timekeeping.c 67.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/sched/clock.h>
21
#include <linux/syscore_ops.h>
22 23 24 25
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
26
#include <linux/stop_machine.h>
27
#include <linux/pvclock_gtod.h>
28
#include <linux/compiler.h>
29

30
#include "tick-internal.h"
31
#include "ntp_internal.h"
32
#include "timekeeping_internal.h"
33

34 35
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
36
#define TK_CLOCK_WAS_SET	(1 << 2)
37

38 39 40 41 42 43 44 45
enum timekeeping_adv_mode {
	/* Update timekeeper when a tick has passed */
	TK_ADV_TICK,

	/* Update timekeeper on a direct frequency change */
	TK_ADV_FREQ
};

46 47 48 49 50
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
51 52 53 54 55 56 57 58 59 60 61 62 63 64
#ifdef CONFIG_ARCH_LLC_128_WORKAROUND
	/* Start seq on the middle of 128 bytes aligned address to
	 * keep some members of tk_core in the same 64 bytes for
	 * principle of locality while pushing others to another LLC
	 * cacheline to avoid false sharing.
	 */
	u8 padding1[64];
	seqcount_t		seq;
	/* Push some timekeeper memebers to another LLC cacheline */
	u8 padding2[16];
	struct timekeeper	timekeeper;
	/* For 128 bytes LLC cacheline */
} tk_core __aligned(128) = {
#else
65 66
	seqcount_t		seq;
	struct timekeeper	timekeeper;
67
} tk_core ____cacheline_aligned = {
68
#endif
69 70
	.seq = SEQCNT_ZERO(tk_core.seq),
};
71

72
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
73
static struct timekeeper shadow_timekeeper;
74

75 76 77 78 79 80 81 82 83 84 85 86 87 88
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
110

111 112 113
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

114 115
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
116 117
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
118 119
		tk->xtime_sec++;
	}
120 121 122 123
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
124 125
}

126
static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
127 128 129 130
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
131
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
132 133 134
	return ts;
}

135
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
136 137
{
	tk->xtime_sec = ts->tv_sec;
138
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
139 140
}

141
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
142 143
{
	tk->xtime_sec += ts->tv_sec;
144
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
145
	tk_normalize_xtime(tk);
146
}
147

148
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
149
{
150
	struct timespec64 tmp;
151 152 153 154 155

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
156
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
157
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
158
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
159
	tk->wall_to_monotonic = wtm;
160 161
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
162
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
163 164
}

165
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
166
{
167
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
168 169
}

170 171 172 173 174 175 176 177 178 179 180 181 182
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
183
static inline u64 tk_clock_read(const struct tk_read_base *tkr)
184 185 186 187 188 189
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

190
#ifdef CONFIG_DEBUG_TIMEKEEPING
191 192
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

193
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
194 195
{

196
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
197
	const char *name = tk->tkr_mono.clock->name;
198 199

	if (offset > max_cycles) {
200
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
201
				offset, name, max_cycles);
202
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
203 204
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
205
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
206 207 208 209
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
210

211 212
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
213 214 215
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
216
			tk->last_warning = jiffies;
217
		}
218
		tk->underflow_seen = 0;
219 220
	}

221 222
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
223 224 225
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
226
			tk->last_warning = jiffies;
227
		}
228
		tk->overflow_seen = 0;
229
	}
230
}
231

232
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
233
{
234
	struct timekeeper *tk = &tk_core.timekeeper;
235
	u64 now, last, mask, max, delta;
236
	unsigned int seq;
237

238 239 240 241 242 243 244 245 246
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
247
		now = tk_clock_read(tkr);
248 249 250 251
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
252

253
	delta = clocksource_delta(now, last, mask);
254

255 256 257 258
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
259
	if (unlikely((~delta & mask) < (mask >> 3))) {
260
		tk->underflow_seen = 1;
261
		delta = 0;
262
	}
263

264
	/* Cap delta value to the max_cycles values to avoid mult overflows */
265
	if (unlikely(delta > max)) {
266
		tk->overflow_seen = 1;
267
		delta = tkr->clock->max_cycles;
268
	}
269 270 271

	return delta;
}
272
#else
273
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
274 275
{
}
276
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
277
{
278
	u64 cycle_now, delta;
279 280

	/* read clocksource */
281
	cycle_now = tk_clock_read(tkr);
282 283 284 285 286 287

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
288 289
#endif

290
/**
291
 * tk_setup_internals - Set up internals to use clocksource clock.
292
 *
293
 * @tk:		The target timekeeper to setup.
294 295 296 297 298 299 300
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
301
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
302
{
303
	u64 interval;
304
	u64 tmp, ntpinterval;
305
	struct clocksource *old_clock;
306

307
	++tk->cs_was_changed_seq;
308 309 310
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
311
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
312

P
Peter Zijlstra 已提交
313 314 315 316
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

317 318 319
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
320
	ntpinterval = tmp;
321 322
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
323 324 325
	if (tmp == 0)
		tmp = 1;

326
	interval = (u64) tmp;
327
	tk->cycle_interval = interval;
328 329

	/* Go back from cycles -> shifted ns */
330
	tk->xtime_interval = interval * clock->mult;
331
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
332
	tk->raw_interval = interval * clock->mult;
333

334 335 336
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
337
		if (shift_change < 0) {
338
			tk->tkr_mono.xtime_nsec >>= -shift_change;
339 340
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
341
			tk->tkr_mono.xtime_nsec <<= shift_change;
342 343
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
344
	}
P
Peter Zijlstra 已提交
345

346
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
347
	tk->tkr_raw.shift = clock->shift;
348

349 350
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
351
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
352 353 354 355 356 357

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
358
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
359
	tk->tkr_raw.mult = clock->mult;
360
	tk->ntp_err_mult = 0;
361
	tk->skip_second_overflow = 0;
362
}
363

364
/* Timekeeper helper functions. */
365 366

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
367 368
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
369
#else
370
static inline u32 arch_gettimeoffset(void) { return 0; }
371 372
#endif

373
static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
374
{
375
	u64 nsec;
376 377 378 379 380 381 382 383

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

384
static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
385
{
386
	u64 delta;
387

388
	delta = timekeeping_get_delta(tkr);
389 390
	return timekeeping_delta_to_ns(tkr, delta);
}
391

392
static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
393
{
394
	u64 delta;
395

396 397 398
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
399 400
}

401 402
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
403
 * @tkr: Timekeeping readout base from which we take the update
404 405 406 407
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
408
 * Employ the latch technique; see @raw_write_seqcount_latch.
409 410 411 412 413 414
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
415 416
static void update_fast_timekeeper(const struct tk_read_base *tkr,
				   struct tk_fast *tkf)
417
{
418
	struct tk_read_base *base = tkf->base;
419 420

	/* Force readers off to base[1] */
421
	raw_write_seqcount_latch(&tkf->seq);
422 423

	/* Update base[0] */
424
	memcpy(base, tkr, sizeof(*base));
425 426

	/* Force readers back to base[0] */
427
	raw_write_seqcount_latch(&tkf->seq);
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
465
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
466 467 468 469 470 471
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
472
		seq = raw_read_seqcount_latch(&tkf->seq);
473
		tkr = tkf->base + (seq & 0x01);
474 475
		now = ktime_to_ns(tkr->base);

476 477
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
478
					tk_clock_read(tkr),
479 480
					tkr->cycle_last,
					tkr->mask));
481
	} while (read_seqcount_retry(&tkf->seq, seq));
482 483 484

	return now;
}
485 486 487 488 489

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
490 491
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
492 493 494 495 496 497
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
/**
 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 *
 * To keep it NMI safe since we're accessing from tracing, we're not using a
 * separate timekeeper with updates to monotonic clock and boot offset
 * protected with seqlocks. This has the following minor side effects:
 *
 * (1) Its possible that a timestamp be taken after the boot offset is updated
 * but before the timekeeper is updated. If this happens, the new boot offset
 * is added to the old timekeeping making the clock appear to update slightly
 * earlier:
 *    CPU 0                                        CPU 1
 *    timekeeping_inject_sleeptime64()
 *    __timekeeping_inject_sleeptime(tk, delta);
 *                                                 timestamp();
 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 *
 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 * partially updated.  Since the tk->offs_boot update is a rare event, this
 * should be a rare occurrence which postprocessing should be able to handle.
 */
u64 notrace ktime_get_boot_fast_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);


528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
559
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
560

561 562 563 564 565 566 567 568 569 570
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
571
static void halt_fast_timekeeper(const struct timekeeper *tk)
572 573
{
	static struct tk_read_base tkr_dummy;
574
	const struct tk_read_base *tkr = &tk->tkr_mono;
575 576

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
577 578
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
579
	tkr_dummy.base_real = tkr->base + tk->offs_real;
580
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
581 582 583

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
584
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
585
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
586 587
}

588 589
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

590
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
591
{
592
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
593 594 595 596 597 598 599
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
600
	struct timekeeper *tk = &tk_core.timekeeper;
601 602 603
	unsigned long flags;
	int ret;

604
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
605
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
606
	update_pvclock_gtod(tk, true);
607
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
608 609 610 611 612 613 614 615 616 617 618 619 620 621

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

622
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
623
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
624
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
625 626 627 628 629

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

630 631 632 633 634 635
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
636
	if (tk->next_leap_ktime != KTIME_MAX)
637 638 639 640
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

641 642 643 644 645
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
646 647
	u64 seconds;
	u32 nsec;
648 649 650 651 652 653 654 655

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
656 657
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
658
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
659

660 661 662 663 664
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
665
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
666 667 668
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
669 670

	/* Update the monotonic raw base */
671
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
672 673
}

674
/* must hold timekeeper_lock */
675
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
676
{
677
	if (action & TK_CLEAR_NTP) {
678
		tk->ntp_error = 0;
679 680
		ntp_clear();
	}
681

682
	tk_update_leap_state(tk);
683 684
	tk_update_ktime_data(tk);

685 686 687
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

688
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
689
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
690
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
691 692 693

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
694 695 696 697 698 699 700 701
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
702 703
}

704
/**
705
 * timekeeping_forward_now - update clock to the current time
706
 *
707 708 709
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
710
 */
711
static void timekeeping_forward_now(struct timekeeper *tk)
712
{
713
	u64 cycle_now, delta;
714

715
	cycle_now = tk_clock_read(&tk->tkr_mono);
716 717
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
718
	tk->tkr_raw.cycle_last  = cycle_now;
719

720
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
721

722
	/* If arch requires, add in get_arch_timeoffset() */
723
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
724

725

726 727 728 729 730 731
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
732 733 734
}

/**
735
 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
736 737
 * @ts:		pointer to the timespec to be set
 *
738
 * Returns the time of day in a timespec64 (WARN if suspended).
739
 */
740
void ktime_get_real_ts64(struct timespec64 *ts)
741
{
742
	struct timekeeper *tk = &tk_core.timekeeper;
743
	unsigned long seq;
744
	u64 nsecs;
745

746 747
	WARN_ON(timekeeping_suspended);

748
	do {
749
		seq = read_seqcount_begin(&tk_core.seq);
750

751
		ts->tv_sec = tk->xtime_sec;
752
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
753

754
	} while (read_seqcount_retry(&tk_core.seq, seq));
755

756
	ts->tv_nsec = 0;
757
	timespec64_add_ns(ts, nsecs);
758
}
759
EXPORT_SYMBOL(ktime_get_real_ts64);
760

761 762
ktime_t ktime_get(void)
{
763
	struct timekeeper *tk = &tk_core.timekeeper;
764
	unsigned int seq;
765
	ktime_t base;
766
	u64 nsecs;
767 768 769 770

	WARN_ON(timekeeping_suspended);

	do {
771
		seq = read_seqcount_begin(&tk_core.seq);
772 773
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
774

775
	} while (read_seqcount_retry(&tk_core.seq, seq));
776

777
	return ktime_add_ns(base, nsecs);
778 779 780
}
EXPORT_SYMBOL_GPL(ktime_get);

781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

798 799
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
800
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
801 802 803 804 805 806 807 808
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
809
	u64 nsecs;
810 811 812 813 814

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
815 816
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
817 818 819 820 821 822 823 824

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

825 826 827 828 829
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
830
	u64 nsecs;
831 832 833 834 835 836

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = ktime_add(tk->tkr_mono.base, *offset);
837
		nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
838 839 840

	} while (read_seqcount_retry(&tk_core.seq, seq));

841
	return ktime_add_ns(base, nsecs);
842 843 844
}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);

845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

865 866 867 868 869 870 871 872
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
873
	u64 nsecs;
874 875 876

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
877 878
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
879 880 881 882 883 884 885

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

886
/**
887
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
888 889 890 891
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
892
 * in normalized timespec64 format in the variable pointed to by @ts.
893
 */
894
void ktime_get_ts64(struct timespec64 *ts)
895
{
896
	struct timekeeper *tk = &tk_core.timekeeper;
897
	struct timespec64 tomono;
898
	unsigned int seq;
899
	u64 nsec;
900 901 902 903

	WARN_ON(timekeeping_suspended);

	do {
904
		seq = read_seqcount_begin(&tk_core.seq);
905
		ts->tv_sec = tk->xtime_sec;
906
		nsec = timekeeping_get_ns(&tk->tkr_mono);
907
		tomono = tk->wall_to_monotonic;
908

909
	} while (read_seqcount_retry(&tk_core.seq, seq));
910

911 912 913
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
914
}
915
EXPORT_SYMBOL_GPL(ktime_get_ts64);
916

917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

965 966 967 968 969 970 971 972 973 974 975 976
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

977 978 979 980 981 982 983 984 985 986
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
987 988
	u64 nsec_raw;
	u64 nsec_real;
989
	u64 now;
990

991 992
	WARN_ON_ONCE(timekeeping_suspended);

993 994
	do {
		seq = read_seqcount_begin(&tk_core.seq);
995
		now = tk_clock_read(&tk->tkr_mono);
996 997
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
1010

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1047 1048
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1061
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1111
static bool cycle_between(u64 before, u64 test, u64 after)
1112 1113 1114 1115 1116 1117 1118 1119
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1120 1121
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1122
 * @get_time_fn:	Callback to get simultaneous device time and
1123
 *	system counter from the device driver
1124 1125 1126
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1127 1128 1129 1130 1131 1132 1133 1134 1135
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1136
				  struct system_time_snapshot *history_begin,
1137 1138 1139 1140
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1141
	u64 cycles, now, interval_start;
1142
	unsigned int clock_was_set_seq = 0;
1143
	ktime_t base_real, base_raw;
1144
	u64 nsec_real, nsec_raw;
1145
	u8 cs_was_changed_seq;
1146
	unsigned long seq;
1147
	bool do_interp;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1167 1168 1169 1170 1171 1172
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1173
		now = tk_clock_read(&tk->tkr_mono);
1174 1175 1176 1177 1178 1179 1180 1181 1182
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1196 1197 1198 1199 1200 1201

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1202
		u64 partial_history_cycles, total_history_cycles;
1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1228 1229 1230 1231
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1232
/**
1233 1234
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1235 1236 1237
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1238
int do_settimeofday64(const struct timespec64 *ts)
1239
{
1240
	struct timekeeper *tk = &tk_core.timekeeper;
1241
	struct timespec64 ts_delta, xt;
1242
	unsigned long flags;
1243
	int ret = 0;
1244

1245
	if (!timespec64_valid_settod(ts))
1246 1247
		return -EINVAL;

1248
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1249
	write_seqcount_begin(&tk_core.seq);
1250

1251
	timekeeping_forward_now(tk);
1252

1253
	xt = tk_xtime(tk);
1254 1255
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1256

1257 1258 1259 1260 1261
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1262
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1263

1264
	tk_set_xtime(tk, ts);
1265
out:
1266
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1267

1268
	write_seqcount_end(&tk_core.seq);
1269
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270 1271 1272 1273

	/* signal hrtimers about time change */
	clock_was_set();

1274
	return ret;
1275
}
1276
EXPORT_SYMBOL(do_settimeofday64);
1277

1278 1279 1280 1281 1282 1283
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1284
static int timekeeping_inject_offset(const struct timespec64 *ts)
1285
{
1286
	struct timekeeper *tk = &tk_core.timekeeper;
1287
	unsigned long flags;
1288
	struct timespec64 tmp;
1289
	int ret = 0;
1290

1291
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1292 1293
		return -EINVAL;

1294
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1295
	write_seqcount_begin(&tk_core.seq);
1296

1297
	timekeeping_forward_now(tk);
1298

1299
	/* Make sure the proposed value is valid */
1300 1301
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1302
	    !timespec64_valid_settod(&tmp)) {
1303 1304 1305
		ret = -EINVAL;
		goto error;
	}
1306

1307 1308
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1309

1310
error: /* even if we error out, we forwarded the time, so call update */
1311
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1312

1313
	write_seqcount_end(&tk_core.seq);
1314
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1315 1316 1317 1318

	/* signal hrtimers about time change */
	clock_was_set();

1319
	return ret;
1320
}
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1347
		struct timespec64 adjust;
1348 1349 1350 1351 1352 1353 1354

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1355

1356
/**
1357
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1358 1359
 *
 */
1360
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1361 1362
{
	tk->tai_offset = tai_offset;
1363
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1364 1365
}

1366 1367 1368 1369 1370
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1371
static int change_clocksource(void *data)
1372
{
1373
	struct timekeeper *tk = &tk_core.timekeeper;
1374
	struct clocksource *new, *old;
1375
	unsigned long flags;
1376

1377
	new = (struct clocksource *) data;
1378

1379
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1380
	write_seqcount_begin(&tk_core.seq);
1381

1382
	timekeeping_forward_now(tk);
1383 1384 1385 1386 1387 1388
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1389
			old = tk->tkr_mono.clock;
1390 1391 1392 1393 1394 1395 1396
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1397
	}
1398
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1399

1400
	write_seqcount_end(&tk_core.seq);
1401
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1402

1403 1404
	return 0;
}
1405

1406 1407 1408 1409 1410 1411 1412
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1413
int timekeeping_notify(struct clocksource *clock)
1414
{
1415
	struct timekeeper *tk = &tk_core.timekeeper;
1416

1417
	if (tk->tkr_mono.clock == clock)
1418
		return 0;
1419
	stop_machine(change_clocksource, clock, NULL);
1420
	tick_clock_notify();
1421
	return tk->tkr_mono.clock == clock ? 0 : -1;
1422
}
1423

1424
/**
1425
 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1426
 * @ts:		pointer to the timespec64 to be set
1427 1428 1429
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1430
void ktime_get_raw_ts64(struct timespec64 *ts)
1431
{
1432
	struct timekeeper *tk = &tk_core.timekeeper;
1433
	unsigned long seq;
1434
	u64 nsecs;
1435 1436

	do {
1437
		seq = read_seqcount_begin(&tk_core.seq);
1438
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1439
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1440

1441
	} while (read_seqcount_retry(&tk_core.seq, seq));
1442

1443 1444
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1445
}
1446
EXPORT_SYMBOL(ktime_get_raw_ts64);
1447

1448

1449
/**
1450
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1451
 */
1452
int timekeeping_valid_for_hres(void)
1453
{
1454
	struct timekeeper *tk = &tk_core.timekeeper;
1455 1456 1457 1458
	unsigned long seq;
	int ret;

	do {
1459
		seq = read_seqcount_begin(&tk_core.seq);
1460

1461
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1462

1463
	} while (read_seqcount_retry(&tk_core.seq, seq));
1464 1465 1466 1467

	return ret;
}

1468 1469 1470 1471 1472
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1473
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1474 1475
	unsigned long seq;
	u64 ret;
1476

J
John Stultz 已提交
1477
	do {
1478
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1479

1480
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1481

1482
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1483 1484

	return ret;
1485 1486
}

1487
/**
1488
 * read_persistent_clock -  Return time from the persistent clock.
1489 1490
 *
 * Weak dummy function for arches that do not yet support it.
1491 1492
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1493 1494 1495
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1496
void __weak read_persistent_clock(struct timespec *ts)
1497
{
1498 1499
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1500 1501
}

1502 1503 1504 1505 1506 1507 1508 1509
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1510
/**
1511 1512
 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
 *                                        from the boot.
1513 1514
 *
 * Weak dummy function for arches that do not yet support it.
1515 1516
 * wall_time	- current time as returned by persistent clock
 * boot_offset	- offset that is defined as wall_time - boot_time
1517 1518 1519 1520
 * The default function calculates offset based on the current value of
 * local_clock(). This way architectures that support sched_clock() but don't
 * support dedicated boot time clock will provide the best estimate of the
 * boot time.
1521
 */
1522 1523 1524
void __weak __init
read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
				     struct timespec64 *boot_offset)
1525
{
1526
	read_persistent_clock64(wall_time);
1527
	*boot_offset = ns_to_timespec64(local_clock());
1528 1529
}

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543
/*
 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
 *
 * The flag starts of false and is only set when a suspend reaches
 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
 * timekeeper clocksource is not stopping across suspend and has been
 * used to update sleep time. If the timekeeper clocksource has stopped
 * then the flag stays true and is used by the RTC resume code to decide
 * whether sleeptime must be injected and if so the flag gets false then.
 *
 * If a suspend fails before reaching timekeeping_resume() then the flag
 * stays false and prevents erroneous sleeptime injection.
 */
static bool suspend_timing_needed;
1544 1545 1546 1547

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1548 1549 1550 1551 1552
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1553
	struct timespec64 wall_time, boot_offset, wall_to_mono;
1554
	struct timekeeper *tk = &tk_core.timekeeper;
1555
	struct clocksource *clock;
1556
	unsigned long flags;
1557

1558
	read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1559
	if (timespec64_valid_settod(&wall_time) &&
1560 1561
	    timespec64_to_ns(&wall_time) > 0) {
		persistent_clock_exists = true;
1562
	} else if (timespec64_to_ns(&wall_time) != 0) {
1563 1564
		pr_warn("Persistent clock returned invalid value");
		wall_time = (struct timespec64){0};
1565
	}
1566

1567 1568 1569 1570 1571 1572 1573 1574 1575
	if (timespec64_compare(&wall_time, &boot_offset) < 0)
		boot_offset = (struct timespec64){0};

	/*
	 * We want set wall_to_mono, so the following is true:
	 * wall time + wall_to_mono = boot time
	 */
	wall_to_mono = timespec64_sub(boot_offset, wall_time);

1576
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1577
	write_seqcount_begin(&tk_core.seq);
1578 1579
	ntp_init();

1580
	clock = clocksource_default_clock();
1581 1582
	if (clock->enable)
		clock->enable(clock);
1583
	tk_setup_internals(tk, clock);
1584

1585
	tk_set_xtime(tk, &wall_time);
1586
	tk->raw_sec = 0;
1587

1588
	tk_set_wall_to_mono(tk, wall_to_mono);
1589

1590
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1591

1592
	write_seqcount_end(&tk_core.seq);
1593
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1594 1595
}

1596
/* time in seconds when suspend began for persistent clock */
1597
static struct timespec64 timekeeping_suspend_time;
1598

1599 1600 1601 1602 1603 1604 1605
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1606
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1607
					   const struct timespec64 *delta)
1608
{
1609
	if (!timespec64_valid_strict(delta)) {
1610 1611 1612
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1613 1614
		return;
	}
1615
	tk_xtime_add(tk, delta);
1616
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1617
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1618
	tk_debug_account_sleep_time(delta);
1619 1620
}

1621
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
1640
	return !suspend_timing_needed;
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1657
/**
1658 1659
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1660
 *
1661
 * This hook is for architectures that cannot support read_persistent_clock64
1662
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1663
 * and also don't have an effective nonstop clocksource.
1664 1665 1666 1667
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1668
void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1669
{
1670
	struct timekeeper *tk = &tk_core.timekeeper;
1671
	unsigned long flags;
1672

1673
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1674
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1675

1676 1677
	suspend_timing_needed = false;

1678
	timekeeping_forward_now(tk);
1679

1680
	__timekeeping_inject_sleeptime(tk, delta);
1681

1682
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1683

1684
	write_seqcount_end(&tk_core.seq);
1685
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1686 1687 1688 1689

	/* signal hrtimers about time change */
	clock_was_set();
}
1690
#endif
1691

1692 1693 1694
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1695
void timekeeping_resume(void)
1696
{
1697
	struct timekeeper *tk = &tk_core.timekeeper;
1698
	struct clocksource *clock = tk->tkr_mono.clock;
1699
	unsigned long flags;
1700
	struct timespec64 ts_new, ts_delta;
1701
	u64 cycle_now, nsec;
1702
	bool inject_sleeptime = false;
1703

1704
	read_persistent_clock64(&ts_new);
1705

1706
	clockevents_resume();
1707 1708
	clocksource_resume();

1709
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1710
	write_seqcount_begin(&tk_core.seq);
1711

1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1724
	cycle_now = tk_clock_read(&tk->tkr_mono);
1725 1726
	nsec = clocksource_stop_suspend_timing(clock, cycle_now);
	if (nsec > 0) {
1727
		ts_delta = ns_to_timespec64(nsec);
1728
		inject_sleeptime = true;
1729 1730
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1731
		inject_sleeptime = true;
1732
	}
1733

1734 1735
	if (inject_sleeptime) {
		suspend_timing_needed = false;
1736
		__timekeeping_inject_sleeptime(tk, &ts_delta);
1737
	}
1738 1739

	/* Re-base the last cycle value */
1740
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1741 1742
	tk->tkr_raw.cycle_last  = cycle_now;

1743
	tk->ntp_error = 0;
1744
	timekeeping_suspended = 0;
1745
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1746
	write_seqcount_end(&tk_core.seq);
1747
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1748 1749 1750

	touch_softlockup_watchdog();

1751
	tick_resume();
1752
	hrtimers_resume();
1753 1754
}

1755
int timekeeping_suspend(void)
1756
{
1757
	struct timekeeper *tk = &tk_core.timekeeper;
1758
	unsigned long flags;
1759 1760
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1761 1762
	struct clocksource *curr_clock;
	u64 cycle_now;
1763

1764
	read_persistent_clock64(&timekeeping_suspend_time);
1765

1766 1767 1768 1769 1770 1771
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1772
		persistent_clock_exists = true;
1773

1774 1775
	suspend_timing_needed = true;

1776
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1777
	write_seqcount_begin(&tk_core.seq);
1778
	timekeeping_forward_now(tk);
1779
	timekeeping_suspended = 1;
1780

1781 1782 1783 1784 1785 1786 1787 1788 1789
	/*
	 * Since we've called forward_now, cycle_last stores the value
	 * just read from the current clocksource. Save this to potentially
	 * use in suspend timing.
	 */
	curr_clock = tk->tkr_mono.clock;
	cycle_now = tk->tkr_mono.cycle_last;
	clocksource_start_suspend_timing(curr_clock, cycle_now);

1790
	if (persistent_clock_exists) {
1791
		/*
1792 1793 1794 1795
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1796
		 */
1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1810
	}
1811 1812

	timekeeping_update(tk, TK_MIRROR);
1813
	halt_fast_timekeeper(tk);
1814
	write_seqcount_end(&tk_core.seq);
1815
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1816

1817
	tick_suspend();
M
Magnus Damm 已提交
1818
	clocksource_suspend();
1819
	clockevents_suspend();
1820 1821 1822 1823 1824

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1825
static struct syscore_ops timekeeping_syscore_ops = {
1826 1827 1828 1829
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1830
static int __init timekeeping_init_ops(void)
1831
{
1832 1833
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1834
}
1835
device_initcall(timekeeping_init_ops);
1836 1837

/*
1838
 * Apply a multiplier adjustment to the timekeeper
1839
 */
1840 1841
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1842
							 s32 mult_adj)
1843
{
1844
	s64 interval = tk->cycle_interval;
1845

1846 1847 1848
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1849
		interval = -interval;
1850 1851 1852 1853
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1854
	}
1855

1856 1857 1858
	/*
	 * So the following can be confusing.
	 *
1859
	 * To keep things simple, lets assume mult_adj == 1 for now.
1860
	 *
1861
	 * When mult_adj != 1, remember that the interval and offset values
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1903
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1904 1905 1906 1907 1908
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1909
	tk->tkr_mono.mult += mult_adj;
1910
	tk->xtime_interval += interval;
1911
	tk->tkr_mono.xtime_nsec -= offset;
1912 1913 1914
}

/*
1915 1916
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1917
 */
1918
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1919
{
1920
	u32 mult;
1921

1922
	/*
1923 1924
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1925
	 */
1926 1927 1928 1929 1930 1931
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1932
	}
1933

1934 1935 1936 1937 1938 1939 1940 1941
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1942

1943
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1944

1945 1946 1947
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1948 1949
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1950 1951
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1952
	}
1953 1954 1955 1956 1957 1958 1959

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1960 1961 1962
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1963
	 */
1964
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1965 1966 1967 1968
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1969
	}
1970 1971
}

1972 1973 1974
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1975
 * Helper function that accumulates the nsecs greater than a second
1976 1977 1978 1979
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1980
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1981
{
1982
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1983
	unsigned int clock_set = 0;
1984

1985
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1986 1987
		int leap;

1988
		tk->tkr_mono.xtime_nsec -= nsecps;
1989 1990
		tk->xtime_sec++;

1991 1992 1993 1994 1995 1996 1997 1998 1999
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

2000 2001
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
2002
		if (unlikely(leap)) {
2003
			struct timespec64 ts;
2004 2005

			tk->xtime_sec += leap;
2006

2007 2008 2009
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
2010
				timespec64_sub(tk->wall_to_monotonic, ts));
2011

2012 2013
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

2014
			clock_set = TK_CLOCK_WAS_SET;
2015
		}
2016
	}
2017
	return clock_set;
2018 2019
}

2020 2021 2022 2023 2024 2025 2026 2027 2028
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
2029 2030
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
2031
{
2032
	u64 interval = tk->cycle_interval << shift;
2033
	u64 snsec_per_sec;
2034

Z
Zhen Lei 已提交
2035
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2036
	if (offset < interval)
2037 2038 2039
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2040
	offset -= interval;
2041
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2042
	tk->tkr_raw.cycle_last  += interval;
2043

2044
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2045
	*clock_set |= accumulate_nsecs_to_secs(tk);
2046

2047
	/* Accumulate raw time */
2048 2049 2050 2051
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2052
		tk->raw_sec++;
2053 2054 2055
	}

	/* Accumulate error between NTP and clock interval */
2056
	tk->ntp_error += tk->ntp_tick << shift;
2057 2058
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2059 2060 2061 2062

	return offset;
}

2063 2064 2065
/*
 * timekeeping_advance - Updates the timekeeper to the current time and
 * current NTP tick length
2066
 */
2067
static void timekeeping_advance(enum timekeeping_adv_mode mode)
2068
{
2069
	struct timekeeper *real_tk = &tk_core.timekeeper;
2070
	struct timekeeper *tk = &shadow_timekeeper;
2071
	u64 offset;
2072
	int shift = 0, maxshift;
2073
	unsigned int clock_set = 0;
J
John Stultz 已提交
2074 2075
	unsigned long flags;

2076
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2077 2078 2079

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2080
		goto out;
2081

J
John Stultz 已提交
2082
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2083
	offset = real_tk->cycle_interval;
2084 2085 2086

	if (mode != TK_ADV_TICK)
		goto out;
J
John Stultz 已提交
2087
#else
2088
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2089
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2090

2091
	/* Check if there's really nothing to do */
2092
	if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2093
		goto out;
2094
#endif
2095

2096
	/* Do some additional sanity checking */
2097
	timekeeping_check_update(tk, offset);
2098

2099 2100 2101 2102
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2103
	 * that is smaller than the offset.  We then accumulate that
2104 2105
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2106
	 */
2107
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2108
	shift = max(0, shift);
2109
	/* Bound shift to one less than what overflows tick_length */
2110
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2111
	shift = min(shift, maxshift);
2112
	while (offset >= tk->cycle_interval) {
2113 2114
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2115
		if (offset < tk->cycle_interval<<shift)
2116
			shift--;
2117 2118
	}

2119
	/* Adjust the multiplier to correct NTP error */
2120
	timekeeping_adjust(tk, offset);
2121

J
John Stultz 已提交
2122 2123
	/*
	 * Finally, make sure that after the rounding
2124
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2125
	 */
2126
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2127

2128
	write_seqcount_begin(&tk_core.seq);
2129 2130 2131 2132 2133 2134 2135
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2136
	 * memcpy under the tk_core.seq against one before we start
2137 2138
	 * updating.
	 */
2139
	timekeeping_update(tk, clock_set);
2140
	memcpy(real_tk, tk, sizeof(*tk));
2141
	/* The memcpy must come last. Do not put anything here! */
2142
	write_seqcount_end(&tk_core.seq);
2143
out:
2144
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2145
	if (clock_set)
2146 2147
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2148
}
T
Tomas Janousek 已提交
2149

2150 2151 2152 2153 2154 2155 2156 2157 2158
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
void update_wall_time(void)
{
	timekeeping_advance(TK_ADV_TICK);
}

T
Tomas Janousek 已提交
2159
/**
2160 2161
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2162
 *
2163
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2164 2165 2166 2167 2168 2169
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2170
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2171
{
2172
	struct timekeeper *tk = &tk_core.timekeeper;
2173
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2174

2175
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2176
}
2177
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2178

2179
void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2180
{
2181
	struct timekeeper *tk = &tk_core.timekeeper;
2182 2183 2184
	unsigned long seq;

	do {
2185
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2186

2187
		*ts = tk_xtime(tk);
2188
	} while (read_seqcount_retry(&tk_core.seq, seq));
2189
}
2190
EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2191

2192
void ktime_get_coarse_ts64(struct timespec64 *ts)
2193
{
2194
	struct timekeeper *tk = &tk_core.timekeeper;
2195
	struct timespec64 now, mono;
2196 2197 2198
	unsigned long seq;

	do {
2199
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2200

2201 2202
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2203
	} while (read_seqcount_retry(&tk_core.seq, seq));
2204

2205
	set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2206 2207
				now.tv_nsec + mono.tv_nsec);
}
2208
EXPORT_SYMBOL(ktime_get_coarse_ts64);
2209 2210

/*
2211
 * Must hold jiffies_lock
2212 2213 2214 2215 2216 2217
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2218

2219
/**
2220
 * ktime_get_update_offsets_now - hrtimer helper
2221
 * @cwsseq:	pointer to check and store the clock was set sequence number
2222
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2223
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
2224
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2225
 *
2226 2227 2228 2229
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2230
 * Called from hrtimer_interrupt() or retrigger_next_event()
2231
 */
2232
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2233
				     ktime_t *offs_boot, ktime_t *offs_tai)
2234
{
2235
	struct timekeeper *tk = &tk_core.timekeeper;
2236
	unsigned int seq;
2237 2238
	ktime_t base;
	u64 nsecs;
2239 2240

	do {
2241
		seq = read_seqcount_begin(&tk_core.seq);
2242

2243 2244
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2245 2246
		base = ktime_add_ns(base, nsecs);

2247 2248 2249
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
2250
			*offs_boot = tk->offs_boot;
2251 2252
			*offs_tai = tk->offs_tai;
		}
2253 2254

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2255
		if (unlikely(base >= tk->next_leap_ktime))
2256 2257
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2258
	} while (read_seqcount_retry(&tk_core.seq, seq));
2259

2260
	return base;
2261 2262
}

2263
/**
2264
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2265
 */
2266
static int timekeeping_validate_timex(const struct timex *txc)
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2304

2305 2306
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2307 2308
				return -EINVAL;
		} else {
2309
			if (txc->time.tv_usec >= USEC_PER_SEC)
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2329 2330 2331 2332 2333
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2334
	struct timekeeper *tk = &tk_core.timekeeper;
2335
	unsigned long flags;
2336
	struct timespec64 ts;
2337
	s32 orig_tai, tai;
2338 2339 2340
	int ret;

	/* Validate the data before disabling interrupts */
2341
	ret = timekeeping_validate_timex(txc);
2342 2343 2344
	if (ret)
		return ret;

2345
	if (txc->modes & ADJ_SETOFFSET) {
2346
		struct timespec64 delta;
2347 2348 2349 2350 2351 2352 2353 2354 2355
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2356
	ktime_get_real_ts64(&ts);
2357

2358
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2359
	write_seqcount_begin(&tk_core.seq);
2360

2361
	orig_tai = tai = tk->tai_offset;
2362
	ret = __do_adjtimex(txc, &ts, &tai);
2363

2364 2365
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2366
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2367
	}
2368 2369
	tk_update_leap_state(tk);

2370
	write_seqcount_end(&tk_core.seq);
2371 2372
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2373 2374 2375 2376
	/* Update the multiplier immediately if frequency was set directly */
	if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
		timekeeping_advance(TK_ADV_FREQ);

2377 2378 2379
	if (tai != orig_tai)
		clock_was_set();

2380 2381
	ntp_notify_cmos_timer();

2382 2383
	return ret;
}
2384 2385 2386 2387 2388

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2389
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2390
{
2391 2392 2393
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2394
	write_seqcount_begin(&tk_core.seq);
2395

2396
	__hardpps(phase_ts, raw_ts);
2397

2398
	write_seqcount_end(&tk_core.seq);
2399
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2400 2401
}
EXPORT_SYMBOL(hardpps);
2402
#endif /* CONFIG_NTP_PPS */
2403

T
Torben Hohn 已提交
2404 2405 2406 2407 2408 2409 2410 2411
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2412
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2413
	do_timer(ticks);
2414
	write_sequnlock(&jiffies_lock);
2415
	update_wall_time();
T
Torben Hohn 已提交
2416
}