intel_engine_cs.c 45.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
/*
 * Copyright © 2016 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

25 26
#include <drm/drm_print.h>

27 28
#include "gem/i915_gem_context.h"

29
#include "i915_drv.h"
30

31
#include "intel_context.h"
32
#include "intel_engine.h"
33
#include "intel_engine_pm.h"
34
#include "intel_engine_pool.h"
35
#include "intel_engine_user.h"
36 37
#include "intel_gt.h"
#include "intel_gt_requests.h"
38
#include "intel_gt_pm.h"
39
#include "intel_lrc.h"
40
#include "intel_reset.h"
41
#include "intel_ring.h"
42

43 44 45 46 47 48 49 50 51
/* Haswell does have the CXT_SIZE register however it does not appear to be
 * valid. Now, docs explain in dwords what is in the context object. The full
 * size is 70720 bytes, however, the power context and execlist context will
 * never be saved (power context is stored elsewhere, and execlists don't work
 * on HSW) - so the final size, including the extra state required for the
 * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
 */
#define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)

52
#define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 54
#define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55
#define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56
#define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 58 59

#define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)

60
#define MAX_MMIO_BASES 3
61
struct engine_info {
62
	unsigned int hw_id;
63 64
	u8 class;
	u8 instance;
65 66 67 68 69
	/* mmio bases table *must* be sorted in reverse gen order */
	struct engine_mmio_base {
		u32 gen : 8;
		u32 base : 24;
	} mmio_bases[MAX_MMIO_BASES];
70 71 72
};

static const struct engine_info intel_engines[] = {
73 74
	[RCS0] = {
		.hw_id = RCS0_HW,
75 76
		.class = RENDER_CLASS,
		.instance = 0,
77 78 79
		.mmio_bases = {
			{ .gen = 1, .base = RENDER_RING_BASE }
		},
80
	},
81 82
	[BCS0] = {
		.hw_id = BCS0_HW,
83 84
		.class = COPY_ENGINE_CLASS,
		.instance = 0,
85 86 87
		.mmio_bases = {
			{ .gen = 6, .base = BLT_RING_BASE }
		},
88
	},
89 90
	[VCS0] = {
		.hw_id = VCS0_HW,
91 92
		.class = VIDEO_DECODE_CLASS,
		.instance = 0,
93 94 95 96 97
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
			{ .gen = 4, .base = BSD_RING_BASE }
		},
98
	},
99 100
	[VCS1] = {
		.hw_id = VCS1_HW,
101 102
		.class = VIDEO_DECODE_CLASS,
		.instance = 1,
103 104 105 106
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
		},
107
	},
108 109
	[VCS2] = {
		.hw_id = VCS2_HW,
110 111
		.class = VIDEO_DECODE_CLASS,
		.instance = 2,
112 113 114
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
		},
115
	},
116 117
	[VCS3] = {
		.hw_id = VCS3_HW,
118 119
		.class = VIDEO_DECODE_CLASS,
		.instance = 3,
120 121 122
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
		},
123
	},
124 125
	[VECS0] = {
		.hw_id = VECS0_HW,
126 127
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 0,
128 129 130 131
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
			{ .gen = 7, .base = VEBOX_RING_BASE }
		},
132
	},
133 134
	[VECS1] = {
		.hw_id = VECS1_HW,
135 136
		.class = VIDEO_ENHANCEMENT_CLASS,
		.instance = 1,
137 138 139
		.mmio_bases = {
			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
		},
140
	},
141 142
};

143
/**
144
 * intel_engine_context_size() - return the size of the context for an engine
145
 * @gt: the gt
146 147 148 149 150 151 152 153 154 155 156
 * @class: engine class
 *
 * Each engine class may require a different amount of space for a context
 * image.
 *
 * Return: size (in bytes) of an engine class specific context image
 *
 * Note: this size includes the HWSP, which is part of the context image
 * in LRC mode, but does not include the "shared data page" used with
 * GuC submission. The caller should account for this if using the GuC.
 */
157
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158
{
159
	struct intel_uncore *uncore = gt->uncore;
160 161 162 163 164 165
	u32 cxt_size;

	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);

	switch (class) {
	case RENDER_CLASS:
166
		switch (INTEL_GEN(gt->i915)) {
167
		default:
168
			MISSING_CASE(INTEL_GEN(gt->i915));
169
			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170
		case 12:
171 172
		case 11:
			return GEN11_LR_CONTEXT_RENDER_SIZE;
173
		case 10:
O
Oscar Mateo 已提交
174
			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 176 177
		case 9:
			return GEN9_LR_CONTEXT_RENDER_SIZE;
		case 8:
178
			return GEN8_LR_CONTEXT_RENDER_SIZE;
179
		case 7:
180
			if (IS_HASWELL(gt->i915))
181 182
				return HSW_CXT_TOTAL_SIZE;

183
			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 185 186
			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 6:
187
			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 189 190
			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
					PAGE_SIZE);
		case 5:
191
		case 4:
192 193 194 195 196 197 198 199 200 201
			/*
			 * There is a discrepancy here between the size reported
			 * by the register and the size of the context layout
			 * in the docs. Both are described as authorative!
			 *
			 * The discrepancy is on the order of a few cachelines,
			 * but the total is under one page (4k), which is our
			 * minimum allocation anyway so it should all come
			 * out in the wash.
			 */
202
			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 204 205 206
			drm_dbg(&gt->i915->drm,
				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
				INTEL_GEN(gt->i915), cxt_size * 64,
				cxt_size - 1);
207
			return round_up(cxt_size * 64, PAGE_SIZE);
208 209 210 211 212 213 214 215 216
		case 3:
		case 2:
		/* For the special day when i810 gets merged. */
		case 1:
			return 0;
		}
		break;
	default:
		MISSING_CASE(class);
217
		/* fall through */
218 219 220
	case VIDEO_DECODE_CLASS:
	case VIDEO_ENHANCEMENT_CLASS:
	case COPY_ENGINE_CLASS:
221
		if (INTEL_GEN(gt->i915) < 8)
222 223 224 225 226
			return 0;
		return GEN8_LR_CONTEXT_OTHER_SIZE;
	}
}

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
static u32 __engine_mmio_base(struct drm_i915_private *i915,
			      const struct engine_mmio_base *bases)
{
	int i;

	for (i = 0; i < MAX_MMIO_BASES; i++)
		if (INTEL_GEN(i915) >= bases[i].gen)
			break;

	GEM_BUG_ON(i == MAX_MMIO_BASES);
	GEM_BUG_ON(!bases[i].base);

	return bases[i].base;
}

242
static void __sprint_engine_name(struct intel_engine_cs *engine)
243
{
244 245 246 247 248 249 250 251
	/*
	 * Before we know what the uABI name for this engine will be,
	 * we still would like to keep track of this engine in the debug logs.
	 * We throw in a ' here as a reminder that this isn't its final name.
	 */
	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
			     intel_engine_class_repr(engine->class),
			     engine->instance) >= sizeof(engine->name));
252 253
}

254 255 256 257 258 259
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
	/*
	 * Though they added more rings on g4x/ilk, they did not add
	 * per-engine HWSTAM until gen6.
	 */
260
	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 262
		return;

263 264
	if (INTEL_GEN(engine->i915) >= 3)
		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265
	else
266
		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 268 269 270 271 272 273 274
}

static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
	/* Mask off all writes into the unknown HWSP */
	intel_engine_set_hwsp_writemask(engine, ~0u);
}

275
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 277
{
	const struct engine_info *info = &intel_engines[id];
278 279
	struct intel_engine_cs *engine;

280 281 282
	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));

283 284 285
	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
		return -EINVAL;

286
	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287 288
		return -EINVAL;

289
	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290 291
		return -EINVAL;

292
	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293 294
		return -EINVAL;

295 296 297
	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
	if (!engine)
		return -ENOMEM;
298

299 300
	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);

301
	engine->id = id;
302
	engine->legacy_idx = INVALID_ENGINE;
303
	engine->mask = BIT(id);
304 305 306
	engine->i915 = gt->i915;
	engine->gt = gt;
	engine->uncore = gt->uncore;
307
	engine->hw_id = engine->guc_id = info->hw_id;
308
	engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
309

310 311
	engine->class = info->class;
	engine->instance = info->instance;
312
	__sprint_engine_name(engine);
313

314 315
	engine->props.heartbeat_interval_ms =
		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316 317
	engine->props.max_busywait_duration_ns =
		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
318 319
	engine->props.preempt_timeout_ms =
		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
320 321
	engine->props.stop_timeout_ms =
		CONFIG_DRM_I915_STOP_TIMEOUT;
322 323
	engine->props.timeslice_duration_ms =
		CONFIG_DRM_I915_TIMESLICE_DURATION;
324

325
	engine->context_size = intel_engine_context_size(gt, engine->class);
326 327
	if (WARN_ON(engine->context_size > BIT(20)))
		engine->context_size = 0;
328
	if (engine->context_size)
329
		DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
330

331 332 333
	/* Nothing to do here, execute in order of dependencies */
	engine->schedule = NULL;

334
	ewma__engine_latency_init(&engine->latency);
335
	seqlock_init(&engine->stats.lock);
336

337 338
	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);

339 340 341
	/* Scrub mmio state on takeover */
	intel_engine_sanitize_mmio(engine);

342
	gt->engine_class[info->class][info->instance] = engine;
343
	gt->engine[id] = engine;
344 345 346

	gt->i915->engine[id] = engine;

347
	return 0;
348 349
}

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
	struct drm_i915_private *i915 = engine->i915;

	if (engine->class == VIDEO_DECODE_CLASS) {
		/*
		 * HEVC support is present on first engine instance
		 * before Gen11 and on all instances afterwards.
		 */
		if (INTEL_GEN(i915) >= 11 ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_CLASS_CAPABILITY_HEVC;

		/*
		 * SFC block is present only on even logical engine
		 * instances.
		 */
		if ((INTEL_GEN(i915) >= 11 &&
		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
		if (INTEL_GEN(i915) >= 9)
			engine->uabi_capabilities |=
				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
	}
}

380
static void intel_setup_engine_capabilities(struct intel_gt *gt)
381 382 383 384
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

385
	for_each_engine(engine, gt, id)
386 387 388
		__setup_engine_capabilities(engine);
}

389
/**
390
 * intel_engines_release() - free the resources allocated for Command Streamers
391
 * @gt: pointer to struct intel_gt
392
 */
393
void intel_engines_release(struct intel_gt *gt)
394 395 396 397
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

398 399 400 401 402 403 404 405 406 407 408 409 410
	/*
	 * Before we release the resources held by engine, we must be certain
	 * that the HW is no longer accessing them -- having the GPU scribble
	 * to or read from a page being used for something else causes no end
	 * of fun.
	 *
	 * The GPU should be reset by this point, but assume the worst just
	 * in case we aborted before completely initialising the engines.
	 */
	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
		__intel_gt_reset(gt, ALL_ENGINES);

411
	/* Decouple the backend; but keep the layout for late GPU resets */
412
	for_each_engine(engine, gt, id) {
413
		intel_wakeref_wait_for_idle(&engine->wakeref);
414 415
		GEM_BUG_ON(intel_engine_pm_is_awake(engine));

416 417 418 419 420 421 422 423
		if (!engine->release)
			continue;

		engine->release(engine);
		engine->release = NULL;

		memset(&engine->reset, 0, sizeof(engine->reset));

424
		gt->i915->engine[id] = NULL;
425 426 427
	}
}

428 429 430 431 432 433 434 435 436 437 438
void intel_engines_free(struct intel_gt *gt)
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

	for_each_engine(engine, gt, id) {
		kfree(engine);
		gt->engine[id] = NULL;
	}
}

439
/**
440
 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
441
 * @gt: pointer to struct intel_gt
442 443 444
 *
 * Return: non-zero if the initialization failed.
 */
445
int intel_engines_init_mmio(struct intel_gt *gt)
446
{
447
	struct drm_i915_private *i915 = gt->i915;
448 449
	struct intel_device_info *device_info = mkwrite_device_info(i915);
	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
450
	unsigned int mask = 0;
451
	unsigned int i;
452
	int err;
453

454 455 456
	drm_WARN_ON(&i915->drm, engine_mask == 0);
	drm_WARN_ON(&i915->drm, engine_mask &
		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
457

458
	if (i915_inject_probe_failure(i915))
459 460
		return -ENODEV;

461
	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
462
		if (!HAS_ENGINE(i915, i))
463 464
			continue;

465
		err = intel_engine_setup(gt, i);
466 467 468
		if (err)
			goto cleanup;

469
		mask |= BIT(i);
470 471 472 473 474 475 476
	}

	/*
	 * Catch failures to update intel_engines table when the new engines
	 * are added to the driver by a warning and disabling the forgotten
	 * engines.
	 */
477
	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
478
		device_info->engine_mask = mask;
479

480
	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
481

482
	intel_gt_check_and_clear_faults(gt);
483

484
	intel_setup_engine_capabilities(gt);
485

486 487 488
	return 0;

cleanup:
489
	intel_engines_free(gt);
490 491 492
	return err;
}

493
void intel_engine_init_execlists(struct intel_engine_cs *engine)
494 495 496
{
	struct intel_engine_execlists * const execlists = &engine->execlists;

497
	execlists->port_mask = 1;
498
	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
499 500
	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);

501 502 503 504
	memset(execlists->pending, 0, sizeof(execlists->pending));
	execlists->active =
		memset(execlists->inflight, 0, sizeof(execlists->inflight));

505
	execlists->queue_priority_hint = INT_MIN;
506
	execlists->queue = RB_ROOT_CACHED;
507 508
}

509
static void cleanup_status_page(struct intel_engine_cs *engine)
510
{
511 512
	struct i915_vma *vma;

513 514 515
	/* Prevent writes into HWSP after returning the page to the system */
	intel_engine_set_hwsp_writemask(engine, ~0u);

516 517 518
	vma = fetch_and_zero(&engine->status_page.vma);
	if (!vma)
		return;
519

520 521 522 523
	if (!HWS_NEEDS_PHYSICAL(engine->i915))
		i915_vma_unpin(vma);

	i915_gem_object_unpin_map(vma->obj);
524
	i915_gem_object_put(vma->obj);
525 526 527 528 529 530 531
}

static int pin_ggtt_status_page(struct intel_engine_cs *engine,
				struct i915_vma *vma)
{
	unsigned int flags;

532
	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
533 534 535 536 537 538 539 540 541 542 543
		/*
		 * On g33, we cannot place HWS above 256MiB, so
		 * restrict its pinning to the low mappable arena.
		 * Though this restriction is not documented for
		 * gen4, gen5, or byt, they also behave similarly
		 * and hang if the HWS is placed at the top of the
		 * GTT. To generalise, it appears that all !llc
		 * platforms have issues with us placing the HWS
		 * above the mappable region (even though we never
		 * actually map it).
		 */
544
		flags = PIN_MAPPABLE;
545
	else
546
		flags = PIN_HIGH;
547

548
	return i915_ggtt_pin(vma, 0, flags);
549 550 551 552 553 554 555 556 557
}

static int init_status_page(struct intel_engine_cs *engine)
{
	struct drm_i915_gem_object *obj;
	struct i915_vma *vma;
	void *vaddr;
	int ret;

558 559 560 561 562 563 564
	/*
	 * Though the HWS register does support 36bit addresses, historically
	 * we have had hangs and corruption reported due to wild writes if
	 * the HWS is placed above 4G. We only allow objects to be allocated
	 * in GFP_DMA32 for i965, and no earlier physical address users had
	 * access to more than 4G.
	 */
565 566
	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
	if (IS_ERR(obj)) {
567 568
		drm_err(&engine->i915->drm,
			"Failed to allocate status page\n");
569 570 571
		return PTR_ERR(obj);
	}

572
	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
573

574
	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
575 576 577 578 579 580 581 582
	if (IS_ERR(vma)) {
		ret = PTR_ERR(vma);
		goto err;
	}

	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
	if (IS_ERR(vaddr)) {
		ret = PTR_ERR(vaddr);
583
		goto err;
584 585
	}

586
	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
587
	engine->status_page.vma = vma;
588 589 590 591 592 593 594

	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
		ret = pin_ggtt_status_page(engine, vma);
		if (ret)
			goto err_unpin;
	}

595 596 597
	return 0;

err_unpin:
598
	i915_gem_object_unpin_map(obj);
599 600 601 602 603
err:
	i915_gem_object_put(obj);
	return ret;
}

604
static int engine_setup_common(struct intel_engine_cs *engine)
605 606 607
{
	int err;

608 609
	init_llist_head(&engine->barrier_tasks);

610 611 612 613
	err = init_status_page(engine);
	if (err)
		return err;

614
	intel_engine_init_active(engine, ENGINE_PHYSICAL);
615
	intel_engine_init_breadcrumbs(engine);
616
	intel_engine_init_execlists(engine);
617
	intel_engine_init_cmd_parser(engine);
618
	intel_engine_init__pm(engine);
619
	intel_engine_init_retire(engine);
620

621 622
	intel_engine_pool_init(&engine->pool);

623 624 625 626
	/* Use the whole device by default */
	engine->sseu =
		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);

627 628 629 630
	intel_engine_init_workarounds(engine);
	intel_engine_init_whitelist(engine);
	intel_engine_init_ctx_wa(engine);

631 632 633
	return 0;
}

634 635 636 637 638 639
struct measure_breadcrumb {
	struct i915_request rq;
	struct intel_ring ring;
	u32 cs[1024];
};

640
static int measure_breadcrumb_dw(struct intel_context *ce)
641
{
642
	struct intel_engine_cs *engine = ce->engine;
643
	struct measure_breadcrumb *frame;
644
	int dw;
645

646
	GEM_BUG_ON(!engine->gt->scratch);
647 648 649 650 651

	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
	if (!frame)
		return -ENOMEM;

652 653 654 655
	frame->rq.i915 = engine->i915;
	frame->rq.engine = engine;
	frame->rq.context = ce;
	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
656

657 658 659 660 661
	frame->ring.vaddr = frame->cs;
	frame->ring.size = sizeof(frame->cs);
	frame->ring.effective_size = frame->ring.size;
	intel_ring_update_space(&frame->ring);
	frame->rq.ring = &frame->ring;
662

663
	mutex_lock(&ce->timeline->mutex);
664
	spin_lock_irq(&engine->active.lock);
665

666
	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
667

668
	spin_unlock_irq(&engine->active.lock);
669
	mutex_unlock(&ce->timeline->mutex);
670

671
	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
672

673
	kfree(frame);
674 675 676
	return dw;
}

677 678 679 680
void
intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
{
	INIT_LIST_HEAD(&engine->active.requests);
681
	INIT_LIST_HEAD(&engine->active.hold);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698

	spin_lock_init(&engine->active.lock);
	lockdep_set_subclass(&engine->active.lock, subclass);

	/*
	 * Due to an interesting quirk in lockdep's internal debug tracking,
	 * after setting a subclass we must ensure the lock is used. Otherwise,
	 * nr_unused_locks is incremented once too often.
	 */
#ifdef CONFIG_DEBUG_LOCK_ALLOC
	local_irq_disable();
	lock_map_acquire(&engine->active.lock.dep_map);
	lock_map_release(&engine->active.lock.dep_map);
	local_irq_enable();
#endif
}

699 700 701
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
702
	static struct lock_class_key kernel;
703 704 705
	struct intel_context *ce;
	int err;

706
	ce = intel_context_create(engine);
707 708 709
	if (IS_ERR(ce))
		return ce;

710
	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
711

712
	err = intel_context_pin(ce); /* perma-pin so it is always available */
713 714 715 716 717
	if (err) {
		intel_context_put(ce);
		return ERR_PTR(err);
	}

718 719 720 721 722 723 724 725
	/*
	 * Give our perma-pinned kernel timelines a separate lockdep class,
	 * so that we can use them from within the normal user timelines
	 * should we need to inject GPU operations during their request
	 * construction.
	 */
	lockdep_set_class(&ce->timeline->mutex, &kernel);

726 727 728
	return ce;
}

729 730 731 732 733 734 735 736 737 738 739
/**
 * intel_engines_init_common - initialize cengine state which might require hw access
 * @engine: Engine to initialize.
 *
 * Initializes @engine@ structure members shared between legacy and execlists
 * submission modes which do require hardware access.
 *
 * Typcally done at later stages of submission mode specific engine setup.
 *
 * Returns zero on success or an error code on failure.
 */
740
static int engine_init_common(struct intel_engine_cs *engine)
741
{
742
	struct intel_context *ce;
743 744
	int ret;

745 746
	engine->set_default_submission(engine);

747 748
	/*
	 * We may need to do things with the shrinker which
749 750 751 752 753 754
	 * require us to immediately switch back to the default
	 * context. This can cause a problem as pinning the
	 * default context also requires GTT space which may not
	 * be available. To avoid this we always pin the default
	 * context.
	 */
755 756 757 758
	ce = create_kernel_context(engine);
	if (IS_ERR(ce))
		return PTR_ERR(ce);

759 760 761 762 763
	ret = measure_breadcrumb_dw(ce);
	if (ret < 0)
		goto err_context;

	engine->emit_fini_breadcrumb_dw = ret;
764
	engine->kernel_context = ce;
765

766
	return 0;
767 768 769 770

err_context:
	intel_context_put(ce);
	return ret;
771
}
772

773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
int intel_engines_init(struct intel_gt *gt)
{
	int (*setup)(struct intel_engine_cs *engine);
	struct intel_engine_cs *engine;
	enum intel_engine_id id;
	int err;

	if (HAS_EXECLISTS(gt->i915))
		setup = intel_execlists_submission_setup;
	else
		setup = intel_ring_submission_setup;

	for_each_engine(engine, gt, id) {
		err = engine_setup_common(engine);
		if (err)
			return err;

		err = setup(engine);
		if (err)
			return err;

		err = engine_init_common(engine);
		if (err)
			return err;

		intel_engine_add_user(engine);
	}

	return 0;
}

804 805 806 807 808 809 810 811 812
/**
 * intel_engines_cleanup_common - cleans up the engine state created by
 *                                the common initiailizers.
 * @engine: Engine to cleanup.
 *
 * This cleans up everything created by the common helpers.
 */
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
813
	GEM_BUG_ON(!list_empty(&engine->active.requests));
814
	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
815

816
	cleanup_status_page(engine);
817

818
	intel_engine_fini_retire(engine);
819
	intel_engine_pool_fini(&engine->pool);
820
	intel_engine_fini_breadcrumbs(engine);
821
	intel_engine_cleanup_cmd_parser(engine);
822

823 824 825
	if (engine->default_state)
		i915_gem_object_put(engine->default_state);

826 827 828 829
	if (engine->kernel_context) {
		intel_context_unpin(engine->kernel_context);
		intel_context_put(engine->kernel_context);
	}
830
	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
831

832
	intel_wa_list_free(&engine->ctx_wa_list);
833
	intel_wa_list_free(&engine->wa_list);
834
	intel_wa_list_free(&engine->whitelist);
835
}
836

837 838 839 840 841 842 843 844 845 846 847 848 849 850
/**
 * intel_engine_resume - re-initializes the HW state of the engine
 * @engine: Engine to resume.
 *
 * Returns zero on success or an error code on failure.
 */
int intel_engine_resume(struct intel_engine_cs *engine)
{
	intel_engine_apply_workarounds(engine);
	intel_engine_apply_whitelist(engine);

	return engine->resume(engine);
}

851
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
852
{
853 854
	struct drm_i915_private *i915 = engine->i915;

855 856
	u64 acthd;

857 858 859 860
	if (INTEL_GEN(i915) >= 8)
		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
	else if (INTEL_GEN(i915) >= 4)
		acthd = ENGINE_READ(engine, RING_ACTHD);
861
	else
862
		acthd = ENGINE_READ(engine, ACTHD);
863 864 865 866

	return acthd;
}

867
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
868 869 870
{
	u64 bbaddr;

871 872
	if (INTEL_GEN(engine->i915) >= 8)
		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
873
	else
874
		bbaddr = ENGINE_READ(engine, RING_BBADDR);
875 876 877

	return bbaddr;
}
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
		return 0;

	/*
	 * If we are doing a normal GPU reset, we can take our time and allow
	 * the engine to quiesce. We've stopped submission to the engine, and
	 * if we wait long enough an innocent context should complete and
	 * leave the engine idle. So they should not be caught unaware by
	 * the forthcoming GPU reset (which usually follows the stop_cs)!
	 */
	return READ_ONCE(engine->props.stop_timeout_ms);
}

894 895
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
896
	struct intel_uncore *uncore = engine->uncore;
897 898 899 900
	const u32 base = engine->mmio_base;
	const i915_reg_t mode = RING_MI_MODE(base);
	int err;

901
	if (INTEL_GEN(engine->i915) < 3)
902 903
		return -ENODEV;

904
	ENGINE_TRACE(engine, "\n");
905

906
	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
907 908

	err = 0;
909
	if (__intel_wait_for_register_fw(uncore,
910
					 mode, MODE_IDLE, MODE_IDLE,
911
					 1000, stop_timeout(engine),
912
					 NULL)) {
913
		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
914 915 916 917
		err = -ETIMEDOUT;
	}

	/* A final mmio read to let GPU writes be hopefully flushed to memory */
918
	intel_uncore_posting_read_fw(uncore, mode);
919 920 921 922

	return err;
}

923 924
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
925
	ENGINE_TRACE(engine, "\n");
926

927
	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
928 929
}

930 931 932 933 934 935 936 937 938 939 940
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
	switch (type) {
	case I915_CACHE_NONE: return " uncached";
	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
	case I915_CACHE_L3_LLC: return " L3+LLC";
	case I915_CACHE_WT: return " WT";
	default: return "";
	}
}

941
static u32
942 943
read_subslice_reg(const struct intel_engine_cs *engine,
		  int slice, int subslice, i915_reg_t reg)
944
{
945 946
	struct drm_i915_private *i915 = engine->i915;
	struct intel_uncore *uncore = engine->uncore;
947
	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
948 949
	enum forcewake_domains fw_domains;

950
	if (INTEL_GEN(i915) >= 11) {
951 952
		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
953
	} else {
954 955
		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
956 957
	}

958
	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
959
						    FW_REG_READ);
960
	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
961 962 963
						     GEN8_MCR_SELECTOR,
						     FW_REG_READ | FW_REG_WRITE);

964 965
	spin_lock_irq(&uncore->lock);
	intel_uncore_forcewake_get__locked(uncore, fw_domains);
966

967
	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
968

969 970
	mcr &= ~mcr_mask;
	mcr |= mcr_ss;
971
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
972

973
	val = intel_uncore_read_fw(uncore, reg);
974

975 976
	mcr &= ~mcr_mask;
	mcr |= old_mcr & mcr_mask;
977

978
	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
979

980 981
	intel_uncore_forcewake_put__locked(uncore, fw_domains);
	spin_unlock_irq(&uncore->lock);
982

983
	return val;
984 985 986
}

/* NB: please notice the memset */
987
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
988 989
			       struct intel_instdone *instdone)
{
990
	struct drm_i915_private *i915 = engine->i915;
991
	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
992
	struct intel_uncore *uncore = engine->uncore;
993 994 995 996 997 998
	u32 mmio_base = engine->mmio_base;
	int slice;
	int subslice;

	memset(instdone, 0, sizeof(*instdone));

999
	switch (INTEL_GEN(i915)) {
1000
	default:
1001 1002
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1003

1004
		if (engine->id != RCS0)
1005 1006
			break;

1007 1008
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1009 1010 1011 1012 1013 1014
		if (INTEL_GEN(i915) >= 12) {
			instdone->slice_common_extra[0] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
			instdone->slice_common_extra[1] =
				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
		}
1015
		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1016
			instdone->sampler[slice][subslice] =
1017
				read_subslice_reg(engine, slice, subslice,
1018 1019
						  GEN7_SAMPLER_INSTDONE);
			instdone->row[slice][subslice] =
1020
				read_subslice_reg(engine, slice, subslice,
1021 1022 1023 1024
						  GEN7_ROW_INSTDONE);
		}
		break;
	case 7:
1025 1026
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1027

1028
		if (engine->id != RCS0)
1029 1030
			break;

1031 1032 1033 1034 1035 1036
		instdone->slice_common =
			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
		instdone->sampler[0][0] =
			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
		instdone->row[0][0] =
			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1037 1038 1039 1040 1041

		break;
	case 6:
	case 5:
	case 4:
1042 1043
		instdone->instdone =
			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1044
		if (engine->id == RCS0)
1045
			/* HACK: Using the wrong struct member */
1046 1047
			instdone->slice_common =
				intel_uncore_read(uncore, GEN4_INSTDONE1);
1048 1049 1050
		break;
	case 3:
	case 2:
1051
		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1052 1053 1054
		break;
	}
}
1055

1056 1057 1058 1059
static bool ring_is_idle(struct intel_engine_cs *engine)
{
	bool idle = true;

1060 1061 1062
	if (I915_SELFTEST_ONLY(!engine->mmio_base))
		return true;

1063
	if (!intel_engine_pm_get_if_awake(engine))
1064
		return true;
1065

1066
	/* First check that no commands are left in the ring */
1067 1068
	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1069
		idle = false;
1070

1071
	/* No bit for gen2, so assume the CS parser is idle */
1072
	if (INTEL_GEN(engine->i915) > 2 &&
1073
	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1074 1075
		idle = false;

1076
	intel_engine_pm_put(engine);
1077 1078 1079 1080

	return idle;
}

1081
void intel_engine_flush_submission(struct intel_engine_cs *engine)
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	struct tasklet_struct *t = &engine->execlists.tasklet;

	if (__tasklet_is_scheduled(t)) {
		local_bh_disable();
		if (tasklet_trylock(t)) {
			/* Must wait for any GPU reset in progress. */
			if (__tasklet_is_enabled(t))
				t->func(t->data);
			tasklet_unlock(t);
		}
		local_bh_enable();
	}

	/* Otherwise flush the tasklet if it was running on another cpu */
	tasklet_unlock_wait(t);
}

1100 1101 1102 1103 1104 1105 1106 1107 1108
/**
 * intel_engine_is_idle() - Report if the engine has finished process all work
 * @engine: the intel_engine_cs
 *
 * Return true if there are no requests pending, nothing left to be submitted
 * to hardware, and that the engine is idle.
 */
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
1109
	/* More white lies, if wedged, hw state is inconsistent */
1110
	if (intel_gt_is_wedged(engine->gt))
1111 1112
		return true;

1113
	if (!intel_engine_pm_is_awake(engine))
1114 1115
		return true;

1116
	/* Waiting to drain ELSP? */
1117
	if (execlists_active(&engine->execlists)) {
1118
		synchronize_hardirq(engine->i915->drm.pdev->irq);
1119

1120
		intel_engine_flush_submission(engine);
1121

1122
		if (execlists_active(&engine->execlists))
1123 1124
			return false;
	}
1125

1126
	/* ELSP is empty, but there are ready requests? E.g. after reset */
1127
	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1128 1129
		return false;

1130
	/* Ring stopped? */
1131
	return ring_is_idle(engine);
1132 1133
}

1134
bool intel_engines_are_idle(struct intel_gt *gt)
1135 1136 1137 1138
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1139 1140
	/*
	 * If the driver is wedged, HW state may be very inconsistent and
1141 1142
	 * report that it is still busy, even though we have stopped using it.
	 */
1143
	if (intel_gt_is_wedged(gt))
1144 1145
		return true;

1146
	/* Already parked (and passed an idleness test); must still be idle */
1147
	if (!READ_ONCE(gt->awake))
1148 1149
		return true;

1150
	for_each_engine(engine, gt, id) {
1151 1152 1153 1154 1155 1156 1157
		if (!intel_engine_is_idle(engine))
			return false;
	}

	return true;
}

1158
void intel_engines_reset_default_submission(struct intel_gt *gt)
1159 1160 1161 1162
{
	struct intel_engine_cs *engine;
	enum intel_engine_id id;

1163
	for_each_engine(engine, gt, id)
1164 1165 1166
		engine->set_default_submission(engine);
}

1167 1168 1169 1170 1171 1172 1173 1174
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
	switch (INTEL_GEN(engine->i915)) {
	case 2:
		return false; /* uses physical not virtual addresses */
	case 3:
		/* maybe only uses physical not virtual addresses */
		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1175 1176
	case 4:
		return !IS_I965G(engine->i915); /* who knows! */
1177 1178 1179 1180 1181 1182 1183
	case 6:
		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
	default:
		return true;
	}
}

1184 1185 1186
static int print_sched_attr(struct drm_i915_private *i915,
			    const struct i915_sched_attr *attr,
			    char *buf, int x, int len)
1187 1188
{
	if (attr->priority == I915_PRIORITY_INVALID)
1189 1190 1191 1192
		return x;

	x += snprintf(buf + x, len - x,
		      " prio=%d", attr->priority);
1193

1194
	return x;
1195 1196
}

1197
static void print_request(struct drm_printer *m,
1198
			  struct i915_request *rq,
1199 1200
			  const char *prefix)
{
1201
	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1202
	char buf[80] = "";
1203 1204 1205
	int x = 0;

	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1206

1207
	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1208
		   prefix,
1209
		   rq->fence.context, rq->fence.seqno,
1210 1211 1212
		   i915_request_completed(rq) ? "!" :
		   i915_request_started(rq) ? "*" :
		   "",
1213 1214
		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
			    &rq->fence.flags) ? "+" :
1215
		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1216 1217
			    &rq->fence.flags) ? "-" :
		   "",
1218
		   buf,
1219
		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1220
		   name);
1221 1222
}

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
	const size_t rowsize = 8 * sizeof(u32);
	const void *prev = NULL;
	bool skip = false;
	size_t pos;

	for (pos = 0; pos < len; pos += rowsize) {
		char line[128];

		if (prev && !memcmp(prev, buf + pos, rowsize)) {
			if (!skip) {
				drm_printf(m, "*\n");
				skip = true;
			}
			continue;
		}

		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
						rowsize, sizeof(u32),
						line, sizeof(line),
						false) >= sizeof(line));
1245
		drm_printf(m, "[%04zx] %s\n", pos, line);
1246 1247 1248 1249 1250 1251

		prev = buf + pos;
		skip = false;
	}
}

1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
	struct intel_timeline *tl;

	/*
	 * Even though we are holding the engine->active.lock here, there
	 * is no control over the submission queue per-se and we are
	 * inspecting the active state at a random point in time, with an
	 * unknown queue. Play safe and make sure the timeline remains valid.
	 * (Only being used for pretty printing, one extra kref shouldn't
	 * cause a camel stampede!)
	 */
	rcu_read_lock();
	tl = rcu_dereference(rq->timeline);
	if (!kref_get_unless_zero(&tl->kref))
		tl = NULL;
	rcu_read_unlock();

	return tl;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
static const char *repr_timer(const struct timer_list *t)
{
	if (!READ_ONCE(t->expires))
		return "inactive";

	if (timer_pending(t))
		return "active";

	return "expired";
}

1284
static void intel_engine_print_registers(struct intel_engine_cs *engine,
1285
					 struct drm_printer *m)
1286 1287
{
	struct drm_i915_private *dev_priv = engine->i915;
1288
	struct intel_engine_execlists * const execlists = &engine->execlists;
1289 1290
	u64 addr;

1291
	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1292
		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1293
	drm_printf(m, "\tRING_START: 0x%08x\n",
1294
		   ENGINE_READ(engine, RING_START));
1295
	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1296
		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1297
	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1298
		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1299
	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1300 1301
		   ENGINE_READ(engine, RING_CTL),
		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1302 1303
	if (INTEL_GEN(engine->i915) > 2) {
		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1304 1305
			   ENGINE_READ(engine, RING_MI_MODE),
			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1306
	}
1307 1308

	if (INTEL_GEN(dev_priv) >= 6) {
1309
		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1310
			   ENGINE_READ(engine, RING_IMR));
1311 1312 1313 1314 1315 1316
		drm_printf(m, "\tRING_ESR:   0x%08x\n",
			   ENGINE_READ(engine, RING_ESR));
		drm_printf(m, "\tRING_EMR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EMR));
		drm_printf(m, "\tRING_EIR:   0x%08x\n",
			   ENGINE_READ(engine, RING_EIR));
1317 1318
	}

1319 1320 1321 1322 1323 1324
	addr = intel_engine_get_active_head(engine);
	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	addr = intel_engine_get_last_batch_head(engine);
	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
1325
	if (INTEL_GEN(dev_priv) >= 8)
1326
		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1327
	else if (INTEL_GEN(dev_priv) >= 4)
1328
		addr = ENGINE_READ(engine, RING_DMA_FADD);
1329
	else
1330
		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1331 1332 1333 1334
	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
		   upper_32_bits(addr), lower_32_bits(addr));
	if (INTEL_GEN(dev_priv) >= 4) {
		drm_printf(m, "\tIPEIR: 0x%08x\n",
1335
			   ENGINE_READ(engine, RING_IPEIR));
1336
		drm_printf(m, "\tIPEHR: 0x%08x\n",
1337
			   ENGINE_READ(engine, RING_IPEHR));
1338
	} else {
1339 1340
		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1341
	}
1342

1343
	if (HAS_EXECLISTS(dev_priv)) {
1344
		struct i915_request * const *port, *rq;
1345 1346
		const u32 *hws =
			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1347
		const u8 num_entries = execlists->csb_size;
1348
		unsigned int idx;
1349
		u8 read, write;
1350

1351
		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1352 1353 1354
			   yesno(test_bit(TASKLET_STATE_SCHED,
					  &engine->execlists.tasklet.state)),
			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1355
			   repr_timer(&engine->execlists.preempt),
1356
			   repr_timer(&engine->execlists.timer));
1357

1358 1359 1360
		read = execlists->csb_head;
		write = READ_ONCE(*execlists->csb_write);

1361 1362 1363 1364 1365
		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
			   read, write, num_entries);

1366
		if (read >= num_entries)
1367
			read = 0;
1368
		if (write >= num_entries)
1369 1370
			write = 0;
		if (read > write)
1371
			write += num_entries;
1372
		while (read < write) {
1373 1374 1375
			idx = ++read % num_entries;
			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1376 1377
		}

1378
		execlists_active_lock_bh(execlists);
1379
		rcu_read_lock();
1380
		for (port = execlists->active; (rq = *port); port++) {
1381
			char hdr[160];
1382 1383 1384
			int len;

			len = snprintf(hdr, sizeof(hdr),
1385
				       "\t\tActive[%d]: ",
1386
				       (int)(port - execlists->active));
1387 1388 1389
			if (!i915_request_signaled(rq)) {
				struct intel_timeline *tl = get_timeline(rq);

1390
				len += snprintf(hdr + len, sizeof(hdr) - len,
1391
						"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1392
						i915_ggtt_offset(rq->ring->vma),
1393
						tl ? tl->hwsp_offset : 0,
1394 1395 1396
						hwsp_seqno(rq),
						DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
								      1000 * 1000));
1397 1398 1399 1400

				if (tl)
					intel_timeline_put(tl);
			}
1401 1402 1403 1404
			snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
			print_request(m, rq, hdr);
		}
		for (port = execlists->pending; (rq = *port); port++) {
1405
			struct intel_timeline *tl = get_timeline(rq);
1406
			char hdr[80];
1407

1408 1409 1410 1411
			snprintf(hdr, sizeof(hdr),
				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
				 (int)(port - execlists->pending),
				 i915_ggtt_offset(rq->ring->vma),
1412
				 tl ? tl->hwsp_offset : 0,
1413 1414
				 hwsp_seqno(rq));
			print_request(m, rq, hdr);
1415 1416 1417

			if (tl)
				intel_timeline_put(tl);
1418
		}
1419
		rcu_read_unlock();
1420
		execlists_active_unlock_bh(execlists);
1421 1422
	} else if (INTEL_GEN(dev_priv) > 6) {
		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1423
			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1424
		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1425
			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1426
		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1427
			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1428
	}
1429 1430
}

1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
	void *ring;
	int size;

	drm_printf(m,
		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
		   rq->head, rq->postfix, rq->tail,
		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);

	size = rq->tail - rq->head;
	if (rq->tail < rq->head)
		size += rq->ring->size;

	ring = kmalloc(size, GFP_ATOMIC);
	if (ring) {
		const void *vaddr = rq->ring->vaddr;
		unsigned int head = rq->head;
		unsigned int len = 0;

		if (rq->tail < head) {
			len = rq->ring->size - head;
			memcpy(ring, vaddr + head, len);
			head = 0;
		}
		memcpy(ring + len, vaddr + head, size - len);

		hexdump(m, ring, size);
		kfree(ring);
	}
}

1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
static unsigned long list_count(struct list_head *list)
{
	struct list_head *pos;
	unsigned long count = 0;

	list_for_each(pos, list)
		count++;

	return count;
}

1475 1476 1477 1478 1479
void intel_engine_dump(struct intel_engine_cs *engine,
		       struct drm_printer *m,
		       const char *header, ...)
{
	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1480
	struct i915_request *rq;
1481
	intel_wakeref_t wakeref;
1482
	unsigned long flags;
1483 1484 1485 1486 1487 1488 1489 1490 1491

	if (header) {
		va_list ap;

		va_start(ap, header);
		drm_vprintf(m, header, &ap);
		va_end(ap);
	}

1492
	if (intel_gt_is_wedged(engine->gt))
1493 1494
		drm_printf(m, "*** WEDGED ***\n");

1495
	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1496 1497
	drm_printf(m, "\tBarriers?: %s\n",
		   yesno(!llist_empty(&engine->barrier_tasks)));
1498 1499
	drm_printf(m, "\tLatency: %luus\n",
		   ewma__engine_latency_read(&engine->latency));
1500 1501 1502 1503 1504 1505 1506

	rcu_read_lock();
	rq = READ_ONCE(engine->heartbeat.systole);
	if (rq)
		drm_printf(m, "\tHeartbeat: %d ms ago\n",
			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
	rcu_read_unlock();
1507 1508 1509 1510 1511 1512
	drm_printf(m, "\tReset count: %d (global %d)\n",
		   i915_reset_engine_count(error, engine),
		   i915_reset_count(error));

	drm_printf(m, "\tRequests:\n");

1513
	spin_lock_irqsave(&engine->active.lock, flags);
1514
	rq = intel_engine_find_active_request(engine);
1515
	if (rq) {
1516 1517
		struct intel_timeline *tl = get_timeline(rq);

1518
		print_request(m, rq, "\t\tactive ");
1519

1520
		drm_printf(m, "\t\tring->start:  0x%08x\n",
1521
			   i915_ggtt_offset(rq->ring->vma));
1522
		drm_printf(m, "\t\tring->head:   0x%08x\n",
1523
			   rq->ring->head);
1524
		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1525
			   rq->ring->tail);
1526 1527 1528 1529
		drm_printf(m, "\t\tring->emit:   0x%08x\n",
			   rq->ring->emit);
		drm_printf(m, "\t\tring->space:  0x%08x\n",
			   rq->ring->space);
1530 1531 1532 1533 1534 1535

		if (tl) {
			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
				   tl->hwsp_offset);
			intel_timeline_put(tl);
		}
1536 1537

		print_request_ring(m, rq);
1538

1539
		if (rq->context->lrc_reg_state) {
1540
			drm_printf(m, "Logical Ring Context:\n");
1541
			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1542
		}
1543
	}
1544
	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1545
	spin_unlock_irqrestore(&engine->active.lock, flags);
1546

1547
	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1548
	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1549
	if (wakeref) {
1550
		intel_engine_print_registers(engine, m);
1551
		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1552 1553 1554
	} else {
		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
	}
1555

1556
	intel_execlists_show_requests(engine, m, print_request, 8);
1557

1558
	drm_printf(m, "HWSP:\n");
1559
	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1560

1561
	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1562 1563

	intel_engine_print_breadcrumbs(engine, m);
1564 1565
}

1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
/**
 * intel_enable_engine_stats() - Enable engine busy tracking on engine
 * @engine: engine to enable stats collection
 *
 * Start collecting the engine busyness data for @engine.
 *
 * Returns 0 on success or a negative error code.
 */
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
1576
	struct intel_engine_execlists *execlists = &engine->execlists;
1577
	unsigned long flags;
1578
	int err = 0;
1579

1580
	if (!intel_engine_supports_stats(engine))
1581 1582
		return -ENODEV;

1583 1584
	execlists_active_lock_bh(execlists);
	write_seqlock_irqsave(&engine->stats.lock, flags);
1585 1586 1587 1588 1589 1590

	if (unlikely(engine->stats.enabled == ~0)) {
		err = -EBUSY;
		goto unlock;
	}

1591
	if (engine->stats.enabled++ == 0) {
1592 1593
		struct i915_request * const *port;
		struct i915_request *rq;
1594

1595
		engine->stats.enabled_at = ktime_get();
1596 1597

		/* XXX submission method oblivious? */
1598
		for (port = execlists->active; (rq = *port); port++)
1599
			engine->stats.active++;
1600 1601 1602

		for (port = execlists->pending; (rq = *port); port++) {
			/* Exclude any contexts already counted in active */
1603
			if (!intel_context_inflight_count(rq->context))
1604
				engine->stats.active++;
1605 1606 1607 1608 1609
		}

		if (engine->stats.active)
			engine->stats.start = engine->stats.enabled_at;
	}
1610

1611
unlock:
1612 1613
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
	execlists_active_unlock_bh(execlists);
1614

1615
	return err;
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
}

static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
	ktime_t total = engine->stats.total;

	/*
	 * If the engine is executing something at the moment
	 * add it to the total.
	 */
	if (engine->stats.active)
		total = ktime_add(total,
				  ktime_sub(ktime_get(), engine->stats.start));

	return total;
}

/**
 * intel_engine_get_busy_time() - Return current accumulated engine busyness
 * @engine: engine to report on
 *
 * Returns accumulated time @engine was busy since engine stats were enabled.
 */
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
1641
	unsigned int seq;
1642 1643
	ktime_t total;

1644 1645 1646 1647
	do {
		seq = read_seqbegin(&engine->stats.lock);
		total = __intel_engine_get_busy_time(engine);
	} while (read_seqretry(&engine->stats.lock, seq));
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661

	return total;
}

/**
 * intel_disable_engine_stats() - Disable engine busy tracking on engine
 * @engine: engine to disable stats collection
 *
 * Stops collecting the engine busyness data for @engine.
 */
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
	unsigned long flags;

1662
	if (!intel_engine_supports_stats(engine))
1663 1664
		return;

1665
	write_seqlock_irqsave(&engine->stats.lock, flags);
1666 1667 1668 1669 1670
	WARN_ON_ONCE(engine->stats.enabled == 0);
	if (--engine->stats.enabled == 0) {
		engine->stats.total = __intel_engine_get_busy_time(engine);
		engine->stats.active = 0;
	}
1671
	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1672 1673
}

1674 1675
static bool match_ring(struct i915_request *rq)
{
1676
	u32 ring = ENGINE_READ(rq->engine, RING_START);
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696

	return ring == i915_ggtt_offset(rq->ring->vma);
}

struct i915_request *
intel_engine_find_active_request(struct intel_engine_cs *engine)
{
	struct i915_request *request, *active = NULL;

	/*
	 * We are called by the error capture, reset and to dump engine
	 * state at random points in time. In particular, note that neither is
	 * crucially ordered with an interrupt. After a hang, the GPU is dead
	 * and we assume that no more writes can happen (we waited long enough
	 * for all writes that were in transaction to be flushed) - adding an
	 * extra delay for a recent interrupt is pointless. Hence, we do
	 * not need an engine->irq_seqno_barrier() before the seqno reads.
	 * At all other times, we must assume the GPU is still running, but
	 * we only care about the snapshot of this moment.
	 */
1697
	lockdep_assert_held(&engine->active.lock);
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	rcu_read_lock();
	request = execlists_active(&engine->execlists);
	if (request) {
		struct intel_timeline *tl = request->context->timeline;

		list_for_each_entry_from_reverse(request, &tl->requests, link) {
			if (i915_request_completed(request))
				break;

			active = request;
		}
	}
	rcu_read_unlock();
	if (active)
		return active;

1715
	list_for_each_entry(request, &engine->active.requests, sched.link) {
1716 1717 1718 1719
		if (i915_request_completed(request))
			continue;

		if (!i915_request_started(request))
1720
			continue;
1721 1722 1723

		/* More than one preemptible request may match! */
		if (!match_ring(request))
1724
			continue;
1725 1726 1727 1728 1729 1730 1731 1732

		active = request;
		break;
	}

	return active;
}

1733
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1734
#include "mock_engine.c"
1735
#include "selftest_engine.c"
1736
#include "selftest_engine_cs.c"
1737
#endif