intel_engine_cs.c 45.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		/* fall through */
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278
	struct drm_i915_private *i915 = gt->i915;
279 280
	struct intel_engine_cs *engine;

281 282 283
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

284 285 286
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

287
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 289
		return -EINVAL;

290
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 292
		return -EINVAL;

293
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 295
		return -EINVAL;

296 297 298
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
299

300 301
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

302
	engine->id = id;
303
	engine->legacy_idx = INVALID_ENGINE;
304
	engine->mask = BIT(id);
305
	engine->i915 = i915;
306 307
	engine->gt = gt;
	engine->uncore = gt->uncore;
308
	engine->hw_id = engine->guc_id = info->hw_id;
309
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310

311 312
	engine->class = info->class;
	engine->instance = info->instance;
313
	__sprint_engine_name(engine);
314

315 316
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 318
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 320
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 322
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
323 324
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
325

326 327 328 329
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

330
	engine->context_size = intel_engine_context_size(gt, engine->class);
331 332
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
333
	if (engine->context_size)
334
		DRIVER_CAPS(i915)->has_logical_contexts = true;
335

336 337 338
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

339
	ewma__engine_latency_init(&engine->latency);
340
	seqlock_init(&engine->stats.lock);
341

342 343
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

344 345 346
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

347
	gt->engine_class[info->class][info->instance] = engine;
348
	gt->engine[id] = engine;
349

350
	return 0;
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

383
static void intel_setup_engine_capabilities(struct intel_gt *gt)
384 385 386 387
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

388
	for_each_engine(engine, gt, id)
389 390 391
		__setup_engine_capabilities(engine);
}

392
/**
393
 * intel_engines_release() - free the resources allocated for Command Streamers
394
 * @gt: pointer to struct intel_gt
395
 */
396
void intel_engines_release(struct intel_gt *gt)
397 398 399 400
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

401 402 403 404 405 406 407 408 409 410 411 412 413
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

414
	/* Decouple the backend; but keep the layout for late GPU resets */
415
	for_each_engine(engine, gt, id) {
416
		intel_wakeref_wait_for_idle(&engine->wakeref);
417 418
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

419 420 421 422 423 424 425
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
426 427 428
	}
}

429 430 431 432 433 434 435 436 437 438 439
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, gt, id) {
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

440
/**
441
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
442
 * @gt: pointer to struct intel_gt
443 444 445
 *
 * Return: non-zero if the initialization failed.
 */
446
int intel_engines_init_mmio(struct intel_gt *gt)
447
{
448
	struct drm_i915_private *i915 = gt->i915;
449 450
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
451
	unsigned int mask = 0;
452
	unsigned int i;
453
	int err;
454

455 456 457
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
458

459
	if (i915_inject_probe_failure(i915))
460 461
		return -ENODEV;

462
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
463
		if (!HAS_ENGINE(i915, i))
464 465
			continue;

466
		err = intel_engine_setup(gt, i);
467 468 469
		if (err)
			goto cleanup;

470
		mask |= BIT(i);
471 472 473 474 475 476 477
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
478
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
479
		device_info->engine_mask = mask;
480

481
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
482

483
	intel_gt_check_and_clear_faults(gt);
484

485
	intel_setup_engine_capabilities(gt);
486

487 488 489
	return 0;

cleanup:
490
	intel_engines_free(gt);
491 492 493
	return err;
}

494
void intel_engine_init_execlists(struct intel_engine_cs *engine)
495 496 497
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

498
	execlists->port_mask = 1;
499
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
500 501
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

502 503 504 505
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

506
	execlists->queue_priority_hint = INT_MIN;
507
	execlists->queue = RB_ROOT_CACHED;
508 509
}

510
static void cleanup_status_page(struct intel_engine_cs *engine)
511
{
512 513
	struct i915_vma *vma;

514 515 516
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

517 518 519
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
520

521 522 523 524
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
525
	i915_gem_object_put(vma->obj);
526 527 528 529 530 531 532
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

533
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
534 535 536 537 538 539 540 541 542 543 544
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
545
		flags = PIN_MAPPABLE;
546
	else
547
		flags = PIN_HIGH;
548

549
	return i915_ggtt_pin(vma, 0, flags);
550 551 552 553 554 555 556 557 558
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

559 560 561 562 563 564 565
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
566 567
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
568 569
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
570 571 572
		return PTR_ERR(obj);
	}

573
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
574

575
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
576 577 578 579 580 581 582 583
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
584
		goto err;
585 586
	}

587
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
588
	engine->status_page.vma = vma;
589 590 591 592 593 594 595

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

596 597 598
	return 0;

err_unpin:
599
	i915_gem_object_unpin_map(obj);
600 601 602 603 604
err:
	i915_gem_object_put(obj);
	return ret;
}

605
static int engine_setup_common(struct intel_engine_cs *engine)
606 607 608
{
	int err;

609 610
	init_llist_head(&engine->barrier_tasks);

611 612 613 614
	err = init_status_page(engine);
	if (err)
		return err;

615
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
616
	intel_engine_init_breadcrumbs(engine);
617
	intel_engine_init_execlists(engine);
618
	intel_engine_init_cmd_parser(engine);
619
	intel_engine_init__pm(engine);
620
	intel_engine_init_retire(engine);
621

622 623
	intel_engine_pool_init(&engine->pool);

624 625 626 627
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

628 629 630 631
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

632 633 634
	return 0;
}

635 636 637 638 639 640
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
	u32 cs[1024];
};

641
static int measure_breadcrumb_dw(struct intel_context *ce)
642
{
643
	struct intel_engine_cs *engine = ce->engine;
644
	struct measure_breadcrumb *frame;
645
	int dw;
646

647
	GEM_BUG_ON(!engine->gt->scratch);
648 649 650 651 652

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

653 654 655 656
	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
657

658 659 660 661 662
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
663

664
	mutex_lock(&ce->timeline->mutex);
665
	spin_lock_irq(&engine->active.lock);
666

667
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
668

669
	spin_unlock_irq(&engine->active.lock);
670
	mutex_unlock(&ce->timeline->mutex);
671

672
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
673

674
	kfree(frame);
675 676 677
	return dw;
}

678 679 680 681
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
682
	INIT_LIST_HEAD(&engine->active.hold);
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

700 701 702
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
703
	static struct lock_class_key kernel;
704 705 706
	struct intel_context *ce;
	int err;

707
	ce = intel_context_create(engine);
708 709 710
	if (IS_ERR(ce))
		return ce;

711
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
712

713
	err = intel_context_pin(ce); /* perma-pin so it is always available */
714 715 716 717 718
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

719 720 721 722 723 724 725 726
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

727 728 729
	return ce;
}

730 731 732 733 734 735 736 737 738 739 740
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
741
static int engine_init_common(struct intel_engine_cs *engine)
742
{
743
	struct intel_context *ce;
744 745
	int ret;

746 747
	engine->set_default_submission(engine);

748 749
	/*
	 * We may need to do things with the shrinker which
750 751 752 753 754 755
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
756 757 758 759
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

760 761 762 763 764
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
765
	engine->kernel_context = ce;
766

767
	return 0;
768 769 770 771

err_context:
	intel_context_put(ce);
	return ret;
772
}
773

774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

805 806 807 808 809 810 811 812 813
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
814
	GEM_BUG_ON(!list_empty(&engine->active.requests));
815
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
816

817
	cleanup_status_page(engine);
818

819
	intel_engine_fini_retire(engine);
820
	intel_engine_pool_fini(&engine->pool);
821
	intel_engine_fini_breadcrumbs(engine);
822
	intel_engine_cleanup_cmd_parser(engine);
823

824 825 826
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

827 828 829 830
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
831
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
832

833
	intel_wa_list_free(&engine->ctx_wa_list);
834
	intel_wa_list_free(&engine->wa_list);
835
	intel_wa_list_free(&engine->whitelist);
836
}
837

838 839 840 841 842 843 844 845 846 847 848 849 850 851
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

852
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
853
{
854 855
	struct drm_i915_private *i915 = engine->i915;

856 857
	u64 acthd;

858 859 860 861
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
862
	else
863
		acthd = ENGINE_READ(engine, ACTHD);
864 865 866 867

	return acthd;
}

868
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
869 870 871
{
	u64 bbaddr;

872 873
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
874
	else
875
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
876 877 878

	return bbaddr;
}
879

880 881 882 883 884 885 886 887 888 889 890 891 892 893 894
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

895 896
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
897
	struct intel_uncore *uncore = engine->uncore;
898 899 900 901
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

902
	if (INTEL_GEN(engine->i915) < 3)
903 904
		return -ENODEV;

905
	ENGINE_TRACE(engine, "\n");
906

907
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
908 909

	err = 0;
910
	if (__intel_wait_for_register_fw(uncore,
911
					 mode, MODE_IDLE, MODE_IDLE,
912
					 1000, stop_timeout(engine),
913
					 NULL)) {
914
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
915 916 917 918
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
919
	intel_uncore_posting_read_fw(uncore, mode);
920 921 922 923

	return err;
}

924 925
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
926
	ENGINE_TRACE(engine, "\n");
927

928
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
929 930
}

931 932 933 934 935 936 937 938 939 940 941
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

942
static u32
943 944
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
945
{
946 947
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
948
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
949 950
	enum forcewake_domains fw_domains;

951
	if (INTEL_GEN(i915) >= 11) {
952 953
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
954
	} else {
955 956
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
957 958
	}

959
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
960
						    FW_REG_READ);
961
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
962 963 964
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

965 966
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
967

968
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
969

970 971
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
972
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
973

974
	val = intel_uncore_read_fw(uncore, reg);
975

976 977
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
978

979
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
980

981 982
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
983

984
	return val;
985 986 987
}

/* NB: please notice the memset */
988
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
989 990
			       struct intel_instdone *instdone)
{
991
	struct drm_i915_private *i915 = engine->i915;
992
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
993
	struct intel_uncore *uncore = engine->uncore;
994 995 996 997 998 999
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1000
	switch (INTEL_GEN(i915)) {
1001
	default:
1002 1003
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1004

1005
		if (engine->id != RCS0)
1006 1007
			break;

1008 1009
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1010 1011 1012 1013 1014 1015
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1016
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1017
			instdone->sampler[slice][subslice] =
1018
				read_subslice_reg(engine, slice, subslice,
1019 1020
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1021
				read_subslice_reg(engine, slice, subslice,
1022 1023 1024 1025
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1026 1027
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1028

1029
		if (engine->id != RCS0)
1030 1031
			break;

1032 1033 1034 1035 1036 1037
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1038 1039 1040 1041 1042

		break;
	case 6:
	case 5:
	case 4:
1043 1044
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1045
		if (engine->id == RCS0)
1046
			/* HACK: Using the wrong struct member */
1047 1048
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1049 1050 1051
		break;
	case 3:
	case 2:
1052
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1053 1054 1055
		break;
	}
}
1056

1057 1058 1059 1060
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1061 1062 1063
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1064
	if (!intel_engine_pm_get_if_awake(engine))
1065
		return true;
1066

1067
	/* First check that no commands are left in the ring */
1068 1069
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1070
		idle = false;
1071

1072
	/* No bit for gen2, so assume the CS parser is idle */
1073
	if (INTEL_GEN(engine->i915) > 2 &&
1074
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1075 1076
		idle = false;

1077
	intel_engine_pm_put(engine);
1078 1079 1080 1081

	return idle;
}

1082
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1101 1102 1103 1104 1105 1106 1107 1108 1109
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1110
	/* More white lies, if wedged, hw state is inconsistent */
1111
	if (intel_gt_is_wedged(engine->gt))
1112 1113
		return true;

1114
	if (!intel_engine_pm_is_awake(engine))
1115 1116
		return true;

1117
	/* Waiting to drain ELSP? */
1118
	if (execlists_active(&engine->execlists)) {
1119
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1120

1121
		intel_engine_flush_submission(engine);
1122

1123
		if (execlists_active(&engine->execlists))
1124 1125
			return false;
	}
1126

1127
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1128
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1129 1130
		return false;

1131
	/* Ring stopped? */
1132
	return ring_is_idle(engine);
1133 1134
}

1135
bool intel_engines_are_idle(struct intel_gt *gt)
1136 1137 1138 1139
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1140 1141
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1142 1143
	 * report that it is still busy, even though we have stopped using it.
	 */
1144
	if (intel_gt_is_wedged(gt))
1145 1146
		return true;

1147
	/* Already parked (and passed an idleness test); must still be idle */
1148
	if (!READ_ONCE(gt->awake))
1149 1150
		return true;

1151
	for_each_engine(engine, gt, id) {
1152 1153 1154 1155 1156 1157 1158
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1159
void intel_engines_reset_default_submission(struct intel_gt *gt)
1160 1161 1162 1163
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1164
	for_each_engine(engine, gt, id)
1165 1166 1167
		engine->set_default_submission(engine);
}

1168 1169 1170 1171 1172 1173 1174 1175
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1176 1177
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1178 1179 1180 1181 1182 1183 1184
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1185 1186 1187
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1188 1189
{
	if (attr->priority == I915_PRIORITY_INVALID)
1190 1191 1192 1193
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1194

1195
	return x;
1196 1197
}

1198
static void print_request(struct drm_printer *m,
1199
			  struct i915_request *rq,
1200 1201
			  const char *prefix)
{
1202
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1203
	char buf[80] = "";
1204 1205 1206
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1207

1208
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1209
		   prefix,
1210
		   rq->fence.context, rq->fence.seqno,
1211 1212 1213
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1214 1215
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1216
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1217 1218
			    &rq->fence.flags) ? "-" :
		   "",
1219
		   buf,
1220
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1221
		   name);
1222 1223
}

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1289
		drm_printf(m, "[%04zx] %s\n", pos, line);
1290 1291 1292 1293 1294 1295

		prev = buf + pos;
		skip = false;
	}
}

1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1307
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1308
					 struct drm_printer *m)
1309 1310
{
	struct drm_i915_private *dev_priv = engine->i915;
1311
	struct intel_engine_execlists * const execlists = &engine->execlists;
1312 1313
	u64 addr;

1314
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1315
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1316
	drm_printf(m, "\tRING_START: 0x%08x\n",
1317
		   ENGINE_READ(engine, RING_START));
1318
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1319
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1320
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1321
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1322
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1323 1324
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1325 1326
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1327 1328
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1329
	}
1330 1331

	if (INTEL_GEN(dev_priv) >= 6) {
1332
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1333
			   ENGINE_READ(engine, RING_IMR));
1334 1335 1336 1337 1338 1339
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1340 1341
	}

1342 1343 1344 1345 1346 1347
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1348
	if (INTEL_GEN(dev_priv) >= 8)
1349
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1350
	else if (INTEL_GEN(dev_priv) >= 4)
1351
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1352
	else
1353
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1354 1355 1356 1357
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1358
			   ENGINE_READ(engine, RING_IPEIR));
1359
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1360
			   ENGINE_READ(engine, RING_IPEHR));
1361
	} else {
1362 1363
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1364
	}
1365

1366
	if (HAS_EXECLISTS(dev_priv)) {
1367
		struct i915_request * const *port, *rq;
1368 1369
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1370
		const u8 num_entries = execlists->csb_size;
1371
		unsigned int idx;
1372
		u8 read, write;
1373

1374
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1375 1376 1377
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1378
			   repr_timer(&engine->execlists.preempt),
1379
			   repr_timer(&engine->execlists.timer));
1380

1381 1382 1383
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1384 1385 1386 1387 1388
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1389
		if (read >= num_entries)
1390
			read = 0;
1391
		if (write >= num_entries)
1392 1393
			write = 0;
		if (read > write)
1394
			write += num_entries;
1395
		while (read < write) {
1396 1397 1398
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1399 1400
		}

1401
		execlists_active_lock_bh(execlists);
1402
		rcu_read_lock();
1403
		for (port = execlists->active; (rq = *port); port++) {
1404
			char hdr[160];
1405 1406
			int len;

1407
			len = scnprintf(hdr, sizeof(hdr),
1408
					"\t\tActive[%d]:  ccid:%08x, ",
1409 1410 1411
					(int)(port - execlists->active),
					upper_32_bits(rq->context->lrc_desc));
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1412
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1413 1414 1415
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1416 1417
			char hdr[160];
			int len;
1418

1419 1420 1421 1422 1423 1424 1425
			len = scnprintf(hdr, sizeof(hdr),
					"\t\tPending[%d]: ccid:%08x, ",
					(int)(port - execlists->pending),
					upper_32_bits(rq->context->lrc_desc));
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
1426
		}
1427
		rcu_read_unlock();
1428
		execlists_active_unlock_bh(execlists);
1429 1430
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1431
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1432
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1433
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1434
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1435
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1436
	}
1437 1438
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1483 1484 1485 1486 1487
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1488
	struct i915_request *rq;
1489
	intel_wakeref_t wakeref;
1490
	unsigned long flags;
1491 1492 1493 1494 1495 1496 1497 1498 1499

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1500
	if (intel_gt_is_wedged(engine->gt))
1501 1502
		drm_printf(m, "*** WEDGED ***\n");

1503
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1504 1505
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1506 1507
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1508 1509 1510 1511 1512 1513 1514

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1515 1516 1517 1518 1519 1520
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1521
	spin_lock_irqsave(&engine->active.lock, flags);
1522
	rq = intel_engine_find_active_request(engine);
1523
	if (rq) {
1524 1525
		struct intel_timeline *tl = get_timeline(rq);

1526
		print_request(m, rq, "\t\tactive ");
1527

1528
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1529
			   i915_ggtt_offset(rq->ring->vma));
1530
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1531
			   rq->ring->head);
1532
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1533
			   rq->ring->tail);
1534 1535 1536 1537
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1538 1539 1540 1541 1542 1543

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1544 1545

		print_request_ring(m, rq);
1546

1547
		if (rq->context->lrc_reg_state) {
1548
			drm_printf(m, "Logical Ring Context:\n");
1549
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1550
		}
1551
	}
1552
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1553
	spin_unlock_irqrestore(&engine->active.lock, flags);
1554

1555
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1556
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1557
	if (wakeref) {
1558
		intel_engine_print_registers(engine, m);
1559
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1560 1561 1562
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1563

1564
	intel_execlists_show_requests(engine, m, print_request, 8);
1565

1566
	drm_printf(m, "HWSP:\n");
1567
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1568

1569
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1570 1571

	intel_engine_print_breadcrumbs(engine, m);
1572 1573
}

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1584
	struct intel_engine_execlists *execlists = &engine->execlists;
1585
	unsigned long flags;
1586
	int err = 0;
1587

1588
	if (!intel_engine_supports_stats(engine))
1589 1590
		return -ENODEV;

1591 1592
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1593 1594 1595 1596 1597 1598

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1599
	if (engine->stats.enabled++ == 0) {
1600 1601
		struct i915_request * const *port;
		struct i915_request *rq;
1602

1603
		engine->stats.enabled_at = ktime_get();
1604 1605

		/* XXX submission method oblivious? */
1606
		for (port = execlists->active; (rq = *port); port++)
1607
			engine->stats.active++;
1608 1609 1610

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1611
			if (!intel_context_inflight_count(rq->context))
1612
				engine->stats.active++;
1613 1614 1615 1616 1617
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1618

1619
unlock:
1620 1621
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1622

1623
	return err;
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1649
	unsigned int seq;
1650 1651
	ktime_t total;

1652 1653 1654 1655
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1670
	if (!intel_engine_supports_stats(engine))
1671 1672
		return;

1673
	write_seqlock_irqsave(&engine->stats.lock, flags);
1674 1675 1676 1677 1678
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1679
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1680 1681
}

1682 1683
static bool match_ring(struct i915_request *rq)
{
1684
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1705
	lockdep_assert_held(&engine->active.lock);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1723
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1724 1725 1726 1727
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1728
			continue;
1729 1730 1731

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1732
			continue;
1733 1734 1735 1736 1737 1738 1739 1740

		active = request;
		break;
	}

	return active;
}

1741
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1742
#include "mock_engine.c"
1743
#include "selftest_engine.c"
1744
#include "selftest_engine_cs.c"
1745
#endif