intel_engine_cs.c 43.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27
#include "i915_drv.h"
28 29

#include "intel_engine.h"
30
#include "intel_engine_pm.h"
31
#include "intel_lrc.h"
32
#include "intel_reset.h"
33

34 35 36 37 38 39 40 41 42
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

43
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
44 45
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
47
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
48 49 50

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

51
struct engine_class_info {
52
	const char *name;
53
	u8 uabi_class;
54 55 56 57 58
};

static const struct engine_class_info intel_engine_classes[] = {
	[RENDER_CLASS] = {
		.name = "rcs",
59
		.uabi_class = I915_ENGINE_CLASS_RENDER,
60 61 62
	},
	[COPY_ENGINE_CLASS] = {
		.name = "bcs",
63
		.uabi_class = I915_ENGINE_CLASS_COPY,
64 65 66
	},
	[VIDEO_DECODE_CLASS] = {
		.name = "vcs",
67
		.uabi_class = I915_ENGINE_CLASS_VIDEO,
68 69 70
	},
	[VIDEO_ENHANCEMENT_CLASS] = {
		.name = "vecs",
71
		.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
72 73 74
	},
};

75
#define MAX_MMIO_BASES 3
76
struct engine_info {
77
	unsigned int hw_id;
78 79
	u8 class;
	u8 instance;
80 81 82 83 84
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
85 86 87
};

static const struct engine_info intel_engines[] = {
88 89
	[RCS0] = {
		.hw_id = RCS0_HW,
90 91
		.class = RENDER_CLASS,
		.instance = 0,
92 93 94
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
95
	},
96 97
	[BCS0] = {
		.hw_id = BCS0_HW,
98 99
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
100 101 102
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
103
	},
104 105
	[VCS0] = {
		.hw_id = VCS0_HW,
106 107
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
108 109 110 111 112
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
113
	},
114 115
	[VCS1] = {
		.hw_id = VCS1_HW,
116 117
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
118 119 120 121
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
122
	},
123 124
	[VCS2] = {
		.hw_id = VCS2_HW,
125 126
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
127 128 129
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
130
	},
131 132
	[VCS3] = {
		.hw_id = VCS3_HW,
133 134
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
135 136 137
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
138
	},
139 140
	[VECS0] = {
		.hw_id = VECS0_HW,
141 142
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
143 144 145 146
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
147
	},
148 149
	[VECS1] = {
		.hw_id = VECS1_HW,
150 151
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
152 153 154
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
155
	},
156 157
};

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**
 * ___intel_engine_context_size() - return the size of the context for an engine
 * @dev_priv: i915 device private
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
		switch (INTEL_GEN(dev_priv)) {
		default:
			MISSING_CASE(INTEL_GEN(dev_priv));
184
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
185 186
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
187
		case 10:
O
Oscar Mateo 已提交
188
			return GEN10_LR_CONTEXT_RENDER_SIZE;
189 190 191
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
192
			return GEN8_LR_CONTEXT_RENDER_SIZE;
193 194 195 196 197 198 199 200 201 202 203 204
		case 7:
			if (IS_HASWELL(dev_priv))
				return HSW_CXT_TOTAL_SIZE;

			cxt_size = I915_READ(GEN7_CXT_SIZE);
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
			cxt_size = I915_READ(CXT_SIZE);
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
205
		case 4:
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
			cxt_size = I915_READ(CXT_SIZE) + 1;
			DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
					 INTEL_GEN(dev_priv),
					 cxt_size * 64,
					 cxt_size - 1);
			return round_up(cxt_size * 64, PAGE_SIZE);
222 223 224 225 226 227 228 229 230
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
231
		/* fall through */
232 233 234 235 236 237 238 239 240
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
		if (INTEL_GEN(dev_priv) < 8)
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

256 257 258 259 260 261 262
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
	WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
			 intel_engine_classes[info->class].name,
			 info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}

263 264 265 266 267 268
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
269
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
270 271
		return;

272 273
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
274
	else
275
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
276 277 278 279 280 281 282 283
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

284
static int
285 286 287 288
intel_engine_setup(struct drm_i915_private *dev_priv,
		   enum intel_engine_id id)
{
	const struct engine_info *info = &intel_engines[id];
289 290
	struct intel_engine_cs *engine;

291 292
	GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));

293 294 295
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

296
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
297 298
		return -EINVAL;

299
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
300 301
		return -EINVAL;

302
	if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
303 304
		return -EINVAL;

305 306 307 308
	GEM_BUG_ON(dev_priv->engine[id]);
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
309

310 311
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

312
	engine->id = id;
313
	engine->mask = BIT(id);
314
	engine->i915 = dev_priv;
315
	engine->uncore = &dev_priv->uncore;
316
	__sprint_engine_name(engine->name, info);
317
	engine->hw_id = engine->guc_id = info->hw_id;
318
	engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
319 320
	engine->class = info->class;
	engine->instance = info->instance;
321

322 323 324 325 326 327
	/*
	 * To be overridden by the backend on setup. However to facilitate
	 * cleanup on error during setup, we always provide the destroy vfunc.
	 */
	engine->destroy = (typeof(engine->destroy))kfree;

328
	engine->uabi_class = intel_engine_classes[info->class].uabi_class;
329

330 331 332 333
	engine->context_size = __intel_engine_context_size(dev_priv,
							   engine->class);
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
334 335
	if (engine->context_size)
		DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
336

337 338 339
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

340
	seqlock_init(&engine->stats.lock);
341

342 343
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

344 345 346
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

347
	dev_priv->engine_class[info->class][info->instance] = engine;
348 349
	dev_priv->engine[id] = engine;
	return 0;
350 351
}

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/**
 * intel_engines_cleanup() - free the resources allocated for Command Streamers
 * @i915: the i915 devic
 */
void intel_engines_cleanup(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id) {
		engine->destroy(engine);
		i915->engine[id] = NULL;
	}
}

367
/**
368
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
369
 * @i915: the i915 device
370 371 372
 *
 * Return: non-zero if the initialization failed.
 */
373
int intel_engines_init_mmio(struct drm_i915_private *i915)
374
{
375 376
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
377
	unsigned int mask = 0;
378
	unsigned int i;
379
	int err;
380

381 382
	WARN_ON(engine_mask == 0);
	WARN_ON(engine_mask &
383
		GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
384

385 386 387
	if (i915_inject_load_failure())
		return -ENODEV;

388
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
389
		if (!HAS_ENGINE(i915, i))
390 391
			continue;

392
		err = intel_engine_setup(i915, i);
393 394 395
		if (err)
			goto cleanup;

396
		mask |= BIT(i);
397 398 399 400 401 402 403
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
404 405
	if (WARN_ON(mask != engine_mask))
		device_info->engine_mask = mask;
406

407
	/* We always presume we have at least RCS available for later probing */
408
	if (WARN_ON(!HAS_ENGINE(i915, RCS0))) {
409 410 411 412
		err = -ENODEV;
		goto cleanup;
	}

413
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
414

415
	i915_check_and_clear_faults(i915);
416

417 418 419
	return 0;

cleanup:
420
	intel_engines_cleanup(i915);
421 422 423 424
	return err;
}

/**
425
 * intel_engines_init() - init the Engine Command Streamers
426
 * @i915: i915 device private
427 428 429
 *
 * Return: non-zero if the initialization failed.
 */
430
int intel_engines_init(struct drm_i915_private *i915)
431
{
432
	int (*init)(struct intel_engine_cs *engine);
433
	struct intel_engine_cs *engine;
434
	enum intel_engine_id id;
435
	int err;
436

437 438 439 440
	if (HAS_EXECLISTS(i915))
		init = intel_execlists_submission_init;
	else
		init = intel_ring_submission_init;
441

442
	for_each_engine(engine, i915, id) {
443
		err = init(engine);
444
		if (err)
445 446 447 448 449 450
			goto cleanup;
	}

	return 0;

cleanup:
451
	intel_engines_cleanup(i915);
452
	return err;
453 454
}

455 456 457 458 459
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
	i915_gem_batch_pool_init(&engine->batch_pool, engine);
}

460
void intel_engine_init_execlists(struct intel_engine_cs *engine)
461 462 463
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

464
	execlists->port_mask = 1;
465
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
466 467
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

468
	execlists->queue_priority_hint = INT_MIN;
469
	execlists->queue = RB_ROOT_CACHED;
470 471
}

472
static void cleanup_status_page(struct intel_engine_cs *engine)
473
{
474 475
	struct i915_vma *vma;

476 477 478
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

479 480 481
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
482

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
	__i915_gem_object_release_unless_active(vma->obj);
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

	flags = PIN_GLOBAL;
	if (!HAS_LLC(engine->i915))
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
		flags |= PIN_MAPPABLE;
	else
		flags |= PIN_HIGH;
511

512
	return i915_vma_pin(vma, 0, 0, flags);
513 514 515 516 517 518 519 520 521
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

522 523 524 525 526 527 528
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
529 530 531 532 533 534
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
		DRM_ERROR("Failed to allocate status page\n");
		return PTR_ERR(obj);
	}

535
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
536

537
	vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
538 539 540 541 542 543 544 545
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
546
		goto err;
547 548
	}

549
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
550
	engine->status_page.vma = vma;
551 552 553 554 555 556 557

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

558 559 560
	return 0;

err_unpin:
561
	i915_gem_object_unpin_map(obj);
562 563 564 565 566
err:
	i915_gem_object_put(obj);
	return ret;
}

567
static int intel_engine_setup_common(struct intel_engine_cs *engine)
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
{
	int err;

	err = init_status_page(engine);
	if (err)
		return err;

	err = i915_timeline_init(engine->i915,
				 &engine->timeline,
				 engine->status_page.vma);
	if (err)
		goto err_hwsp;

	i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);

583
	intel_engine_init_breadcrumbs(engine);
584
	intel_engine_init_execlists(engine);
585 586 587
	intel_engine_init_hangcheck(engine);
	intel_engine_init_batch_pool(engine);
	intel_engine_init_cmd_parser(engine);
588
	intel_engine_init__pm(engine);
589

590 591 592 593
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

594 595 596 597 598 599 600
	return 0;

err_hwsp:
	cleanup_status_page(engine);
	return err;
}

601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
/**
 * intel_engines_setup- setup engine state not requiring hw access
 * @i915: Device to setup.
 *
 * Initializes engine structure members shared between legacy and execlists
 * submission modes which do not require hardware access.
 *
 * Typically done early in the submission mode specific engine setup stage.
 */
int intel_engines_setup(struct drm_i915_private *i915)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, i915, id) {
		err = intel_engine_setup_common(engine);
		if (err)
			goto cleanup;

		err = setup(engine);
		if (err)
			goto cleanup;

631 632 633
		/* We expect the backend to take control over its state */
		GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);

634 635 636 637 638 639
		GEM_BUG_ON(!engine->cops);
	}

	return 0;

cleanup:
640
	intel_engines_cleanup(i915);
641 642 643
	return err;
}

644 645 646 647 648 649 650 651
void intel_engines_set_scheduler_caps(struct drm_i915_private *i915)
{
	static const struct {
		u8 engine;
		u8 sched;
	} map[] = {
#define MAP(x, y) { ilog2(I915_ENGINE_HAS_##x), ilog2(I915_SCHEDULER_CAP_##y) }
		MAP(PREEMPTION, PREEMPTION),
652
		MAP(SEMAPHORES, SEMAPHORES),
653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
#undef MAP
	};
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	u32 enabled, disabled;

	enabled = 0;
	disabled = 0;
	for_each_engine(engine, i915, id) { /* all engines must agree! */
		int i;

		if (engine->schedule)
			enabled |= (I915_SCHEDULER_CAP_ENABLED |
				    I915_SCHEDULER_CAP_PRIORITY);
		else
			disabled |= (I915_SCHEDULER_CAP_ENABLED |
				     I915_SCHEDULER_CAP_PRIORITY);

		for (i = 0; i < ARRAY_SIZE(map); i++) {
			if (engine->flags & BIT(map[i].engine))
				enabled |= BIT(map[i].sched);
			else
				disabled |= BIT(map[i].sched);
		}
	}

	i915->caps.scheduler = enabled & ~disabled;
	if (!(i915->caps.scheduler & I915_SCHEDULER_CAP_ENABLED))
		i915->caps.scheduler = 0;
}

684 685 686 687 688 689 690
struct measure_breadcrumb {
	struct i915_request rq;
	struct i915_timeline timeline;
	struct intel_ring ring;
	u32 cs[1024];
};

691
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
692 693
{
	struct measure_breadcrumb *frame;
694
	int dw = -ENOMEM;
695 696 697 698 699 700 701

	GEM_BUG_ON(!engine->i915->gt.scratch);

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

702
	if (i915_timeline_init(engine->i915,
703
			       &frame->timeline,
704 705
			       engine->status_page.vma))
		goto out_frame;
706 707 708 709 710 711 712 713 714 715 716 717 718

	INIT_LIST_HEAD(&frame->ring.request_list);
	frame->ring.timeline = &frame->timeline;
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);

	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.ring = &frame->ring;
	frame->rq.timeline = &frame->timeline;

719 720 721 722
	dw = i915_timeline_pin(&frame->timeline);
	if (dw < 0)
		goto out_timeline;

723
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
724
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
725

726
	i915_timeline_unpin(&frame->timeline);
727

728 729
out_timeline:
	i915_timeline_fini(&frame->timeline);
730 731
out_frame:
	kfree(frame);
732 733 734
	return dw;
}

735 736 737 738 739
static int pin_context(struct i915_gem_context *ctx,
		       struct intel_engine_cs *engine,
		       struct intel_context **out)
{
	struct intel_context *ce;
740
	int err;
741

742
	ce = i915_gem_context_get_engine(ctx, engine->id);
743 744 745
	if (IS_ERR(ce))
		return PTR_ERR(ce);

746 747 748 749 750
	err = intel_context_pin(ce);
	intel_context_put(ce);
	if (err)
		return err;

751 752 753 754
	*out = ce;
	return 0;
}

755 756 757 758 759 760 761 762 763 764 765 766 767
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_init_common(struct intel_engine_cs *engine)
{
768
	struct drm_i915_private *i915 = engine->i915;
769 770
	int ret;

771 772 773 774 775 776 777
	/* We may need to do things with the shrinker which
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
778 779 780 781
	ret = pin_context(i915->kernel_context, engine,
			  &engine->kernel_context);
	if (ret)
		return ret;
782

783 784
	/*
	 * Similarly the preempt context must always be available so that
785 786
	 * we can interrupt the engine at any time. However, as preemption
	 * is optional, we allow it to fail.
787
	 */
788 789 790
	if (i915->preempt_context)
		pin_context(i915->preempt_context, engine,
			    &engine->preempt_context);
791

792
	ret = measure_breadcrumb_dw(engine);
793
	if (ret < 0)
794
		goto err_unpin;
795

796
	engine->emit_fini_breadcrumb_dw = ret;
797

798
	engine->set_default_submission(engine);
799

800
	return 0;
801

802 803 804 805
err_unpin:
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
806
	return ret;
807
}
808 809 810 811 812 813 814 815 816 817

/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
818
	cleanup_status_page(engine);
819

820
	intel_engine_fini_breadcrumbs(engine);
821
	intel_engine_cleanup_cmd_parser(engine);
822
	i915_gem_batch_pool_fini(&engine->batch_pool);
823

824 825 826
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

827 828 829
	if (engine->preempt_context)
		intel_context_unpin(engine->preempt_context);
	intel_context_unpin(engine->kernel_context);
830 831

	i915_timeline_fini(&engine->timeline);
832

833
	intel_wa_list_free(&engine->ctx_wa_list);
834
	intel_wa_list_free(&engine->wa_list);
835
	intel_wa_list_free(&engine->whitelist);
836
}
837

838
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
839
{
840 841
	struct drm_i915_private *i915 = engine->i915;

842 843
	u64 acthd;

844 845 846 847
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
848
	else
849
		acthd = ENGINE_READ(engine, ACTHD);
850 851 852 853

	return acthd;
}

854
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
855 856 857
{
	u64 bbaddr;

858 859
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
860
	else
861
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
862 863 864

	return bbaddr;
}
865

866 867
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
868
	struct intel_uncore *uncore = engine->uncore;
869 870 871 872
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

873
	if (INTEL_GEN(engine->i915) < 3)
874 875 876 877
		return -ENODEV;

	GEM_TRACE("%s\n", engine->name);

878
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
879 880

	err = 0;
881
	if (__intel_wait_for_register_fw(uncore,
882 883 884 885 886 887 888 889
					 mode, MODE_IDLE, MODE_IDLE,
					 1000, 0,
					 NULL)) {
		GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
890
	intel_uncore_posting_read_fw(uncore, mode);
891 892 893 894

	return err;
}

895 896 897 898
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
	GEM_TRACE("%s\n", engine->name);

899
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
900 901
}

902 903 904 905 906 907 908 909 910 911 912
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

913 914
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
915
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
916 917 918 919
	u32 mcr_s_ss_select;
	u32 slice = fls(sseu->slice_mask);
	u32 subslice = fls(sseu->subslice_mask[slice]);

920
	if (IS_GEN(dev_priv, 10))
921 922
		mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
				  GEN8_MCR_SUBSLICE(subslice);
923 924 925
	else if (INTEL_GEN(dev_priv) >= 11)
		mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
				  GEN11_MCR_SUBSLICE(subslice);
926 927 928 929 930 931
	else
		mcr_s_ss_select = 0;

	return mcr_s_ss_select;
}

932
static inline u32
933 934 935
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
		  int subslice, i915_reg_t reg)
{
936
	struct intel_uncore *uncore = &dev_priv->uncore;
937 938 939 940 941
	u32 mcr_slice_subslice_mask;
	u32 mcr_slice_subslice_select;
	u32 default_mcr_s_ss_select;
	u32 mcr;
	u32 ret;
942 943
	enum forcewake_domains fw_domains;

944 945 946 947 948 949 950 951 952 953 954 955
	if (INTEL_GEN(dev_priv) >= 11) {
		mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
					  GEN11_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
					    GEN11_MCR_SUBSLICE(subslice);
	} else {
		mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
					  GEN8_MCR_SUBSLICE_MASK;
		mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
					    GEN8_MCR_SUBSLICE(subslice);
	}

956 957
	default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);

958
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
959
						    FW_REG_READ);
960
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
961 962 963
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

964 965
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
966

967
	mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
968 969 970 971

	WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
		     default_mcr_s_ss_select);

972 973
	mcr &= ~mcr_slice_subslice_mask;
	mcr |= mcr_slice_subslice_select;
974
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
975

976
	ret = intel_uncore_read_fw(uncore, reg);
977

978
	mcr &= ~mcr_slice_subslice_mask;
979 980
	mcr |= default_mcr_s_ss_select;

981
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
982

983 984
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
985 986 987 988 989 990 991 992 993

	return ret;
}

/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone)
{
	struct drm_i915_private *dev_priv = engine->i915;
994
	struct intel_uncore *uncore = engine->uncore;
995 996 997 998 999 1000 1001 1002
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

	switch (INTEL_GEN(dev_priv)) {
	default:
1003 1004
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1005

1006
		if (engine->id != RCS0)
1007 1008
			break;

1009 1010
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
		for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
			instdone->sampler[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
				read_subslice_reg(dev_priv, slice, subslice,
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1021 1022
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1023

1024
		if (engine->id != RCS0)
1025 1026
			break;

1027 1028 1029 1030 1031 1032
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1033 1034 1035 1036 1037

		break;
	case 6:
	case 5:
	case 4:
1038 1039
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1040
		if (engine->id == RCS0)
1041
			/* HACK: Using the wrong struct member */
1042 1043
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1044 1045 1046
		break;
	case 3:
	case 2:
1047
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1048 1049 1050
		break;
	}
}
1051

1052 1053 1054
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	struct drm_i915_private *dev_priv = engine->i915;
1055
	intel_wakeref_t wakeref;
1056 1057
	bool idle = true;

1058 1059 1060
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1061
	/* If the whole device is asleep, the engine must be idle */
1062 1063
	wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
	if (!wakeref)
1064
		return true;
1065

1066
	/* First check that no commands are left in the ring */
1067 1068
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1069
		idle = false;
1070

1071
	/* No bit for gen2, so assume the CS parser is idle */
1072 1073
	if (INTEL_GEN(dev_priv) > 2 &&
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1074 1075
		idle = false;

1076
	intel_runtime_pm_put(dev_priv, wakeref);
1077 1078 1079 1080

	return idle;
}

1081 1082 1083 1084 1085 1086 1087 1088 1089
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1090
	/* More white lies, if wedged, hw state is inconsistent */
1091
	if (i915_reset_failed(engine->i915))
1092 1093
		return true;

1094 1095 1096
	if (!intel_wakeref_active(&engine->wakeref))
		return true;

1097
	/* Waiting to drain ELSP? */
1098
	if (READ_ONCE(engine->execlists.active)) {
1099
		struct tasklet_struct *t = &engine->execlists.tasklet;
1100

1101 1102
		synchronize_hardirq(engine->i915->drm.irq);

1103
		local_bh_disable();
1104 1105 1106 1107 1108
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
1109
		}
1110
		local_bh_enable();
1111

1112 1113 1114
		/* Otherwise flush the tasklet if it was on another cpu */
		tasklet_unlock_wait(t);

1115
		if (READ_ONCE(engine->execlists.active))
1116 1117
			return false;
	}
1118

1119
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1120
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1121 1122
		return false;

1123
	/* Ring stopped? */
1124
	return ring_is_idle(engine);
1125 1126
}

1127
bool intel_engines_are_idle(struct drm_i915_private *i915)
1128 1129 1130 1131
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1132 1133
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1134 1135
	 * report that it is still busy, even though we have stopped using it.
	 */
1136
	if (i915_reset_failed(i915))
1137 1138
		return true;

1139 1140 1141 1142 1143
	/* Already parked (and passed an idleness test); must still be idle */
	if (!READ_ONCE(i915->gt.awake))
		return true;

	for_each_engine(engine, i915, id) {
1144 1145 1146 1147 1148 1149 1150
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1151 1152 1153 1154 1155 1156 1157 1158 1159
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, i915, id)
		engine->set_default_submission(engine);
}

1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
/**
 * intel_engine_lost_context: called when the GPU is reset into unknown state
 * @engine: the engine
 *
 * We have either reset the GPU or otherwise about to lose state tracking of
 * the current GPU logical state (e.g. suspend). On next use, it is therefore
 * imperative that we make no presumptions about the current state and load
 * from scratch.
 */
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
1171
	struct intel_context *ce;
1172 1173 1174

	lockdep_assert_held(&engine->i915->drm.struct_mutex);

1175 1176 1177
	ce = fetch_and_zero(&engine->last_retired_context);
	if (ce)
		intel_context_unpin(ce);
1178 1179
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	unsigned int which;

	which = 0;
	for_each_engine(engine, i915, id)
		if (engine->default_state)
			which |= BIT(engine->uabi_class);

	return which;
}

1209 1210 1211
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1212 1213
{
	if (attr->priority == I915_PRIORITY_INVALID)
1214 1215 1216 1217
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1218

1219
	return x;
1220 1221
}

1222
static void print_request(struct drm_printer *m,
1223
			  struct i915_request *rq,
1224 1225
			  const char *prefix)
{
1226
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1227
	char buf[80] = "";
1228 1229 1230
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1231

1232
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1233
		   prefix,
1234
		   rq->fence.context, rq->fence.seqno,
1235 1236 1237
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1238 1239
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1240
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1241 1242
			    &rq->fence.flags) ? "-" :
		   "",
1243
		   buf,
1244
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1245
		   name);
1246 1247
}

1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1270
		drm_printf(m, "[%04zx] %s\n", pos, line);
1271 1272 1273 1274 1275 1276

		prev = buf + pos;
		skip = false;
	}
}

1277 1278
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
					 struct drm_printer *m)
1279 1280
{
	struct drm_i915_private *dev_priv = engine->i915;
1281 1282
	const struct intel_engine_execlists * const execlists =
		&engine->execlists;
1283 1284
	u64 addr;

1285
	if (engine->id == RCS0 && IS_GEN_RANGE(dev_priv, 4, 7))
1286
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1287
	drm_printf(m, "\tRING_START: 0x%08x\n",
1288
		   ENGINE_READ(engine, RING_START));
1289
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1290
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1291
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1292
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1293
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1294 1295
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1296 1297
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1298 1299
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1300
	}
1301 1302

	if (INTEL_GEN(dev_priv) >= 6) {
1303 1304
		drm_printf(m, "\tRING_IMR: %08x\n",
			   ENGINE_READ(engine, RING_IMR));
1305 1306
	}

1307 1308 1309 1310 1311 1312
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1313
	if (INTEL_GEN(dev_priv) >= 8)
1314
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1315
	else if (INTEL_GEN(dev_priv) >= 4)
1316
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1317
	else
1318
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1319 1320 1321 1322
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1323
			   ENGINE_READ(engine, RING_IPEIR));
1324
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1325
			   ENGINE_READ(engine, RING_IPEHR));
1326
	} else {
1327 1328
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1329
	}
1330

1331
	if (HAS_EXECLISTS(dev_priv)) {
1332 1333
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1334
		const u8 num_entries = execlists->csb_size;
1335
		unsigned int idx;
1336
		u8 read, write;
1337

1338
		drm_printf(m, "\tExeclist status: 0x%08x %08x, entries %u\n",
1339
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1340 1341
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   num_entries);
1342

1343 1344 1345
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1346
		drm_printf(m, "\tExeclist CSB read %d, write %d, tasklet queued? %s (%s)\n",
1347
			   read, write,
1348 1349 1350
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
1351
		if (read >= num_entries)
1352
			read = 0;
1353
		if (write >= num_entries)
1354 1355
			write = 0;
		if (read > write)
1356
			write += num_entries;
1357
		while (read < write) {
1358 1359 1360
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1361 1362 1363 1364
		}

		rcu_read_lock();
		for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
1365
			struct i915_request *rq;
1366 1367 1368 1369
			unsigned int count;

			rq = port_unpack(&execlists->port[idx], &count);
			if (rq) {
1370 1371
				char hdr[80];

1372
				snprintf(hdr, sizeof(hdr),
1373
					 "\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1374
					 idx, count,
1375
					 i915_ggtt_offset(rq->ring->vma),
1376 1377
					 rq->timeline->hwsp_offset,
					 hwsp_seqno(rq));
1378
				print_request(m, rq, hdr);
1379
			} else {
1380
				drm_printf(m, "\t\tELSP[%d] idle\n", idx);
1381 1382
			}
		}
1383
		drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
1384 1385 1386
		rcu_read_unlock();
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1387
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1388
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1389
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1390
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1391
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1392
	}
1393 1394
}

1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1428 1429 1430 1431 1432
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1433
	struct i915_request *rq;
1434
	intel_wakeref_t wakeref;
1435 1436 1437 1438 1439 1440 1441 1442 1443

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1444
	if (i915_reset_failed(engine->i915))
1445 1446
		drm_printf(m, "*** WEDGED ***\n");

1447
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1448
	drm_printf(m, "\tHangcheck: %d ms ago\n",
1449
		   jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
1450 1451 1452 1453 1454 1455 1456 1457
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	rcu_read_lock();

	drm_printf(m, "\tRequests:\n");

1458
	rq = list_first_entry(&engine->timeline.requests,
1459
			      struct i915_request, link);
1460
	if (&rq->link != &engine->timeline.requests)
1461 1462
		print_request(m, rq, "\t\tfirst  ");

1463
	rq = list_last_entry(&engine->timeline.requests,
1464
			     struct i915_request, link);
1465
	if (&rq->link != &engine->timeline.requests)
1466 1467
		print_request(m, rq, "\t\tlast   ");

1468
	rq = intel_engine_find_active_request(engine);
1469 1470
	if (rq) {
		print_request(m, rq, "\t\tactive ");
1471

1472
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1473
			   i915_ggtt_offset(rq->ring->vma));
1474
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1475
			   rq->ring->head);
1476
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1477
			   rq->ring->tail);
1478 1479 1480 1481
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1482 1483
		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
			   rq->timeline->hwsp_offset);
1484 1485

		print_request_ring(m, rq);
1486 1487 1488 1489
	}

	rcu_read_unlock();

1490 1491
	wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
	if (wakeref) {
1492
		intel_engine_print_registers(engine, m);
1493
		intel_runtime_pm_put(engine->i915, wakeref);
1494 1495 1496
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1497

1498
	intel_execlists_show_requests(engine, m, print_request, 8);
1499

1500
	drm_printf(m, "HWSP:\n");
1501
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1502

1503
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1504 1505

	intel_engine_print_breadcrumbs(engine, m);
1506 1507
}

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
static u8 user_class_map[] = {
	[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
	[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
	[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
	[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};

struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
	if (class >= ARRAY_SIZE(user_class_map))
		return NULL;

	class = user_class_map[class];

	GEM_BUG_ON(class > MAX_ENGINE_CLASS);

	if (instance > MAX_ENGINE_INSTANCE)
		return NULL;

	return i915->engine_class[class][instance];
}

1531 1532 1533 1534 1535 1536 1537 1538 1539 1540
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1541
	struct intel_engine_execlists *execlists = &engine->execlists;
1542
	unsigned long flags;
1543
	int err = 0;
1544

1545
	if (!intel_engine_supports_stats(engine))
1546 1547
		return -ENODEV;

1548 1549
	spin_lock_irqsave(&engine->timeline.lock, flags);
	write_seqlock(&engine->stats.lock);
1550 1551 1552 1553 1554 1555

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1556 1557 1558 1559
	if (engine->stats.enabled++ == 0) {
		const struct execlist_port *port = execlists->port;
		unsigned int num_ports = execlists_num_ports(execlists);

1560
		engine->stats.enabled_at = ktime_get();
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

		/* XXX submission method oblivious? */
		while (num_ports-- && port_isset(port)) {
			engine->stats.active++;
			port++;
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1571

1572
unlock:
1573 1574
	write_sequnlock(&engine->stats.lock);
	spin_unlock_irqrestore(&engine->timeline.lock, flags);
1575

1576
	return err;
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1602
	unsigned int seq;
1603 1604
	ktime_t total;

1605 1606 1607 1608
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1623
	if (!intel_engine_supports_stats(engine))
1624 1625
		return;

1626
	write_seqlock_irqsave(&engine->stats.lock, flags);
1627 1628 1629 1630 1631
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1632
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1633 1634
}

1635 1636
static bool match_ring(struct i915_request *rq)
{
1637
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;
	unsigned long flags;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
	spin_lock_irqsave(&engine->timeline.lock, flags);
	list_for_each_entry(request, &engine->timeline.requests, link) {
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
			break;

		/* More than one preemptible request may match! */
		if (!match_ring(request))
			break;

		active = request;
		break;
	}
	spin_unlock_irqrestore(&engine->timeline.lock, flags);

	return active;
}

1679
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1680
#include "selftest_engine_cs.c"
1681
#endif