intel_engine_cs.c 48.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_breadcrumbs.h"
32
#include "intel_context.h"
33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_user.h"
36
#include "intel_execlists_submission.h"
37 38
#include "intel_gt.h"
#include "intel_gt_requests.h"
39
#include "intel_gt_pm.h"
40
#include "intel_lrc_reg.h"
41
#include "intel_reset.h"
42
#include "intel_ring.h"
43

44 45 46 47 48 49 50 51 52
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

53
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
54 55
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
56
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
57
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
58 59 60

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

61
#define MAX_MMIO_BASES 3
62
struct engine_info {
63
	unsigned int hw_id;
64 65
	u8 class;
	u8 instance;
66 67 68 69 70
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
71 72 73
};

static const struct engine_info intel_engines[] = {
74 75
	[RCS0] = {
		.hw_id = RCS0_HW,
76 77
		.class = RENDER_CLASS,
		.instance = 0,
78 79 80
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
81
	},
82 83
	[BCS0] = {
		.hw_id = BCS0_HW,
84 85
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
86 87 88
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
89
	},
90 91
	[VCS0] = {
		.hw_id = VCS0_HW,
92 93
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
94 95 96 97 98
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
99
	},
100 101
	[VCS1] = {
		.hw_id = VCS1_HW,
102 103
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
104 105 106 107
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
108
	},
109 110
	[VCS2] = {
		.hw_id = VCS2_HW,
111 112
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
113 114 115
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
116
	},
117 118
	[VCS3] = {
		.hw_id = VCS3_HW,
119 120
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
121 122 123
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
124
	},
125 126
	[VECS0] = {
		.hw_id = VECS0_HW,
127 128
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
129 130 131 132
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
133
	},
134 135
	[VECS1] = {
		.hw_id = VECS1_HW,
136 137
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
138 139 140
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
141
	},
142 143
};

144
/**
145
 * intel_engine_context_size() - return the size of the context for an engine
146
 * @gt: the gt
147 148 149 150 151 152 153 154 155 156 157
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
158
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
159
{
160
	struct intel_uncore *uncore = gt->uncore;
161 162 163 164 165 166
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
167
		switch (INTEL_GEN(gt->i915)) {
168
		default:
169
			MISSING_CASE(INTEL_GEN(gt->i915));
170
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
171
		case 12:
172 173
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
174
		case 10:
O
Oscar Mateo 已提交
175
			return GEN10_LR_CONTEXT_RENDER_SIZE;
176 177 178
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
179
			return GEN8_LR_CONTEXT_RENDER_SIZE;
180
		case 7:
181
			if (IS_HASWELL(gt->i915))
182 183
				return HSW_CXT_TOTAL_SIZE;

184
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
185 186 187
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
188
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
189 190 191
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
192
		case 4:
193 194 195 196 197 198 199 200 201 202
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
203
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
204 205 206 207
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
208
			return round_up(cxt_size * 64, PAGE_SIZE);
209 210 211 212 213 214 215 216 217
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
218
		fallthrough;
219 220 221
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
222
		if (INTEL_GEN(gt->i915) < 8)
223 224 225 226 227
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

243
static void __sprint_engine_name(struct intel_engine_cs *engine)
244
{
245 246 247 248 249 250 251 252
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
253 254
}

255 256 257 258 259 260
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
261
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
262 263
		return;

264 265
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
266
	else
267
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
268 269 270 271 272 273 274 275
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

276
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
277 278
{
	const struct engine_info *info = &intel_engines[id];
279
	struct drm_i915_private *i915 = gt->i915;
280 281
	struct intel_engine_cs *engine;

282 283 284
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

285 286 287
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

288
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
289 290
		return -EINVAL;

291
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
292 293
		return -EINVAL;

294
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
295 296
		return -EINVAL;

297 298 299
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
300

301 302
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

303
	engine->id = id;
304
	engine->legacy_idx = INVALID_ENGINE;
305
	engine->mask = BIT(id);
306
	engine->i915 = i915;
307 308
	engine->gt = gt;
	engine->uncore = gt->uncore;
309
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310 311
	engine->hw_id = info->hw_id;
	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
312

313 314
	engine->class = info->class;
	engine->instance = info->instance;
315
	__sprint_engine_name(engine);
316

317 318
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
319 320
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
321 322
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
323 324
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
325 326
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
327

328 329 330 331
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

332 333
	engine->defaults = engine->props; /* never to change again */

334
	engine->context_size = intel_engine_context_size(gt, engine->class);
335 336
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
337
	if (engine->context_size)
338
		DRIVER_CAPS(i915)->has_logical_contexts = true;
339

340 341 342
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

343
	ewma__engine_latency_init(&engine->latency);
344
	seqlock_init(&engine->stats.lock);
345

346 347
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

348 349 350
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

351
	gt->engine_class[info->class][info->instance] = engine;
352
	gt->engine[id] = engine;
353

354
	return 0;
355 356
}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
376 377
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
378 379 380 381 382 383 384 385 386 387
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

388
static void intel_setup_engine_capabilities(struct intel_gt *gt)
389 390 391 392
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

393
	for_each_engine(engine, gt, id)
394 395 396
		__setup_engine_capabilities(engine);
}

397
/**
398
 * intel_engines_release() - free the resources allocated for Command Streamers
399
 * @gt: pointer to struct intel_gt
400
 */
401
void intel_engines_release(struct intel_gt *gt)
402 403 404 405
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

406 407 408 409 410 411 412 413 414 415 416 417 418
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

419
	/* Decouple the backend; but keep the layout for late GPU resets */
420
	for_each_engine(engine, gt, id) {
421 422 423
		if (!engine->release)
			continue;

424 425 426
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

427 428 429 430
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
431 432 433
	}
}

434 435 436 437 438 439 440 441
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

442 443 444 445 446
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

447 448 449
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

450
	for_each_engine(engine, gt, id) {
451
		intel_engine_free_request_pool(engine);
452 453 454 455 456
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

457 458 459 460 461 462 463 464 465 466 467 468 469
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
470
	struct intel_gt_info *info = &gt->info;
471 472 473 474 475 476 477
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

478 479
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
507
			gt->info.vdbox_sfc_access |= BIT(i);
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

531
/**
532
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
533
 * @gt: pointer to struct intel_gt
534 535 536
 *
 * Return: non-zero if the initialization failed.
 */
537
int intel_engines_init_mmio(struct intel_gt *gt)
538
{
539
	struct drm_i915_private *i915 = gt->i915;
540
	const unsigned int engine_mask = init_engine_mask(gt);
541
	unsigned int mask = 0;
542
	unsigned int i;
543
	int err;
544

545 546 547
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
548

549
	if (i915_inject_probe_failure(i915))
550 551
		return -ENODEV;

552
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
553
		if (!HAS_ENGINE(gt, i))
554 555
			continue;

556
		err = intel_engine_setup(gt, i);
557 558 559
		if (err)
			goto cleanup;

560
		mask |= BIT(i);
561 562 563 564 565 566 567
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
568
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
569
		gt->info.engine_mask = mask;
570

571
	gt->info.num_engines = hweight32(mask);
572

573
	intel_gt_check_and_clear_faults(gt);
574

575
	intel_setup_engine_capabilities(gt);
576

577 578
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

579 580 581
	return 0;

cleanup:
582
	intel_engines_free(gt);
583 584 585
	return err;
}

586
void intel_engine_init_execlists(struct intel_engine_cs *engine)
587 588 589
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

590
	execlists->port_mask = 1;
591
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
592 593
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

594 595 596 597
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

598
	execlists->queue_priority_hint = INT_MIN;
599
	execlists->queue = RB_ROOT_CACHED;
600 601
}

602
static void cleanup_status_page(struct intel_engine_cs *engine)
603
{
604 605
	struct i915_vma *vma;

606 607 608
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

609 610 611
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
612

613 614 615 616
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
617
	i915_gem_object_put(vma->obj);
618 619 620 621 622 623 624
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

625
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
626 627 628 629 630 631 632 633 634 635 636
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
637
		flags = PIN_MAPPABLE;
638
	else
639
		flags = PIN_HIGH;
640

641
	return i915_ggtt_pin(vma, NULL, 0, flags);
642 643 644 645 646 647 648 649 650
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

651 652
	INIT_LIST_HEAD(&engine->status_page.timelines);

653 654 655 656 657 658 659
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
660 661
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
662 663
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
664 665 666
		return PTR_ERR(obj);
	}

667
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
668

669
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
670 671 672 673 674 675 676 677
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
678
		goto err;
679 680
	}

681
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
682
	engine->status_page.vma = vma;
683 684 685 686 687 688 689

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

690 691 692
	return 0;

err_unpin:
693
	i915_gem_object_unpin_map(obj);
694 695 696 697 698
err:
	i915_gem_object_put(obj);
	return ret;
}

699
static int engine_setup_common(struct intel_engine_cs *engine)
700 701 702
{
	int err;

703 704
	init_llist_head(&engine->barrier_tasks);

705 706 707 708
	err = init_status_page(engine);
	if (err)
		return err;

709 710 711 712 713 714
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

715
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
716
	intel_engine_init_execlists(engine);
717
	intel_engine_init_cmd_parser(engine);
718
	intel_engine_init__pm(engine);
719
	intel_engine_init_retire(engine);
720

721 722
	/* Use the whole device by default */
	engine->sseu =
723
		intel_sseu_from_device_info(&engine->gt->info.sseu);
724

725 726 727 728
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

729
	return 0;
730 731 732 733

err_status:
	cleanup_status_page(engine);
	return err;
734 735
}

736 737 738
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
739
	u32 cs[2048];
740 741
};

742
static int measure_breadcrumb_dw(struct intel_context *ce)
743
{
744
	struct intel_engine_cs *engine = ce->engine;
745
	struct measure_breadcrumb *frame;
746
	int dw;
747

748
	GEM_BUG_ON(!engine->gt->scratch);
749 750 751 752 753

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

754 755 756
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
757

758 759
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
760 761
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
762 763 764
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
765

766
	mutex_lock(&ce->timeline->mutex);
767
	spin_lock_irq(&engine->active.lock);
768

769
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
770

771
	spin_unlock_irq(&engine->active.lock);
772
	mutex_unlock(&ce->timeline->mutex);
773

774
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
775

776
	kfree(frame);
777 778 779
	return dw;
}

780 781 782 783
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
784
	INIT_LIST_HEAD(&engine->active.hold);
785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

802
static struct intel_context *
803 804 805 806
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
807 808 809 810
{
	struct intel_context *ce;
	int err;

811
	ce = intel_context_create(engine);
812 813 814
	if (IS_ERR(ce))
		return ce;

815
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
816
	ce->timeline = page_pack_bits(NULL, hwsp);
817

818
	err = intel_context_pin(ce); /* perma-pin so it is always available */
819 820 821 822 823
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

824 825 826 827 828 829
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
830
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
831

832 833 834
	return ce;
}

835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
static void destroy_pinned_context(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

850 851 852 853 854 855 856 857 858
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

859 860 861 862 863 864 865 866 867 868 869
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
870
static int engine_init_common(struct intel_engine_cs *engine)
871
{
872
	struct intel_context *ce;
873 874
	int ret;

875 876
	engine->set_default_submission(engine);

877 878
	/*
	 * We may need to do things with the shrinker which
879 880 881 882 883 884
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
885 886 887 888
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

889 890 891 892 893
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
894
	engine->kernel_context = ce;
895

896
	return 0;
897 898 899 900

err_context:
	intel_context_put(ce);
	return ret;
901
}
902

903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

934 935 936 937 938 939 940 941 942
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
943
	GEM_BUG_ON(!list_empty(&engine->active.requests));
944
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
945

946
	intel_breadcrumbs_free(engine->breadcrumbs);
947

948
	intel_engine_fini_retire(engine);
949
	intel_engine_cleanup_cmd_parser(engine);
950

951
	if (engine->default_state)
952
		fput(engine->default_state);
953

954 955 956
	if (engine->kernel_context)
		destroy_pinned_context(engine->kernel_context);

957
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
958
	cleanup_status_page(engine);
959

960
	intel_wa_list_free(&engine->ctx_wa_list);
961
	intel_wa_list_free(&engine->wa_list);
962
	intel_wa_list_free(&engine->whitelist);
963
}
964

965 966 967 968 969 970 971 972 973 974 975 976 977 978
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

979
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
980
{
981 982
	struct drm_i915_private *i915 = engine->i915;

983 984
	u64 acthd;

985 986 987 988
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
989
	else
990
		acthd = ENGINE_READ(engine, ACTHD);
991 992 993 994

	return acthd;
}

995
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
996 997 998
{
	u64 bbaddr;

999 1000
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1001
	else
1002
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1003 1004 1005

	return bbaddr;
}
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1022 1023
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
1024
	struct intel_uncore *uncore = engine->uncore;
1025 1026 1027 1028
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

1029
	if (INTEL_GEN(engine->i915) < 3)
1030 1031
		return -ENODEV;

1032
	ENGINE_TRACE(engine, "\n");
1033

1034
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1035 1036

	err = 0;
1037
	if (__intel_wait_for_register_fw(uncore,
1038
					 mode, MODE_IDLE, MODE_IDLE,
1039
					 1000, stop_timeout(engine),
1040
					 NULL)) {
1041
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1042 1043 1044 1045
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1046
	intel_uncore_posting_read_fw(uncore, mode);
1047 1048 1049 1050

	return err;
}

1051 1052
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1053
	ENGINE_TRACE(engine, "\n");
1054

1055
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1056 1057
}

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1069
static u32
1070 1071
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1072
{
1073 1074
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1075
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1076 1077
	enum forcewake_domains fw_domains;

1078
	if (INTEL_GEN(i915) >= 11) {
1079 1080
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1081
	} else {
1082 1083
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1084 1085
	}

1086
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1087
						    FW_REG_READ);
1088
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1089 1090 1091
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1092 1093
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1094

1095
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1096

1097 1098
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1099
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1100

1101
	val = intel_uncore_read_fw(uncore, reg);
1102

1103 1104
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1105

1106
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1107

1108 1109
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1110

1111
	return val;
1112 1113 1114
}

/* NB: please notice the memset */
1115
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1116 1117
			       struct intel_instdone *instdone)
{
1118
	struct drm_i915_private *i915 = engine->i915;
1119
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1120
	struct intel_uncore *uncore = engine->uncore;
1121 1122 1123 1124 1125 1126
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1127
	switch (INTEL_GEN(i915)) {
1128
	default:
1129 1130
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1131

1132
		if (engine->id != RCS0)
1133 1134
			break;

1135 1136
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1137 1138 1139 1140 1141 1142
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1143
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1144
			instdone->sampler[slice][subslice] =
1145
				read_subslice_reg(engine, slice, subslice,
1146 1147
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1148
				read_subslice_reg(engine, slice, subslice,
1149 1150 1151 1152
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1153 1154
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1155

1156
		if (engine->id != RCS0)
1157 1158
			break;

1159 1160 1161 1162 1163 1164
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1165 1166 1167 1168 1169

		break;
	case 6:
	case 5:
	case 4:
1170 1171
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1172
		if (engine->id == RCS0)
1173
			/* HACK: Using the wrong struct member */
1174 1175
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1176 1177 1178
		break;
	case 3:
	case 2:
1179
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1180 1181 1182
		break;
	}
}
1183

1184 1185 1186 1187
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1188 1189 1190
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1191
	if (!intel_engine_pm_get_if_awake(engine))
1192
		return true;
1193

1194
	/* First check that no commands are left in the ring */
1195 1196
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1197
		idle = false;
1198

1199
	/* No bit for gen2, so assume the CS parser is idle */
1200
	if (INTEL_GEN(engine->i915) > 2 &&
1201
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1202 1203
		idle = false;

1204
	intel_engine_pm_put(engine);
1205 1206 1207 1208

	return idle;
}

1209
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1210 1211 1212
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1213 1214 1215
	if (!t->func)
		return;

1216 1217 1218 1219 1220 1221
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1222
	}
1223
	local_bh_enable();
1224 1225 1226 1227

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1239
	/* More white lies, if wedged, hw state is inconsistent */
1240
	if (intel_gt_is_wedged(engine->gt))
1241 1242
		return true;

1243
	if (!intel_engine_pm_is_awake(engine))
1244 1245
		return true;

1246
	/* Waiting to drain ELSP? */
1247
	if (execlists_active(&engine->execlists)) {
1248
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1249

1250
		intel_engine_flush_submission(engine);
1251

1252
		if (execlists_active(&engine->execlists))
1253 1254
			return false;
	}
1255

1256
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1257
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1258 1259
		return false;

1260
	/* Ring stopped? */
1261
	return ring_is_idle(engine);
1262 1263
}

1264
bool intel_engines_are_idle(struct intel_gt *gt)
1265 1266 1267 1268
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1269 1270
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1271 1272
	 * report that it is still busy, even though we have stopped using it.
	 */
1273
	if (intel_gt_is_wedged(gt))
1274 1275
		return true;

1276
	/* Already parked (and passed an idleness test); must still be idle */
1277
	if (!READ_ONCE(gt->awake))
1278 1279
		return true;

1280
	for_each_engine(engine, gt, id) {
1281 1282 1283 1284 1285 1286 1287
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1288
void intel_engines_reset_default_submission(struct intel_gt *gt)
1289 1290 1291 1292
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1293 1294 1295 1296
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1297
		engine->set_default_submission(engine);
1298
	}
1299 1300
}

1301 1302 1303 1304 1305 1306 1307 1308
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1309 1310
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1311 1312 1313 1314 1315 1316 1317
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1383
		drm_printf(m, "[%04zx] %s\n", pos, line);
1384 1385 1386 1387 1388 1389

		prev = buf + pos;
		skip = false;
	}
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1401
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1402
					 struct drm_printer *m)
1403 1404
{
	struct drm_i915_private *dev_priv = engine->i915;
1405
	struct intel_engine_execlists * const execlists = &engine->execlists;
1406 1407
	u64 addr;

1408
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1409
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1410 1411 1412 1413 1414 1415
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1416
	drm_printf(m, "\tRING_START: 0x%08x\n",
1417
		   ENGINE_READ(engine, RING_START));
1418
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1419
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1420
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1421
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1422
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1423 1424
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1425 1426
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1427 1428
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1429
	}
1430 1431

	if (INTEL_GEN(dev_priv) >= 6) {
1432
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1433
			   ENGINE_READ(engine, RING_IMR));
1434 1435 1436 1437 1438 1439
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1440 1441
	}

1442 1443 1444 1445 1446 1447
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1448
	if (INTEL_GEN(dev_priv) >= 8)
1449
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1450
	else if (INTEL_GEN(dev_priv) >= 4)
1451
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1452
	else
1453
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1454 1455 1456 1457
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1458
			   ENGINE_READ(engine, RING_IPEIR));
1459
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1460
			   ENGINE_READ(engine, RING_IPEHR));
1461
	} else {
1462 1463
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1464
	}
1465

1466
	if (HAS_EXECLISTS(dev_priv)) {
1467
		struct i915_request * const *port, *rq;
1468 1469
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1470
		const u8 num_entries = execlists->csb_size;
1471
		unsigned int idx;
1472
		u8 read, write;
1473

1474
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1475 1476 1477
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1478
			   repr_timer(&engine->execlists.preempt),
1479
			   repr_timer(&engine->execlists.timer));
1480

1481 1482 1483
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1484 1485 1486 1487 1488
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1489
		if (read >= num_entries)
1490
			read = 0;
1491
		if (write >= num_entries)
1492 1493
			write = 0;
		if (read > write)
1494
			write += num_entries;
1495
		while (read < write) {
1496 1497 1498
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1499 1500
		}

1501
		execlists_active_lock_bh(execlists);
1502
		rcu_read_lock();
1503
		for (port = execlists->active; (rq = *port); port++) {
1504
			char hdr[160];
1505 1506
			int len;

1507
			len = scnprintf(hdr, sizeof(hdr),
1508
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1509
					(int)(port - execlists->active),
1510 1511 1512
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1513
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1514
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1515
			i915_request_show(m, rq, hdr, 0);
1516 1517
		}
		for (port = execlists->pending; (rq = *port); port++) {
1518 1519
			char hdr[160];
			int len;
1520

1521
			len = scnprintf(hdr, sizeof(hdr),
1522
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1523
					(int)(port - execlists->pending),
1524 1525 1526
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1527 1528
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1529
			i915_request_show(m, rq, hdr, 0);
1530
		}
1531
		rcu_read_unlock();
1532
		execlists_active_unlock_bh(execlists);
1533 1534
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1535
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1536
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1537
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1538
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1539
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1540
	}
1541 1542
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1622 1623 1624 1625 1626
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1627
	struct i915_request *rq;
1628
	intel_wakeref_t wakeref;
1629
	unsigned long flags;
1630
	ktime_t dummy;
1631 1632 1633 1634 1635 1636 1637 1638 1639

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1640
	if (intel_gt_is_wedged(engine->gt))
1641 1642
		drm_printf(m, "*** WEDGED ***\n");

1643
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1644 1645
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1646 1647
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1648 1649 1650 1651
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1652 1653
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
		   engine->fw_domain, atomic_read(&engine->fw_active));
1654 1655 1656 1657 1658 1659 1660

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1661 1662 1663
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1664
	print_properties(engine, m);
1665 1666 1667

	drm_printf(m, "\tRequests:\n");

1668
	spin_lock_irqsave(&engine->active.lock, flags);
1669
	rq = intel_engine_find_active_request(engine);
1670
	if (rq) {
1671 1672
		struct intel_timeline *tl = get_timeline(rq);

1673
		i915_request_show(m, rq, "\t\tactive ", 0);
1674

1675
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1676
			   i915_ggtt_offset(rq->ring->vma));
1677
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1678
			   rq->ring->head);
1679
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1680
			   rq->ring->tail);
1681 1682 1683 1684
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1685 1686 1687 1688 1689 1690

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1691 1692

		print_request_ring(m, rq);
1693

1694
		if (rq->context->lrc_reg_state) {
1695
			drm_printf(m, "Logical Ring Context:\n");
1696
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1697
		}
1698
	}
1699
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1700
	spin_unlock_irqrestore(&engine->active.lock, flags);
1701

1702
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1703
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1704
	if (wakeref) {
1705
		intel_engine_print_registers(engine, m);
1706
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1707 1708 1709
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1710

C
Chris Wilson 已提交
1711
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1712

1713
	drm_printf(m, "HWSP:\n");
1714
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1715

1716
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1717 1718

	intel_engine_print_breadcrumbs(engine, m);
1719 1720
}

1721 1722
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1723 1724 1725 1726 1727 1728 1729
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1730
	*now = ktime_get();
1731
	if (atomic_read(&engine->stats.active))
1732
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1733 1734 1735 1736 1737 1738 1739

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1740
 * @now: monotonic timestamp of sampling
1741 1742 1743
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1744
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1745
{
1746
	unsigned int seq;
1747 1748
	ktime_t total;

1749 1750
	do {
		seq = read_seqbegin(&engine->stats.lock);
1751
		total = __intel_engine_get_busy_time(engine, now);
1752
	} while (read_seqretry(&engine->stats.lock, seq));
1753 1754 1755 1756

	return total;
}

1757 1758
static bool match_ring(struct i915_request *rq)
{
1759
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1780
	lockdep_assert_held(&engine->active.lock);
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1798
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1799 1800 1801 1802
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1803
			continue;
1804 1805 1806

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1807
			continue;
1808 1809 1810 1811 1812 1813 1814 1815

		active = request;
		break;
	}

	return active;
}

1816
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1817
#include "mock_engine.c"
1818
#include "selftest_engine.c"
1819
#include "selftest_engine_cs.c"
1820
#endif