			    &rq->fence.flags) ? "-" :
		   "",
1231
		   buf,
1232
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1233
		   name);
1234 1235
}

1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1301
		drm_printf(m, "[%04zx] %s\n", pos, line);
1302 1303 1304 1305 1306 1307

		prev = buf + pos;
		skip = false;
	}
}

1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1319
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1320
					 struct drm_printer *m)
1321 1322
{
	struct drm_i915_private *dev_priv = engine->i915;
1323
	struct intel_engine_execlists * const execlists = &engine->execlists;
1324 1325
	u64 addr;

1326
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1327
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1328 1329 1330 1331 1332 1333
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1334
	drm_printf(m, "\tRING_START: 0x%08x\n",
1335
		   ENGINE_READ(engine, RING_START));
1336
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1337
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1338
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1339
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1340
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1341 1342
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1343 1344
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1345 1346
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1347
	}
1348 1349

	if (INTEL_GEN(dev_priv) >= 6) {
1350
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1351
			   ENGINE_READ(engine, RING_IMR));
1352 1353 1354 1355 1356 1357
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1358 1359
	}

1360 1361 1362 1363 1364 1365
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1366
	if (INTEL_GEN(dev_priv) >= 8)
1367
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1368
	else if (INTEL_GEN(dev_priv) >= 4)
1369
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1370
	else
1371
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1372 1373 1374 1375
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1376
			   ENGINE_READ(engine, RING_IPEIR));
1377
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1378
			   ENGINE_READ(engine, RING_IPEHR));
1379
	} else {
1380 1381
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1382
	}
1383

1384
	if (HAS_EXECLISTS(dev_priv)) {
1385
		struct i915_request * const *port, *rq;
1386 1387
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1388
		const u8 num_entries = execlists->csb_size;
1389
		unsigned int idx;
1390
		u8 read, write;
1391

1392
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1393 1394 1395
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1396
			   repr_timer(&engine->execlists.preempt),
1397
			   repr_timer(&engine->execlists.timer));
1398

1399 1400 1401
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1402 1403 1404 1405 1406
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1407
		if (read >= num_entries)
1408
			read = 0;
1409
		if (write >= num_entries)
1410 1411
			write = 0;
		if (read > write)
1412
			write += num_entries;
1413
		while (read < write) {
1414 1415 1416
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1417 1418
		}

1419
		execlists_active_lock_bh(execlists);
1420
		rcu_read_lock();
1421
		for (port = execlists->active; (rq = *port); port++) {
1422
			char hdr[160];
1423 1424
			int len;

1425
			len = scnprintf(hdr, sizeof(hdr),
1426
					"\t\tActive[%d]:  ccid:%08x, ",
1427
					(int)(port - execlists->active),
1428
					rq->context->lrc.ccid);
1429
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1430
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1431 1432 1433
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1434 1435
			char hdr[160];
			int len;
1436

1437 1438 1439
			len = scnprintf(hdr, sizeof(hdr),
					"\t\tPending[%d]: ccid:%08x, ",
					(int)(port - execlists->pending),
1440
					rq->context->lrc.ccid);
1441 1442 1443
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
1444
		}
1445
		rcu_read_unlock();
1446
		execlists_active_unlock_bh(execlists);
1447 1448
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1449
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1450
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1451
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1452
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1453
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1454
	}
1455 1456
}

1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1501 1502 1503 1504 1505
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1506
	struct i915_request *rq;
1507
	intel_wakeref_t wakeref;
1508
	unsigned long flags;
1509 1510 1511 1512 1513 1514 1515 1516 1517

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1518
	if (intel_gt_is_wedged(engine->gt))
1519 1520
		drm_printf(m, "*** WEDGED ***\n");

1521
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1522 1523
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1524 1525
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1526 1527 1528 1529 1530 1531 1532

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1533 1534 1535 1536 1537 1538
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1539
	spin_lock_irqsave(&engine->active.lock, flags);
1540
	rq = intel_engine_find_active_request(engine);
1541
	if (rq) {
1542 1543
		struct intel_timeline *tl = get_timeline(rq);

1544
		print_request(m, rq, "\t\tactive ");
1545

1546
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1547
			   i915_ggtt_offset(rq->ring->vma));
1548
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1549
			   rq->ring->head);
1550
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1551
			   rq->ring->tail);
1552 1553 1554 1555
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1556 1557 1558 1559 1560 1561

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1562 1563

		print_request_ring(m, rq);
1564

1565
		if (rq->context->lrc_reg_state) {
1566
			drm_printf(m, "Logical Ring Context:\n");
1567
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1568
		}
1569
	}
1570
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1571
	spin_unlock_irqrestore(&engine->active.lock, flags);
1572

1573
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1574
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1575
	if (wakeref) {
1576
		intel_engine_print_registers(engine, m);
1577
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1578 1579 1580
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1581

1582
	intel_execlists_show_requests(engine, m, print_request, 8);
1583

1584
	drm_printf(m, "HWSP:\n");
1585
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1586

1587
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1588 1589

	intel_engine_print_breadcrumbs(engine, m);
1590 1591
}

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1602
	struct intel_engine_execlists *execlists = &engine->execlists;
1603
	unsigned long flags;
1604
	int err = 0;
1605

1606
	if (!intel_engine_supports_stats(engine))
1607 1608
		return -ENODEV;

1609 1610
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1611 1612 1613 1614 1615 1616

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1617
	if (engine->stats.enabled++ == 0) {
1618 1619
		struct i915_request * const *port;
		struct i915_request *rq;
1620

1621
		engine->stats.enabled_at = ktime_get();
1622 1623

		/* XXX submission method oblivious? */
1624
		for (port = execlists->active; (rq = *port); port++)
1625
			engine->stats.active++;
1626 1627 1628

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1629
			if (!intel_context_inflight_count(rq->context))
1630
				engine->stats.active++;
1631 1632 1633 1634 1635
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1636

1637
unlock:
1638 1639
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1640

1641
	return err;
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1667
	unsigned int seq;
1668 1669
	ktime_t total;

1670 1671 1672 1673
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1688
	if (!intel_engine_supports_stats(engine))
1689 1690
		return;

1691
	write_seqlock_irqsave(&engine->stats.lock, flags);
1692 1693 1694 1695 1696
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1697
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1698 1699
}

1700 1701
static bool match_ring(struct i915_request *rq)
{
1702
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1723
	lockdep_assert_held(&engine->active.lock);
1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1741
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1742 1743 1744 1745
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1746
			continue;
1747 1748 1749

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1750
			continue;
1751 1752 1753 1754 1755 1756 1757 1758

		active = request;
		break;
	}

	return active;
}

1759
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1760
#include "mock_engine.c"
1761
#include "selftest_engine.c"
1762
#include "selftest_engine_cs.c"
1763
#endif