intel_engine_cs.c 44.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
204
					 INTEL_GEN(gt->i915),
205 206 207
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		/* fall through */
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278 279
	struct intel_engine_cs *engine;

280 281 282
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

283 284 285
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 294
		return -EINVAL;

295 296 297
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
298

299 300
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

301
	engine->id = id;
302
	engine->legacy_idx = INVALID_ENGINE;
303
	engine->mask = BIT(id);
304 305 306
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
307
	engine->hw_id = engine->guc_id = info->hw_id;
308
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
309

310 311
	engine->class = info->class;
	engine->instance = info->instance;
312
	__sprint_engine_name(engine);
313

314 315
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 317
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
318 319
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
320 321
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
322

323
	engine->context_size = intel_engine_context_size(gt, engine->class);
324 325
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
326
	if (engine->context_size)
327
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
328

329 330 331
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

332
	ewma__engine_latency_init(&engine->latency);
333
	seqlock_init(&engine->stats.lock);
334

335 336
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

337 338 339
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

340
	gt->engine_class[info->class][info->instance] = engine;
341
	gt->engine[id] = engine;
342 343 344

	gt->i915->engine[id] = engine;

345
	return 0;
346 347
}

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

378
static void intel_setup_engine_capabilities(struct intel_gt *gt)
379 380 381 382
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

383
	for_each_engine(engine, gt, id)
384 385 386
		__setup_engine_capabilities(engine);
}

387
/**
388
 * intel_engines_release() - free the resources allocated for Command Streamers
389
 * @gt: pointer to struct intel_gt
390
 */
391
void intel_engines_release(struct intel_gt *gt)
392 393 394 395
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

396 397 398 399 400 401 402 403 404 405 406 407 408
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

409
	/* Decouple the backend; but keep the layout for late GPU resets */
410
	for_each_engine(engine, gt, id) {
411 412
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

413 414 415 416 417 418 419 420
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));

421
		gt->i915->engine[id] = NULL;
422 423 424
	}
}

425 426 427 428 429 430 431 432 433 434 435
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, gt, id) {
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

436
/**
437
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
438
 * @gt: pointer to struct intel_gt
439 440 441
 *
 * Return: non-zero if the initialization failed.
 */
442
int intel_engines_init_mmio(struct intel_gt *gt)
443
{
444
	struct drm_i915_private *i915 = gt->i915;
445 446
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
447
	unsigned int mask = 0;
448
	unsigned int i;
449
	int err;
450

451 452
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
453
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
454

455
	if (i915_inject_probe_failure(i915))
456 457
		return -ENODEV;

458
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
459
		if (!HAS_ENGINE(i915, i))
460 461
			continue;

462
		err = intel_engine_setup(gt, i);
463 464 465
		if (err)
			goto cleanup;

466
		mask |= BIT(i);
467 468 469 470 471 472 473
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
474 475
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
476

477
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
478

479
	intel_gt_check_and_clear_faults(gt);
480

481
	intel_setup_engine_capabilities(gt);
482

483 484 485
	return 0;

cleanup:
486
	intel_engines_free(gt);
487 488 489
	return err;
}

490
void intel_engine_init_execlists(struct intel_engine_cs *engine)
491 492 493
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

494
	execlists->port_mask = 1;
495
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
496 497
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

498 499 500 501
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

502
	execlists->queue_priority_hint = INT_MIN;
503
	execlists->queue = RB_ROOT_CACHED;
504 505
}

506
static void cleanup_status_page(struct intel_engine_cs *engine)
507
{
508 509
	struct i915_vma *vma;

510 511 512
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

513 514 515
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
516

517 518 519 520
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
521
	i915_gem_object_put(vma->obj);
522 523 524 525 526 527 528 529
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
530
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
531 532 533 534 535 536 537 538 539 540 541 542 543 544
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
545

546
	return i915_vma_pin(vma, 0, 0, flags);
547 548 549 550 551 552 553 554 555
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

556 557 558 559 560 561 562
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
563 564 565 566 567 568
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

569
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
570

571
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
572 573 574 575 576 577 578 579
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
580
		goto err;
581 582
	}

583
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
584
	engine->status_page.vma = vma;
585 586 587 588 589 590 591

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

592 593 594
	return 0;

err_unpin:
595
	i915_gem_object_unpin_map(obj);
596 597 598 599 600
err:
	i915_gem_object_put(obj);
	return ret;
}

601
static int engine_setup_common(struct intel_engine_cs *engine)
602 603 604
{
	int err;

605 606
	init_llist_head(&engine->barrier_tasks);

607 608 609 610
	err = init_status_page(engine);
	if (err)
		return err;

611
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
612
	intel_engine_init_breadcrumbs(engine);
613
	intel_engine_init_execlists(engine);
614
	intel_engine_init_cmd_parser(engine);
615
	intel_engine_init__pm(engine);
616
	intel_engine_init_retire(engine);
617

618 619
	intel_engine_pool_init(&engine->pool);

620 621 622 623
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

624 625 626 627
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

628 629 630
	return 0;
}

631 632
struct measure_breadcrumb {
	struct i915_request rq;
633
	struct intel_timeline timeline;
634 635 636 637
	struct intel_ring ring;
	u32 cs[1024];
};

638
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
639 640
{
	struct measure_breadcrumb *frame;
641
	int dw = -ENOMEM;
642

643
	GEM_BUG_ON(!engine->gt->scratch);
644 645 646 647 648

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

649 650 651
	if (intel_timeline_init(&frame->timeline,
				engine->gt,
				engine->status_page.vma))
652
		goto out_frame;
653

654 655
	mutex_lock(&frame->timeline.mutex);

656 657 658 659 660 661 662 663
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
664
	rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
665

666
	dw = intel_timeline_pin(&frame->timeline);
667 668 669
	if (dw < 0)
		goto out_timeline;

670
	spin_lock_irq(&engine->active.lock);
671
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
672 673
	spin_unlock_irq(&engine->active.lock);

674
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
675

676
	intel_timeline_unpin(&frame->timeline);
677

678
out_timeline:
679
	mutex_unlock(&frame->timeline.mutex);
680
	intel_timeline_fini(&frame->timeline);
681 682
out_frame:
	kfree(frame);
683 684 685
	return dw;
}

686 687 688 689
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
690
	INIT_LIST_HEAD(&engine->active.hold);
691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

708 709 710
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
711
	static struct lock_class_key kernel;
712 713 714
	struct intel_context *ce;
	int err;

715
	ce = intel_context_create(engine);
716 717 718
	if (IS_ERR(ce))
		return ce;

719
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
720

721
	err = intel_context_pin(ce); /* perma-pin so it is always available */
722 723 724 725 726
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

727 728 729 730 731 732 733 734
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

735 736 737
	return ce;
}

738 739 740 741 742 743 744 745 746 747 748
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
749
static int engine_init_common(struct intel_engine_cs *engine)
750
{
751
	struct intel_context *ce;
752 753
	int ret;

754 755
	engine->set_default_submission(engine);

756 757 758 759 760 761
	ret = measure_breadcrumb_dw(engine);
	if (ret < 0)
		return ret;

	engine->emit_fini_breadcrumb_dw = ret;

762 763
	/*
	 * We may need to do things with the shrinker which
764 765 766 767 768 769
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
770 771 772 773 774
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

	engine->kernel_context = ce;
775

776
	return 0;
777
}
778

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

810 811 812 813 814 815 816 817 818
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
819
	GEM_BUG_ON(!list_empty(&engine->active.requests));
820
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
821

822
	cleanup_status_page(engine);
823

824
	intel_engine_fini_retire(engine);
825
	intel_engine_pool_fini(&engine->pool);
826
	intel_engine_fini_breadcrumbs(engine);
827
	intel_engine_cleanup_cmd_parser(engine);
828

829 830 831
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

832 833 834 835
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
836
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
837

838
	intel_wa_list_free(&engine->ctx_wa_list);
839
	intel_wa_list_free(&engine->wa_list);
840
	intel_wa_list_free(&engine->whitelist);
841
}
842

843
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
844
{
845 846
	struct drm_i915_private *i915 = engine->i915;

847 848
	u64 acthd;

849 850 851 852
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
853
	else
854
		acthd = ENGINE_READ(engine, ACTHD);
855 856 857 858

	return acthd;
}

859
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
860 861 862
{
	u64 bbaddr;

863 864
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
865
	else
866
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
867 868 869

	return bbaddr;
}
870

871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

886 887
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
888
	struct intel_uncore *uncore = engine->uncore;
889 890 891 892
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

893
	if (INTEL_GEN(engine->i915) < 3)
894 895
		return -ENODEV;

896
	ENGINE_TRACE(engine, "\n");
897

898
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
899 900

	err = 0;
901
	if (__intel_wait_for_register_fw(uncore,
902
					 mode, MODE_IDLE, MODE_IDLE,
903
					 1000, stop_timeout(engine),
904
					 NULL)) {
905
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
906 907 908 909
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
910
	intel_uncore_posting_read_fw(uncore, mode);
911 912 913 914

	return err;
}

915 916
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
917
	ENGINE_TRACE(engine, "\n");
918

919
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
920 921
}

922 923 924 925 926 927 928 929 930 931 932
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

933
static u32
934 935
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
936
{
937 938
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
939
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
940 941
	enum forcewake_domains fw_domains;

942
	if (INTEL_GEN(i915) >= 11) {
943 944
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
945
	} else {
946 947
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
948 949
	}

950
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
951
						    FW_REG_READ);
952
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
953 954 955
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

956 957
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
958

959
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
960

961 962
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
963
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
964

965
	val = intel_uncore_read_fw(uncore, reg);
966

967 968
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
969

970
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
971

972 973
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
974

975
	return val;
976 977 978
}

/* NB: please notice the memset */
979
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
980 981
			       struct intel_instdone *instdone)
{
982
	struct drm_i915_private *i915 = engine->i915;
983
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
984
	struct intel_uncore *uncore = engine->uncore;
985 986 987 988 989 990
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

991
	switch (INTEL_GEN(i915)) {
992
	default:
993 994
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
995

996
		if (engine->id != RCS0)
997 998
			break;

999 1000
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1001
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1002
			instdone->sampler[slice][subslice] =
1003
				read_subslice_reg(engine, slice, subslice,
1004 1005
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1006
				read_subslice_reg(engine, slice, subslice,
1007 1008 1009 1010
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1011 1012
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1013

1014
		if (engine->id != RCS0)
1015 1016
			break;

1017 1018 1019 1020 1021 1022
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1023 1024 1025 1026 1027

		break;
	case 6:
	case 5:
	case 4:
1028 1029
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1030
		if (engine->id == RCS0)
1031
			/* HACK: Using the wrong struct member */
1032 1033
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1034 1035 1036
		break;
	case 3:
	case 2:
1037
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1038 1039 1040
		break;
	}
}
1041

1042 1043 1044 1045
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1046 1047 1048
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1049
	if (!intel_engine_pm_get_if_awake(engine))
1050
		return true;
1051

1052
	/* First check that no commands are left in the ring */
1053 1054
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1055
		idle = false;
1056

1057
	/* No bit for gen2, so assume the CS parser is idle */
1058
	if (INTEL_GEN(engine->i915) > 2 &&
1059
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1060 1061
		idle = false;

1062
	intel_engine_pm_put(engine);
1063 1064 1065 1066

	return idle;
}

1067
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1086 1087 1088 1089 1090 1091 1092 1093 1094
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1095
	/* More white lies, if wedged, hw state is inconsistent */
1096
	if (intel_gt_is_wedged(engine->gt))
1097 1098
		return true;

1099
	if (!intel_engine_pm_is_awake(engine))
1100 1101
		return true;

1102
	/* Waiting to drain ELSP? */
1103
	if (execlists_active(&engine->execlists)) {
1104
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1105

1106
		intel_engine_flush_submission(engine);
1107

1108
		if (execlists_active(&engine->execlists))
1109 1110
			return false;
	}
1111

1112
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1113
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1114 1115
		return false;

1116
	/* Ring stopped? */
1117
	return ring_is_idle(engine);
1118 1119
}

1120
bool intel_engines_are_idle(struct intel_gt *gt)
1121 1122 1123 1124
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1125 1126
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1127 1128
	 * report that it is still busy, even though we have stopped using it.
	 */
1129
	if (intel_gt_is_wedged(gt))
1130 1131
		return true;

1132
	/* Already parked (and passed an idleness test); must still be idle */
1133
	if (!READ_ONCE(gt->awake))
1134 1135
		return true;

1136
	for_each_engine(engine, gt, id) {
1137 1138 1139 1140 1141 1142 1143
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1144
void intel_engines_reset_default_submission(struct intel_gt *gt)
1145 1146 1147 1148
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1149
	for_each_engine(engine, gt, id)
1150 1151 1152
		engine->set_default_submission(engine);
}

1153 1154 1155 1156 1157 1158 1159 1160
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1161 1162
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1163 1164 1165 1166 1167 1168 1169
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1170 1171 1172
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1173 1174
{
	if (attr->priority == I915_PRIORITY_INVALID)
1175 1176 1177 1178
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1179

1180
	return x;
1181 1182
}

1183
static void print_request(struct drm_printer *m,
1184
			  struct i915_request *rq,
1185 1186
			  const char *prefix)
{
1187
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1188
	char buf[80] = "";
1189 1190 1191
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1192

1193
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1194
		   prefix,
1195
		   rq->fence.context, rq->fence.seqno,
1196 1197 1198
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1199 1200
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1201
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1202 1203
			    &rq->fence.flags) ? "-" :
		   "",
1204
		   buf,
1205
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1206
		   name);
1207 1208
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1231
		drm_printf(m, "[%04zx] %s\n", pos, line);
1232 1233 1234 1235 1236 1237

		prev = buf + pos;
		skip = false;
	}
}

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1270
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1271
					 struct drm_printer *m)
1272 1273
{
	struct drm_i915_private *dev_priv = engine->i915;
1274
	struct intel_engine_execlists * const execlists = &engine->execlists;
1275 1276
	u64 addr;

1277
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1278
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1279
	drm_printf(m, "\tRING_START: 0x%08x\n",
1280
		   ENGINE_READ(engine, RING_START));
1281
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1282
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1283
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1284
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1285
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1286 1287
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1288 1289
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1290 1291
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1292
	}
1293 1294

	if (INTEL_GEN(dev_priv) >= 6) {
1295 1296
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1297 1298
	}

1299 1300 1301 1302 1303 1304
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1305
	if (INTEL_GEN(dev_priv) >= 8)
1306
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1307
	else if (INTEL_GEN(dev_priv) >= 4)
1308
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1309
	else
1310
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1311 1312 1313 1314
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1315
			   ENGINE_READ(engine, RING_IPEIR));
1316
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1317
			   ENGINE_READ(engine, RING_IPEHR));
1318
	} else {
1319 1320
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1321
	}
1322

1323
	if (HAS_EXECLISTS(dev_priv)) {
1324
		struct i915_request * const *port, *rq;
1325 1326
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1327
		const u8 num_entries = execlists->csb_size;
1328
		unsigned int idx;
1329
		u8 read, write;
1330

1331
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1332 1333 1334
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1335
			   repr_timer(&engine->execlists.preempt),
1336
			   repr_timer(&engine->execlists.timer));
1337

1338 1339 1340
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1341 1342 1343 1344 1345
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1346
		if (read >= num_entries)
1347
			read = 0;
1348
		if (write >= num_entries)
1349 1350
			write = 0;
		if (read > write)
1351
			write += num_entries;
1352
		while (read < write) {
1353 1354 1355
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1356 1357
		}

1358
		execlists_active_lock_bh(execlists);
1359
		rcu_read_lock();
1360 1361 1362 1363 1364
		for (port = execlists->active; (rq = *port); port++) {
			char hdr[80];
			int len;

			len = snprintf(hdr, sizeof(hdr),
1365
				       "\t\tActive[%d]: ",
1366
				       (int)(port - execlists->active));
1367 1368 1369
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1370 1371 1372
				len += snprintf(hdr + len, sizeof(hdr) - len,
						"ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
						i915_ggtt_offset(rq->ring->vma),
1373
						tl ? tl->hwsp_offset : 0,
1374
						hwsp_seqno(rq));
1375 1376 1377 1378

				if (tl)
					intel_timeline_put(tl);
			}
1379 1380 1381 1382
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1383
			struct intel_timeline *tl = get_timeline(rq);
1384
			char hdr[80];
1385

1386 1387 1388 1389
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1390
				 tl ? tl->hwsp_offset : 0,
1391 1392
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1393 1394 1395

			if (tl)
				intel_timeline_put(tl);
1396
		}
1397
		rcu_read_unlock();
1398
		execlists_active_unlock_bh(execlists);
1399 1400
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1401
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1402
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1403
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1404
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1405
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1406
	}
1407 1408
}

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1453 1454 1455 1456 1457
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1458
	struct i915_request *rq;
1459
	intel_wakeref_t wakeref;
1460
	unsigned long flags;
1461 1462 1463 1464 1465 1466 1467 1468 1469

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1470
	if (intel_gt_is_wedged(engine->gt))
1471 1472
		drm_printf(m, "*** WEDGED ***\n");

1473
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1474 1475
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1476 1477
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1478 1479 1480 1481 1482 1483 1484

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1485 1486 1487 1488 1489 1490
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1491
	spin_lock_irqsave(&engine->active.lock, flags);
1492
	rq = intel_engine_find_active_request(engine);
1493
	if (rq) {
1494 1495
		struct intel_timeline *tl = get_timeline(rq);

1496
		print_request(m, rq, "\t\tactive ");
1497

1498
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1499
			   i915_ggtt_offset(rq->ring->vma));
1500
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1501
			   rq->ring->head);
1502
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1503
			   rq->ring->tail);
1504 1505 1506 1507
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1508 1509 1510 1511 1512 1513

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1514 1515

		print_request_ring(m, rq);
1516

1517
		if (rq->context->lrc_reg_state) {
1518
			drm_printf(m, "Logical Ring Context:\n");
1519
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1520
		}
1521
	}
1522
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1523
	spin_unlock_irqrestore(&engine->active.lock, flags);
1524

1525
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1526
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1527
	if (wakeref) {
1528
		intel_engine_print_registers(engine, m);
1529
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1530 1531 1532
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1533

1534
	intel_execlists_show_requests(engine, m, print_request, 8);
1535

1536
	drm_printf(m, "HWSP:\n");
1537
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1538

1539
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1540 1541

	intel_engine_print_breadcrumbs(engine, m);
1542 1543
}

1544 1545 1546 1547 1548 1549 1550 1551 1552 1553
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1554
	struct intel_engine_execlists *execlists = &engine->execlists;
1555
	unsigned long flags;
1556
	int err = 0;
1557

1558
	if (!intel_engine_supports_stats(engine))
1559 1560
		return -ENODEV;

1561 1562
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1563 1564 1565 1566 1567 1568

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1569
	if (engine->stats.enabled++ == 0) {
1570 1571
		struct i915_request * const *port;
		struct i915_request *rq;
1572

1573
		engine->stats.enabled_at = ktime_get();
1574 1575

		/* XXX submission method oblivious? */
1576
		for (port = execlists->active; (rq = *port); port++)
1577
			engine->stats.active++;
1578 1579 1580

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1581
			if (!intel_context_inflight_count(rq->context))
1582
				engine->stats.active++;
1583 1584 1585 1586 1587
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1588

1589
unlock:
1590 1591
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1592

1593
	return err;
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1619
	unsigned int seq;
1620 1621
	ktime_t total;

1622 1623 1624 1625
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1640
	if (!intel_engine_supports_stats(engine))
1641 1642
		return;

1643
	write_seqlock_irqsave(&engine->stats.lock, flags);
1644 1645 1646 1647 1648
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1649
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1650 1651
}

1652 1653
static bool match_ring(struct i915_request *rq)
{
1654
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1675
	lockdep_assert_held(&engine->active.lock);
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1693
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1694 1695 1696 1697
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1698
			continue;
1699 1700 1701

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1702
			continue;
1703 1704 1705 1706 1707 1708 1709 1710

		active = request;
		break;
	}

	return active;
}

1711
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1712
#include "mock_engine.c"
1713
#include "selftest_engine.c"
1714
#include "selftest_engine_cs.c"
1715
#endif