intel_engine_cs.c 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_breadcrumbs.h"
32
#include "intel_context.h"
33
#include "intel_engine.h"
34
#include "intel_engine_pm.h"
35
#include "intel_engine_user.h"
36
#include "intel_execlists_submission.h"
37 38
#include "intel_gt.h"
#include "intel_gt_requests.h"
39
#include "intel_gt_pm.h"
40
#include "intel_lrc_reg.h"
41
#include "intel_reset.h"
42
#include "intel_ring.h"
43
#include "uc/intel_guc_submission.h"
44

45 46 47 48 49 50 51 52 53
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

54
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 56
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
57
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
58
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
59 60 61

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

62
#define MAX_MMIO_BASES 3
63
struct engine_info {
64
	unsigned int hw_id;
65 66
	u8 class;
	u8 instance;
67 68 69 70 71
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
72 73 74
};

static const struct engine_info intel_engines[] = {
75 76
	[RCS0] = {
		.hw_id = RCS0_HW,
77 78
		.class = RENDER_CLASS,
		.instance = 0,
79 80 81
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
82
	},
83 84
	[BCS0] = {
		.hw_id = BCS0_HW,
85 86
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
87 88 89
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
90
	},
91 92
	[VCS0] = {
		.hw_id = VCS0_HW,
93 94
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
95 96 97 98 99
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
100
	},
101 102
	[VCS1] = {
		.hw_id = VCS1_HW,
103 104
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
105 106 107 108
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
109
	},
110 111
	[VCS2] = {
		.hw_id = VCS2_HW,
112 113
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
114 115 116
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
117
	},
118 119
	[VCS3] = {
		.hw_id = VCS3_HW,
120 121
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
122 123 124
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
125
	},
126 127
	[VECS0] = {
		.hw_id = VECS0_HW,
128 129
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
130 131 132 133
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
134
	},
135 136
	[VECS1] = {
		.hw_id = VECS1_HW,
137 138
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
139 140 141
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
142
	},
143 144
};

145
/**
146
 * intel_engine_context_size() - return the size of the context for an engine
147
 * @gt: the gt
148 149 150 151 152 153 154 155 156 157 158
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
159
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
160
{
161
	struct intel_uncore *uncore = gt->uncore;
162 163 164 165 166 167
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
168
		switch (INTEL_GEN(gt->i915)) {
169
		default:
170
			MISSING_CASE(INTEL_GEN(gt->i915));
171
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
172
		case 12:
173 174
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
175
		case 10:
O
Oscar Mateo 已提交
176
			return GEN10_LR_CONTEXT_RENDER_SIZE;
177 178 179
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
180
			return GEN8_LR_CONTEXT_RENDER_SIZE;
181
		case 7:
182
			if (IS_HASWELL(gt->i915))
183 184
				return HSW_CXT_TOTAL_SIZE;

185
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
186 187 188
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
189
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
190 191 192
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
193
		case 4:
194 195 196 197 198 199 200 201 202 203
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
204
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
205 206 207 208
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
209
			return round_up(cxt_size * 64, PAGE_SIZE);
210 211 212 213 214 215 216 217 218
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
219
		fallthrough;
220 221 222
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
223
		if (INTEL_GEN(gt->i915) < 8)
224 225 226 227 228
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

244
static void __sprint_engine_name(struct intel_engine_cs *engine)
245
{
246 247 248 249 250 251 252 253
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
254 255
}

256 257 258 259 260 261
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
262
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
263 264
		return;

265 266
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
267
	else
268
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
269 270 271 272 273 274 275 276
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

277
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
278 279
{
	const struct engine_info *info = &intel_engines[id];
280
	struct drm_i915_private *i915 = gt->i915;
281 282
	struct intel_engine_cs *engine;

283 284 285
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

286 287 288
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
293 294
		return -EINVAL;

295
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
296 297
		return -EINVAL;

298 299 300
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
301

302 303
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

304
	engine->id = id;
305
	engine->legacy_idx = INVALID_ENGINE;
306
	engine->mask = BIT(id);
307
	engine->i915 = i915;
308 309
	engine->gt = gt;
	engine->uncore = gt->uncore;
310
	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
311 312
	engine->hw_id = info->hw_id;
	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
313

314 315
	engine->class = info->class;
	engine->instance = info->instance;
316
	__sprint_engine_name(engine);
317

318 319
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
320 321
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
322 323
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
324 325
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
326 327
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
328

329 330 331 332
	/* Override to uninterruptible for OpenCL workloads. */
	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
		engine->props.preempt_timeout_ms = 0;

333 334
	engine->defaults = engine->props; /* never to change again */

335
	engine->context_size = intel_engine_context_size(gt, engine->class);
336 337
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
338
	if (engine->context_size)
339
		DRIVER_CAPS(i915)->has_logical_contexts = true;
340

341 342 343
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

344
	ewma__engine_latency_init(&engine->latency);
345
	seqcount_init(&engine->stats.lock);
346

347 348
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

349 350 351
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

352
	gt->engine_class[info->class][info->instance] = engine;
353
	gt->engine[id] = engine;
354

355
	return 0;
356 357
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
377 378
		     (engine->gt->info.vdbox_sfc_access &
		      BIT(engine->instance))) ||
379 380 381 382 383 384 385 386 387 388
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

389
static void intel_setup_engine_capabilities(struct intel_gt *gt)
390 391 392 393
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

394
	for_each_engine(engine, gt, id)
395 396 397
		__setup_engine_capabilities(engine);
}

398
/**
399
 * intel_engines_release() - free the resources allocated for Command Streamers
400
 * @gt: pointer to struct intel_gt
401
 */
402
void intel_engines_release(struct intel_gt *gt)
403 404 405 406
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

407 408 409 410 411 412 413 414 415 416 417 418 419
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

420
	/* Decouple the backend; but keep the layout for late GPU resets */
421
	for_each_engine(engine, gt, id) {
422 423 424
		if (!engine->release)
			continue;

425 426 427
		intel_wakeref_wait_for_idle(&engine->wakeref);
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

428 429 430 431
		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));
432 433 434
	}
}

435 436 437 438 439 440 441 442
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
	if (!engine->request_pool)
		return;

	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}

443 444 445 446 447
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

448 449 450
	/* Free the requests! dma-resv keeps fences around for an eternity */
	rcu_barrier();

451
	for_each_engine(engine, gt, id) {
452
		intel_engine_free_request_pool(engine);
453 454 455 456 457
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

458 459 460 461 462 463 464 465 466 467 468 469 470
/*
 * Determine which engines are fused off in our particular hardware.
 * Note that we have a catch-22 situation where we need to be able to access
 * the blitter forcewake domain to read the engine fuses, but at the same time
 * we need to know which engines are available on the system to know which
 * forcewake domains are present. We solve this by intializing the forcewake
 * domains based on the full engine mask in the platform capabilities before
 * calling this function and pruning the domains for fused-off engines
 * afterwards.
 */
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
	struct drm_i915_private *i915 = gt->i915;
471
	struct intel_gt_info *info = &gt->info;
472 473 474 475 476 477 478
	struct intel_uncore *uncore = gt->uncore;
	unsigned int logical_vdbox = 0;
	unsigned int i;
	u32 media_fuse;
	u16 vdbox_mask;
	u16 vebox_mask;

479 480
	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
	if (INTEL_GEN(i915) < 11)
		return info->engine_mask;

	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);

	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
		      GEN11_GT_VEBOX_DISABLE_SHIFT;

	for (i = 0; i < I915_MAX_VCS; i++) {
		if (!HAS_ENGINE(gt, _VCS(i))) {
			vdbox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vdbox_mask)) {
			info->engine_mask &= ~BIT(_VCS(i));
			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
			continue;
		}

		/*
		 * In Gen11, only even numbered logical VDBOXes are
		 * hooked up to an SFC (Scaler & Format Converter) unit.
		 * In TGL each VDBOX has access to an SFC.
		 */
		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
508
			gt->info.vdbox_sfc_access |= BIT(i);
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
	}
	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
		vdbox_mask, VDBOX_MASK(gt));
	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));

	for (i = 0; i < I915_MAX_VECS; i++) {
		if (!HAS_ENGINE(gt, _VECS(i))) {
			vebox_mask &= ~BIT(i);
			continue;
		}

		if (!(BIT(i) & vebox_mask)) {
			info->engine_mask &= ~BIT(_VECS(i));
			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
		}
	}
	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
		vebox_mask, VEBOX_MASK(gt));
	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));

	return info->engine_mask;
}

532
/**
533
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
534
 * @gt: pointer to struct intel_gt
535 536 537
 *
 * Return: non-zero if the initialization failed.
 */
538
int intel_engines_init_mmio(struct intel_gt *gt)
539
{
540
	struct drm_i915_private *i915 = gt->i915;
541
	const unsigned int engine_mask = init_engine_mask(gt);
542
	unsigned int mask = 0;
543
	unsigned int i;
544
	int err;
545

546 547 548
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
549

550
	if (i915_inject_probe_failure(i915))
551 552
		return -ENODEV;

553
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
554
		if (!HAS_ENGINE(gt, i))
555 556
			continue;

557
		err = intel_engine_setup(gt, i);
558 559 560
		if (err)
			goto cleanup;

561
		mask |= BIT(i);
562 563 564 565 566 567 568
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
569
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
570
		gt->info.engine_mask = mask;
571

572
	gt->info.num_engines = hweight32(mask);
573

574
	intel_gt_check_and_clear_faults(gt);
575

576
	intel_setup_engine_capabilities(gt);
577

578 579
	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);

580 581 582
	return 0;

cleanup:
583
	intel_engines_free(gt);
584 585 586
	return err;
}

587
void intel_engine_init_execlists(struct intel_engine_cs *engine)
588 589 590
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

591
	execlists->port_mask = 1;
592
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
593 594
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

595 596 597 598
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

599
	execlists->queue_priority_hint = INT_MIN;
600
	execlists->queue = RB_ROOT_CACHED;
601 602
}

603
static void cleanup_status_page(struct intel_engine_cs *engine)
604
{
605 606
	struct i915_vma *vma;

607 608 609
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

610 611 612
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
613

614 615 616 617
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
618
	i915_gem_object_put(vma->obj);
619 620 621 622 623 624 625
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

626
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
627 628 629 630 631 632 633 634 635 636 637
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
638
		flags = PIN_MAPPABLE;
639
	else
640
		flags = PIN_HIGH;
641

642
	return i915_ggtt_pin(vma, NULL, 0, flags);
643 644 645 646 647 648 649 650 651
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

652 653
	INIT_LIST_HEAD(&engine->status_page.timelines);

654 655 656 657 658 659 660
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
661 662
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
663 664
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
665 666 667
		return PTR_ERR(obj);
	}

668
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
669

670
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
671 672 673 674 675 676 677 678
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
679
		goto err;
680 681
	}

682
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
683
	engine->status_page.vma = vma;
684 685 686 687 688 689 690

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

691 692 693
	return 0;

err_unpin:
694
	i915_gem_object_unpin_map(obj);
695 696 697 698 699
err:
	i915_gem_object_put(obj);
	return ret;
}

700
static int engine_setup_common(struct intel_engine_cs *engine)
701 702 703
{
	int err;

704 705
	init_llist_head(&engine->barrier_tasks);

706 707 708 709
	err = init_status_page(engine);
	if (err)
		return err;

710 711 712 713 714 715
	engine->breadcrumbs = intel_breadcrumbs_create(engine);
	if (!engine->breadcrumbs) {
		err = -ENOMEM;
		goto err_status;
	}

716
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
717
	intel_engine_init_execlists(engine);
718
	intel_engine_init_cmd_parser(engine);
719
	intel_engine_init__pm(engine);
720
	intel_engine_init_retire(engine);
721

722 723
	/* Use the whole device by default */
	engine->sseu =
724
		intel_sseu_from_device_info(&engine->gt->info.sseu);
725

726 727 728 729
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

730 731 732
	if (INTEL_GEN(engine->i915) >= 12)
		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;

733
	return 0;
734 735 736 737

err_status:
	cleanup_status_page(engine);
	return err;
738 739
}

740 741 742
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
743
	u32 cs[2048];
744 745
};

746
static int measure_breadcrumb_dw(struct intel_context *ce)
747
{
748
	struct intel_engine_cs *engine = ce->engine;
749
	struct measure_breadcrumb *frame;
750
	int dw;
751

752
	GEM_BUG_ON(!engine->gt->scratch);
753 754 755 756 757

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

758 759 760
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
761

762 763
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
764 765
	frame->ring.wrap =
		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
766 767 768
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
769

770
	mutex_lock(&ce->timeline->mutex);
771
	spin_lock_irq(&engine->active.lock);
772

773
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
774

775
	spin_unlock_irq(&engine->active.lock);
776
	mutex_unlock(&ce->timeline->mutex);
777

778
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
779

780
	kfree(frame);
781 782 783
	return dw;
}

784 785 786 787
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
788
	INIT_LIST_HEAD(&engine->active.hold);
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

806
static struct intel_context *
807 808 809 810
create_pinned_context(struct intel_engine_cs *engine,
		      unsigned int hwsp,
		      struct lock_class_key *key,
		      const char *name)
811 812 813 814
{
	struct intel_context *ce;
	int err;

815
	ce = intel_context_create(engine);
816 817 818
	if (IS_ERR(ce))
		return ce;

819
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
820
	ce->timeline = page_pack_bits(NULL, hwsp);
821

822
	err = intel_context_pin(ce); /* perma-pin so it is always available */
823 824 825 826 827
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

828 829 830 831 832 833
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
834
	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
835

836 837 838
	return ce;
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
static void destroy_pinned_context(struct intel_context *ce)
{
	struct intel_engine_cs *engine = ce->engine;
	struct i915_vma *hwsp = engine->status_page.vma;

	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);

	mutex_lock(&hwsp->vm->mutex);
	list_del(&ce->timeline->engine_link);
	mutex_unlock(&hwsp->vm->mutex);

	intel_context_unpin(ce);
	intel_context_put(ce);
}

854 855 856 857 858 859 860 861 862
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
	static struct lock_class_key kernel;

	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
				     &kernel, "kernel_context");
}

863 864 865 866 867 868 869 870 871 872 873
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
874
static int engine_init_common(struct intel_engine_cs *engine)
875
{
876
	struct intel_context *ce;
877 878
	int ret;

879 880
	engine->set_default_submission(engine);

881 882
	/*
	 * We may need to do things with the shrinker which
883 884 885 886 887 888
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
889 890 891 892
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

893 894 895 896 897
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
898
	engine->kernel_context = ce;
899

900
	return 0;
901 902 903 904

err_context:
	intel_context_put(ce);
	return ret;
905
}
906

907 908 909 910 911 912 913
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

914 915 916
	if (intel_uc_uses_guc_submission(&gt->uc))
		setup = intel_guc_submission_setup;
	else if (HAS_EXECLISTS(gt->i915))
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

940 941 942 943 944 945 946 947 948
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
949
	GEM_BUG_ON(!list_empty(&engine->active.requests));
950
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
951

952
	intel_breadcrumbs_free(engine->breadcrumbs);
953

954
	intel_engine_fini_retire(engine);
955
	intel_engine_cleanup_cmd_parser(engine);
956

957
	if (engine->default_state)
958
		fput(engine->default_state);
959

960 961 962
	if (engine->kernel_context)
		destroy_pinned_context(engine->kernel_context);

963
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
964
	cleanup_status_page(engine);
965

966
	intel_wa_list_free(&engine->ctx_wa_list);
967
	intel_wa_list_free(&engine->wa_list);
968
	intel_wa_list_free(&engine->whitelist);
969
}
970

971 972 973 974 975 976 977 978 979 980 981 982 983 984
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

985
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
986
{
987 988
	struct drm_i915_private *i915 = engine->i915;

989 990
	u64 acthd;

991 992 993 994
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
995
	else
996
		acthd = ENGINE_READ(engine, ACTHD);
997 998 999 1000

	return acthd;
}

1001
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1002 1003 1004
{
	u64 bbaddr;

1005 1006
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1007
	else
1008
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1009 1010 1011

	return bbaddr;
}
1012

1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

1028 1029 1030
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
				  int fast_timeout_us,
				  int slow_timeout_ms)
1031
{
1032
	struct intel_uncore *uncore = engine->uncore;
1033
	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1034 1035
	int err;

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
	err = __intel_wait_for_register_fw(engine->uncore, mode,
					   MODE_IDLE, MODE_IDLE,
					   fast_timeout_us,
					   slow_timeout_ms,
					   NULL);

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
	intel_uncore_posting_read_fw(uncore, mode);
	return err;
}

int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
	int err = 0;

1052
	if (INTEL_GEN(engine->i915) < 3)
1053 1054
		return -ENODEV;

1055
	ENGINE_TRACE(engine, "\n");
1056
	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
		ENGINE_TRACE(engine,
			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);

		/*
		 * Sometimes we observe that the idle flag is not
		 * set even though the ring is empty. So double
		 * check before giving up.
		 */
		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
			err = -ETIMEDOUT;
1070 1071 1072 1073 1074
	}

	return err;
}

1075 1076
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
1077
	ENGINE_TRACE(engine, "\n");
1078

1079
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

1093
static u32
1094 1095
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
1096
{
1097 1098
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
1099
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1100 1101
	enum forcewake_domains fw_domains;

1102
	if (INTEL_GEN(i915) >= 11) {
1103 1104
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1105
	} else {
1106 1107
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1108 1109
	}

1110
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1111
						    FW_REG_READ);
1112
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1113 1114 1115
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

1116 1117
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1118

1119
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1120

1121 1122
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
1123
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1124

1125
	val = intel_uncore_read_fw(uncore, reg);
1126

1127 1128
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
1129

1130
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1131

1132 1133
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
1134

1135
	return val;
1136 1137 1138
}

/* NB: please notice the memset */
1139
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1140 1141
			       struct intel_instdone *instdone)
{
1142
	struct drm_i915_private *i915 = engine->i915;
1143
	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1144
	struct intel_uncore *uncore = engine->uncore;
1145 1146 1147 1148 1149 1150
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

1151
	switch (INTEL_GEN(i915)) {
1152
	default:
1153 1154
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1155

1156
		if (engine->id != RCS0)
1157 1158
			break;

1159 1160
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1161 1162 1163 1164 1165 1166
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1167
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1168
			instdone->sampler[slice][subslice] =
1169
				read_subslice_reg(engine, slice, subslice,
1170 1171
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1172
				read_subslice_reg(engine, slice, subslice,
1173 1174 1175 1176
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1177 1178
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1179

1180
		if (engine->id != RCS0)
1181 1182
			break;

1183 1184 1185 1186 1187 1188
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1189 1190 1191 1192 1193

		break;
	case 6:
	case 5:
	case 4:
1194 1195
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1196
		if (engine->id == RCS0)
1197
			/* HACK: Using the wrong struct member */
1198 1199
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1200 1201 1202
		break;
	case 3:
	case 2:
1203
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1204 1205 1206
		break;
	}
}
1207

1208 1209 1210 1211
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1212 1213 1214
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1215
	if (!intel_engine_pm_get_if_awake(engine))
1216
		return true;
1217

1218
	/* First check that no commands are left in the ring */
1219 1220
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1221
		idle = false;
1222

1223
	/* No bit for gen2, so assume the CS parser is idle */
1224
	if (INTEL_GEN(engine->i915) > 2 &&
1225
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1226 1227
		idle = false;

1228
	intel_engine_pm_put(engine);
1229 1230 1231 1232

	return idle;
}

1233
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1234 1235 1236
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

1237 1238 1239
	if (!t->func)
		return;

1240 1241 1242 1243 1244 1245
	local_bh_disable();
	if (tasklet_trylock(t)) {
		/* Must wait for any GPU reset in progress. */
		if (__tasklet_is_enabled(t))
			t->func(t->data);
		tasklet_unlock(t);
1246
	}
1247
	local_bh_enable();
1248 1249 1250 1251

	/* Synchronise and wait for the tasklet on another CPU */
	if (sync)
		tasklet_unlock_wait(t);
1252 1253
}

1254 1255 1256 1257 1258 1259 1260 1261 1262
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1263
	/* More white lies, if wedged, hw state is inconsistent */
1264
	if (intel_gt_is_wedged(engine->gt))
1265 1266
		return true;

1267
	if (!intel_engine_pm_is_awake(engine))
1268 1269
		return true;

1270
	/* Waiting to drain ELSP? */
1271
	if (execlists_active(&engine->execlists)) {
1272
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1273

1274
		intel_engine_flush_submission(engine);
1275

1276
		if (execlists_active(&engine->execlists))
1277 1278
			return false;
	}
1279

1280
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1281
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1282 1283
		return false;

1284
	/* Ring stopped? */
1285
	return ring_is_idle(engine);
1286 1287
}

1288
bool intel_engines_are_idle(struct intel_gt *gt)
1289 1290 1291 1292
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1293 1294
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1295 1296
	 * report that it is still busy, even though we have stopped using it.
	 */
1297
	if (intel_gt_is_wedged(gt))
1298 1299
		return true;

1300
	/* Already parked (and passed an idleness test); must still be idle */
1301
	if (!READ_ONCE(gt->awake))
1302 1303
		return true;

1304
	for_each_engine(engine, gt, id) {
1305 1306 1307 1308 1309 1310 1311
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1312
void intel_engines_reset_default_submission(struct intel_gt *gt)
1313 1314 1315 1316
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1317 1318 1319 1320
	for_each_engine(engine, gt, id) {
		if (engine->sanitize)
			engine->sanitize(engine);

1321
		engine->set_default_submission(engine);
1322
	}
1323 1324
}

1325 1326 1327 1328 1329 1330 1331 1332
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1333 1334
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1335 1336 1337 1338 1339 1340 1341
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

static int print_ring(char *buf, int sz, struct i915_request *rq)
{
	int len = 0;

	if (!i915_request_signaled(rq)) {
		struct intel_timeline *tl = get_timeline(rq);

		len = scnprintf(buf, sz,
				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
				i915_ggtt_offset(rq->ring->vma),
				tl ? tl->hwsp_offset : 0,
				hwsp_seqno(rq),
				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
						      1000 * 1000));

		if (tl)
			intel_timeline_put(tl);
	}

	return len;
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1407
		drm_printf(m, "[%04zx] %s\n", pos, line);
1408 1409 1410 1411 1412 1413

		prev = buf + pos;
		skip = false;
	}
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1425
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1426
					 struct drm_printer *m)
1427 1428
{
	struct drm_i915_private *dev_priv = engine->i915;
1429
	struct intel_engine_execlists * const execlists = &engine->execlists;
1430 1431
	u64 addr;

1432
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1433
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1434 1435 1436 1437 1438 1439
	if (HAS_EXECLISTS(dev_priv)) {
		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
	}
1440
	drm_printf(m, "\tRING_START: 0x%08x\n",
1441
		   ENGINE_READ(engine, RING_START));
1442
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1443
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1444
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1445
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1446
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1447 1448
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1449 1450
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1451 1452
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1453
	}
1454 1455

	if (INTEL_GEN(dev_priv) >= 6) {
1456
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1457
			   ENGINE_READ(engine, RING_IMR));
1458 1459 1460 1461 1462 1463
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1464 1465
	}

1466 1467 1468 1469 1470 1471
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1472
	if (INTEL_GEN(dev_priv) >= 8)
1473
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1474
	else if (INTEL_GEN(dev_priv) >= 4)
1475
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1476
	else
1477
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1478 1479 1480 1481
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1482
			   ENGINE_READ(engine, RING_IPEIR));
1483
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1484
			   ENGINE_READ(engine, RING_IPEHR));
1485
	} else {
1486 1487
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1488
	}
1489

1490 1491 1492
	if (intel_engine_in_guc_submission_mode(engine)) {
		/* nothing to print yet */
	} else if (HAS_EXECLISTS(dev_priv)) {
1493
		struct i915_request * const *port, *rq;
1494 1495
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1496
		const u8 num_entries = execlists->csb_size;
1497
		unsigned int idx;
1498
		u8 read, write;
1499

1500
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1501 1502 1503
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1504
			   repr_timer(&engine->execlists.preempt),
1505
			   repr_timer(&engine->execlists.timer));
1506

1507 1508 1509
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1510 1511 1512 1513 1514
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1515
		if (read >= num_entries)
1516
			read = 0;
1517
		if (write >= num_entries)
1518 1519
			write = 0;
		if (read > write)
1520
			write += num_entries;
1521
		while (read < write) {
1522 1523 1524
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1525 1526
		}

1527
		execlists_active_lock_bh(execlists);
1528
		rcu_read_lock();
1529
		for (port = execlists->active; (rq = *port); port++) {
1530
			char hdr[160];
1531 1532
			int len;

1533
			len = scnprintf(hdr, sizeof(hdr),
1534
					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1535
					(int)(port - execlists->active),
1536 1537 1538
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1539
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1540
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1541
			i915_request_show(m, rq, hdr, 0);
1542 1543
		}
		for (port = execlists->pending; (rq = *port); port++) {
1544 1545
			char hdr[160];
			int len;
1546

1547
			len = scnprintf(hdr, sizeof(hdr),
1548
					"\t\tPending[%d]: ccid:%08x%s%s, ",
1549
					(int)(port - execlists->pending),
1550 1551 1552
					rq->context->lrc.ccid,
					intel_context_is_closed(rq->context) ? "!" : "",
					intel_context_is_banned(rq->context) ? "*" : "");
1553 1554
			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1555
			i915_request_show(m, rq, hdr, 0);
1556
		}
1557
		rcu_read_unlock();
1558
		execlists_active_unlock_bh(execlists);
1559 1560
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1561
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1562
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1563
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1564
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1565
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1566
	}
1567 1568
}

1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
static unsigned long read_ul(void *p, size_t x)
{
	return *(unsigned long *)(p + x);
}

static void print_properties(struct intel_engine_cs *engine,
			     struct drm_printer *m)
{
	static const struct pmap {
		size_t offset;
		const char *name;
	} props[] = {
#define P(x) { \
	.offset = offsetof(typeof(engine->props), x), \
	.name = #x \
}
		P(heartbeat_interval_ms),
		P(max_busywait_duration_ns),
		P(preempt_timeout_ms),
		P(stop_timeout_ms),
		P(timeslice_duration_ms),

		{},
#undef P
	};
	const struct pmap *p;

	drm_printf(m, "\tProperties:\n");
	for (p = props; p->name; p++)
		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
			   p->name,
			   read_ul(&engine->props, p->offset),
			   read_ul(&engine->defaults, p->offset));
}

1648 1649 1650 1651 1652
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1653
	struct i915_request *rq;
1654
	intel_wakeref_t wakeref;
1655
	unsigned long flags;
1656
	ktime_t dummy;
1657 1658 1659 1660 1661 1662 1663 1664 1665

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1666
	if (intel_gt_is_wedged(engine->gt))
1667 1668
		drm_printf(m, "*** WEDGED ***\n");

1669
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1670 1671
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1672 1673
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1674 1675 1676 1677
	if (intel_engine_supports_stats(engine))
		drm_printf(m, "\tRuntime: %llums\n",
			   ktime_to_ms(intel_engine_get_busy_time(engine,
								  &dummy)));
1678
	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1679
		   engine->fw_domain, READ_ONCE(engine->fw_active));
1680 1681 1682 1683 1684 1685 1686

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1687 1688 1689
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));
1690
	print_properties(engine, m);
1691 1692 1693

	drm_printf(m, "\tRequests:\n");

1694
	spin_lock_irqsave(&engine->active.lock, flags);
1695
	rq = intel_engine_find_active_request(engine);
1696
	if (rq) {
1697 1698
		struct intel_timeline *tl = get_timeline(rq);

1699
		i915_request_show(m, rq, "\t\tactive ", 0);
1700

1701
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1702
			   i915_ggtt_offset(rq->ring->vma));
1703
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1704
			   rq->ring->head);
1705
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1706
			   rq->ring->tail);
1707 1708 1709 1710
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1711 1712 1713 1714 1715 1716

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1717 1718

		print_request_ring(m, rq);
1719

1720
		if (rq->context->lrc_reg_state) {
1721
			drm_printf(m, "Logical Ring Context:\n");
1722
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1723
		}
1724
	}
1725
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1726
	spin_unlock_irqrestore(&engine->active.lock, flags);
1727

1728
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1729
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1730
	if (wakeref) {
1731
		intel_engine_print_registers(engine, m);
1732
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1733 1734 1735
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1736

C
Chris Wilson 已提交
1737
	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1738

1739
	drm_printf(m, "HWSP:\n");
1740
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1741

1742
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1743 1744

	intel_engine_print_breadcrumbs(engine, m);
1745 1746
}

1747 1748
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
					    ktime_t *now)
1749 1750 1751 1752 1753 1754 1755
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
1756
	*now = ktime_get();
1757
	if (READ_ONCE(engine->stats.active))
1758
		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1759 1760 1761 1762 1763 1764 1765

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
1766
 * @now: monotonic timestamp of sampling
1767 1768 1769
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
1770
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1771
{
1772
	unsigned int seq;
1773 1774
	ktime_t total;

1775
	do {
1776
		seq = read_seqcount_begin(&engine->stats.lock);
1777
		total = __intel_engine_get_busy_time(engine, now);
1778
	} while (read_seqcount_retry(&engine->stats.lock, seq));
1779 1780 1781 1782

	return total;
}

1783 1784
static bool match_ring(struct i915_request *rq)
{
1785
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1806
	lockdep_assert_held(&engine->active.lock);
1807 1808 1809 1810 1811 1812 1813

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1814
			if (__i915_request_is_complete(request))
1815 1816 1817 1818 1819 1820 1821 1822 1823
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1824
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1825
		if (__i915_request_is_complete(request))
1826 1827
			continue;

1828
		if (!__i915_request_has_started(request))
1829
			continue;
1830 1831 1832

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1833
			continue;
1834 1835 1836 1837 1838 1839 1840 1841

		active = request;
		break;
	}

	return active;
}

1842
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1843
#include "mock_engine.c"
1844
#include "selftest_engine.c"
1845
#include "selftest_engine_cs.c"
1846
#endif