timekeeping.c 65.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/nmi.h>
18
#include <linux/sched.h>
19
#include <linux/sched/loadavg.h>
20
#include <linux/syscore_ops.h>
21 22 23 24
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
25
#include <linux/stop_machine.h>
26
#include <linux/pvclock_gtod.h>
27
#include <linux/compiler.h>
28

29
#include "tick-internal.h"
30
#include "ntp_internal.h"
31
#include "timekeeping_internal.h"
32

33 34
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
35
#define TK_CLOCK_WAS_SET	(1 << 2)
36

37 38 39 40 41 42 43 44 45
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

46
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47
static struct timekeeper shadow_timekeeper;
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;

static u64 dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

static struct clocksource dummy_clock = {
	.read = dummy_clock_read,
};

static struct tk_fast tk_fast_mono ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};

static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
	.base[0] = { .clock = &dummy_clock, },
	.base[1] = { .clock = &dummy_clock, },
};
84

85 86 87
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

88 89
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
90 91
	while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
		tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92 93
		tk->xtime_sec++;
	}
94 95 96 97
	while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
		tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
		tk->raw_sec++;
	}
98 99
}

100 101 102 103 104
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
105
	ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106 107 108
	return ts;
}

109
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 111
{
	tk->xtime_sec = ts->tv_sec;
112
	tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 114
}

115
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 117
{
	tk->xtime_sec += ts->tv_sec;
118
	tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119
	tk_normalize_xtime(tk);
120
}
121

122
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123
{
124
	struct timespec64 tmp;
125 126 127 128 129

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
130
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131
					-tk->wall_to_monotonic.tv_nsec);
T
Thomas Gleixner 已提交
132
	WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133
	tk->wall_to_monotonic = wtm;
134 135
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
136
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 138
}

139
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140
{
141 142 143
	/* Update both bases so mono and raw stay coupled. */
	tk->tkr_mono.base += delta;
	tk->tkr_raw.base += delta;
144 145 146

	/* Accumulate time spent in suspend */
	tk->time_suspended += delta;
147 148
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/*
 * tk_clock_read - atomic clocksource read() helper
 *
 * This helper is necessary to use in the read paths because, while the
 * seqlock ensures we don't return a bad value while structures are updated,
 * it doesn't protect from potential crashes. There is the possibility that
 * the tkr's clocksource may change between the read reference, and the
 * clock reference passed to the read function.  This can cause crashes if
 * the wrong clocksource is passed to the wrong read function.
 * This isn't necessary to use when holding the timekeeper_lock or doing
 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 * and update logic).
 */
static inline u64 tk_clock_read(struct tk_read_base *tkr)
{
	struct clocksource *clock = READ_ONCE(tkr->clock);

	return clock->read(clock);
}

169
#ifdef CONFIG_DEBUG_TIMEKEEPING
170 171
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */

172
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
173 174
{

175
	u64 max_cycles = tk->tkr_mono.clock->max_cycles;
176
	const char *name = tk->tkr_mono.clock->name;
177 178

	if (offset > max_cycles) {
179
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
180
				offset, name, max_cycles);
181
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
182 183
	} else {
		if (offset > (max_cycles >> 1)) {
M
Masanari Iida 已提交
184
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
185 186 187 188
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
189

190 191
	if (tk->underflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
192 193 194
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
195
			tk->last_warning = jiffies;
196
		}
197
		tk->underflow_seen = 0;
198 199
	}

200 201
	if (tk->overflow_seen) {
		if (jiffies - tk->last_warning > WARNING_FREQ) {
202 203 204
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
205
			tk->last_warning = jiffies;
206
		}
207
		tk->overflow_seen = 0;
208
	}
209
}
210

211
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
212
{
213
	struct timekeeper *tk = &tk_core.timekeeper;
214
	u64 now, last, mask, max, delta;
215
	unsigned int seq;
216

217 218 219 220 221 222 223 224 225
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
226
		now = tk_clock_read(tkr);
227 228 229 230
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
231

232
	delta = clocksource_delta(now, last, mask);
233

234 235 236 237
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
238
	if (unlikely((~delta & mask) < (mask >> 3))) {
239
		tk->underflow_seen = 1;
240
		delta = 0;
241
	}
242

243
	/* Cap delta value to the max_cycles values to avoid mult overflows */
244
	if (unlikely(delta > max)) {
245
		tk->overflow_seen = 1;
246
		delta = tkr->clock->max_cycles;
247
	}
248 249 250

	return delta;
}
251
#else
252
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
253 254
{
}
255
static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
256
{
257
	u64 cycle_now, delta;
258 259

	/* read clocksource */
260
	cycle_now = tk_clock_read(tkr);
261 262 263 264 265 266

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
267 268
#endif

269
/**
270
 * tk_setup_internals - Set up internals to use clocksource clock.
271
 *
272
 * @tk:		The target timekeeper to setup.
273 274 275 276 277 278 279
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
280
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
281
{
282
	u64 interval;
283
	u64 tmp, ntpinterval;
284
	struct clocksource *old_clock;
285

286
	++tk->cs_was_changed_seq;
287 288 289
	old_clock = tk->tkr_mono.clock;
	tk->tkr_mono.clock = clock;
	tk->tkr_mono.mask = clock->mask;
290
	tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
291

P
Peter Zijlstra 已提交
292 293 294 295
	tk->tkr_raw.clock = clock;
	tk->tkr_raw.mask = clock->mask;
	tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;

296 297 298
	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
299
	ntpinterval = tmp;
300 301
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
302 303 304
	if (tmp == 0)
		tmp = 1;

305
	interval = (u64) tmp;
306
	tk->cycle_interval = interval;
307 308

	/* Go back from cycles -> shifted ns */
309
	tk->xtime_interval = interval * clock->mult;
310
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
311
	tk->raw_interval = interval * clock->mult;
312

313 314 315
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
316
		if (shift_change < 0) {
317
			tk->tkr_mono.xtime_nsec >>= -shift_change;
318 319
			tk->tkr_raw.xtime_nsec >>= -shift_change;
		} else {
320
			tk->tkr_mono.xtime_nsec <<= shift_change;
321 322
			tk->tkr_raw.xtime_nsec <<= shift_change;
		}
323
	}
P
Peter Zijlstra 已提交
324

325
	tk->tkr_mono.shift = clock->shift;
P
Peter Zijlstra 已提交
326
	tk->tkr_raw.shift = clock->shift;
327

328 329
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
330
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
331 332 333 334 335 336

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
337
	tk->tkr_mono.mult = clock->mult;
P
Peter Zijlstra 已提交
338
	tk->tkr_raw.mult = clock->mult;
339
	tk->ntp_err_mult = 0;
340
	tk->skip_second_overflow = 0;
341
}
342

343
/* Timekeeper helper functions. */
344 345

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
346 347
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
348
#else
349
static inline u32 arch_gettimeoffset(void) { return 0; }
350 351
#endif

352
static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
353
{
354
	u64 nsec;
355 356 357 358 359 360 361 362

	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;

	/* If arch requires, add in get_arch_timeoffset() */
	return nsec + arch_gettimeoffset();
}

363
static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
364
{
365
	u64 delta;
366

367
	delta = timekeeping_get_delta(tkr);
368 369
	return timekeeping_delta_to_ns(tkr, delta);
}
370

371
static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
372
{
373
	u64 delta;
374

375 376 377
	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
	return timekeeping_delta_to_ns(tkr, delta);
378 379
}

380 381
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
382
 * @tkr: Timekeeping readout base from which we take the update
383 384 385 386
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
387
 * Employ the latch technique; see @raw_write_seqcount_latch.
388 389 390 391 392 393
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
394
static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
395
{
396
	struct tk_read_base *base = tkf->base;
397 398

	/* Force readers off to base[1] */
399
	raw_write_seqcount_latch(&tkf->seq);
400 401

	/* Update base[0] */
402
	memcpy(base, tkr, sizeof(*base));
403 404

	/* Force readers back to base[0] */
405
	raw_write_seqcount_latch(&tkf->seq);
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
443
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
444 445 446 447 448 449
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
450
		seq = raw_read_seqcount_latch(&tkf->seq);
451
		tkr = tkf->base + (seq & 0x01);
452 453
		now = ktime_to_ns(tkr->base);

454 455
		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
456
					tk_clock_read(tkr),
457 458
					tkr->cycle_last,
					tkr->mask));
459
	} while (read_seqcount_retry(&tkf->seq, seq));
460 461 462

	return now;
}
463 464 465 466 467

u64 ktime_get_mono_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_mono);
}
468 469
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

P
Peter Zijlstra 已提交
470 471 472 473 474 475
u64 ktime_get_raw_fast_ns(void)
{
	return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);

476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 */
static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount_latch(&tkf->seq);
		tkr = tkf->base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_real);

		now += timekeeping_delta_to_ns(tkr,
				clocksource_delta(
					tk_clock_read(tkr),
					tkr->cycle_last,
					tkr->mask));
	} while (read_seqcount_retry(&tkf->seq, seq));

	return now;
}

/**
 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 */
u64 ktime_get_real_fast_ns(void)
{
	return __ktime_get_real_fast_ns(&tk_fast_mono);
}
507
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
508

509 510 511 512 513 514 515 516 517 518 519 520 521
/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
522
	struct tk_read_base *tkr = &tk->tkr_mono;
523 524

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
525 526
	cycles_at_suspend = tk_clock_read(tkr);
	tkr_dummy.clock = &dummy_clock;
527
	tkr_dummy.base_real = tkr->base + tk->offs_real;
528
	update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
P
Peter Zijlstra 已提交
529 530 531

	tkr = &tk->tkr_raw;
	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
532
	tkr_dummy.clock = &dummy_clock;
P
Peter Zijlstra 已提交
533
	update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
534 535
}

536 537
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

538
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
539
{
540
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
541 542 543 544 545 546 547
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
548
	struct timekeeper *tk = &tk_core.timekeeper;
549 550 551
	unsigned long flags;
	int ret;

552
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
553
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
554
	update_pvclock_gtod(tk, true);
555
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
556 557 558 559 560 561 562 563 564 565 566 567 568 569

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

570
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
571
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
572
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
573 574 575 576 577

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

578 579 580 581 582 583
/*
 * tk_update_leap_state - helper to update the next_leap_ktime
 */
static inline void tk_update_leap_state(struct timekeeper *tk)
{
	tk->next_leap_ktime = ntp_get_next_leap();
T
Thomas Gleixner 已提交
584
	if (tk->next_leap_ktime != KTIME_MAX)
585 586 587 588
		/* Convert to monotonic time */
		tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}

589 590 591 592 593
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
594 595
	u64 seconds;
	u32 nsec;
596 597 598 599 600 601 602 603

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
604 605
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
606
	tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
607

608 609 610 611 612
	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
613
	nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
614 615 616
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
617 618

	/* Update the monotonic raw base */
619
	tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
620 621
}

622
/* must hold timekeeper_lock */
623
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
624
{
625
	if (action & TK_CLEAR_NTP) {
626
		tk->ntp_error = 0;
627 628
		ntp_clear();
	}
629

630
	tk_update_leap_state(tk);
631 632
	tk_update_ktime_data(tk);

633 634 635
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

636
	tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
637
	update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
P
Peter Zijlstra 已提交
638
	update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
639 640 641

	if (action & TK_CLOCK_WAS_SET)
		tk->clock_was_set_seq++;
642 643 644 645 646 647 648 649
	/*
	 * The mirroring of the data to the shadow-timekeeper needs
	 * to happen last here to ensure we don't over-write the
	 * timekeeper structure on the next update with stale data
	 */
	if (action & TK_MIRROR)
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
650 651
}

652
/**
653
 * timekeeping_forward_now - update clock to the current time
654
 *
655 656 657
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
658
 */
659
static void timekeeping_forward_now(struct timekeeper *tk)
660
{
661
	u64 cycle_now, delta;
662

663
	cycle_now = tk_clock_read(&tk->tkr_mono);
664 665
	delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
666
	tk->tkr_raw.cycle_last  = cycle_now;
667

668
	tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
669

670
	/* If arch requires, add in get_arch_timeoffset() */
671
	tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
672

673

674 675 676 677 678 679
	tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;

	/* If arch requires, add in get_arch_timeoffset() */
	tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;

	tk_normalize_xtime(tk);
680 681 682
}

/**
683
 * __getnstimeofday64 - Returns the time of day in a timespec64.
684 685
 * @ts:		pointer to the timespec to be set
 *
686 687
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
688
 */
689
int __getnstimeofday64(struct timespec64 *ts)
690
{
691
	struct timekeeper *tk = &tk_core.timekeeper;
692
	unsigned long seq;
693
	u64 nsecs;
694 695

	do {
696
		seq = read_seqcount_begin(&tk_core.seq);
697

698
		ts->tv_sec = tk->xtime_sec;
699
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
700

701
	} while (read_seqcount_retry(&tk_core.seq, seq));
702

703
	ts->tv_nsec = 0;
704
	timespec64_add_ns(ts, nsecs);
705 706 707 708 709 710 711 712 713

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
714
EXPORT_SYMBOL(__getnstimeofday64);
715 716

/**
717
 * getnstimeofday64 - Returns the time of day in a timespec64.
718
 * @ts:		pointer to the timespec64 to be set
719
 *
720
 * Returns the time of day in a timespec64 (WARN if suspended).
721
 */
722
void getnstimeofday64(struct timespec64 *ts)
723
{
724
	WARN_ON(__getnstimeofday64(ts));
725
}
726
EXPORT_SYMBOL(getnstimeofday64);
727

728 729
ktime_t ktime_get(void)
{
730
	struct timekeeper *tk = &tk_core.timekeeper;
731
	unsigned int seq;
732
	ktime_t base;
733
	u64 nsecs;
734 735 736 737

	WARN_ON(timekeeping_suspended);

	do {
738
		seq = read_seqcount_begin(&tk_core.seq);
739 740
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
741

742
	} while (read_seqcount_retry(&tk_core.seq, seq));
743

744
	return ktime_add_ns(base, nsecs);
745 746 747
}
EXPORT_SYMBOL_GPL(ktime_get);

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
u32 ktime_get_resolution_ns(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	u32 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);

765 766 767 768 769 770 771 772 773 774
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
775
	u64 nsecs;
776 777 778 779 780

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
781 782
		base = ktime_add(tk->tkr_mono.base, *offset);
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
783 784 785 786 787 788 789 790

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

811 812 813 814 815 816 817 818
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
819
	u64 nsecs;
820 821 822

	do {
		seq = read_seqcount_begin(&tk_core.seq);
P
Peter Zijlstra 已提交
823 824
		base = tk->tkr_raw.base;
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
825 826 827 828 829 830 831

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

832
/**
833
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
834 835 836 837
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
838
 * in normalized timespec64 format in the variable pointed to by @ts.
839
 */
840
void ktime_get_ts64(struct timespec64 *ts)
841
{
842
	struct timekeeper *tk = &tk_core.timekeeper;
843
	struct timespec64 tomono;
844
	unsigned int seq;
845
	u64 nsec;
846 847 848 849

	WARN_ON(timekeeping_suspended);

	do {
850
		seq = read_seqcount_begin(&tk_core.seq);
851
		ts->tv_sec = tk->xtime_sec;
852
		nsec = timekeeping_get_ns(&tk->tkr_mono);
853
		tomono = tk->wall_to_monotonic;
854

855
	} while (read_seqcount_retry(&tk_core.seq, seq));
856

857 858 859
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
860
}
861
EXPORT_SYMBOL_GPL(ktime_get_ts64);
862

863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
/**
 * ktime_get_active_ts64 - Get the active non-suspended monotonic clock
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime clock and
 * the wall_to_monotonic offset, subtracts the accumulated suspend time and
 * stores the result in normalized timespec64 format in the variable
 * pointed to by @ts.
 */
void ktime_get_active_ts64(struct timespec64 *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	struct timespec64 tomono, tsusp;
	u64 nsec, nssusp;
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		ts->tv_sec = tk->xtime_sec;
		nsec = timekeeping_get_ns(&tk->tkr_mono);
		tomono = tk->wall_to_monotonic;
		nssusp = tk->time_suspended;
	} while (read_seqcount_retry(&tk_core.seq, seq));

	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
	tsusp = ns_to_timespec64(nssusp);
	*ts = timespec64_sub(*ts, tsusp);
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

944 945 946 947 948 949 950 951 952 953 954 955
/**
 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 * but without the sequence counter protect. This internal function
 * is called just when timekeeping lock is already held.
 */
time64_t __ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	return tk->xtime_sec;
}

956 957 958 959 960 961 962 963 964 965
/**
 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 * @systime_snapshot:	pointer to struct receiving the system time snapshot
 */
void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned long seq;
	ktime_t base_raw;
	ktime_t base_real;
966 967
	u64 nsec_raw;
	u64 nsec_real;
968
	u64 now;
969

970 971
	WARN_ON_ONCE(timekeeping_suspended);

972 973
	do {
		seq = read_seqcount_begin(&tk_core.seq);
974
		now = tk_clock_read(&tk->tkr_mono);
975 976
		systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
		systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
977 978 979 980 981 982 983 984 985 986 987 988
		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;
		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
		nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	systime_snapshot->cycles = now;
	systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
	systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_snapshot);
989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
/* Scale base by mult/div checking for overflow */
static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
{
	u64 tmp, rem;

	tmp = div64_u64_rem(*base, div, &rem);

	if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
	    ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
		return -EOVERFLOW;
	tmp *= mult;
	rem *= mult;

	do_div(rem, div);
	*base = tmp + rem;
	return 0;
}

/**
 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
 * @history:			Snapshot representing start of history
 * @partial_history_cycles:	Cycle offset into history (fractional part)
 * @total_history_cycles:	Total history length in cycles
 * @discontinuity:		True indicates clock was set on history period
 * @ts:				Cross timestamp that should be adjusted using
 *	partial/total ratio
 *
 * Helper function used by get_device_system_crosststamp() to correct the
 * crosstimestamp corresponding to the start of the current interval to the
 * system counter value (timestamp point) provided by the driver. The
 * total_history_* quantities are the total history starting at the provided
 * reference point and ending at the start of the current interval. The cycle
 * count between the driver timestamp point and the start of the current
 * interval is partial_history_cycles.
 */
static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1026 1027
					 u64 partial_history_cycles,
					 u64 total_history_cycles,
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
					 bool discontinuity,
					 struct system_device_crosststamp *ts)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	u64 corr_raw, corr_real;
	bool interp_forward;
	int ret;

	if (total_history_cycles == 0 || partial_history_cycles == 0)
		return 0;

	/* Interpolate shortest distance from beginning or end of history */
1040
	interp_forward = partial_history_cycles > total_history_cycles / 2;
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	partial_history_cycles = interp_forward ?
		total_history_cycles - partial_history_cycles :
		partial_history_cycles;

	/*
	 * Scale the monotonic raw time delta by:
	 *	partial_history_cycles / total_history_cycles
	 */
	corr_raw = (u64)ktime_to_ns(
		ktime_sub(ts->sys_monoraw, history->raw));
	ret = scale64_check_overflow(partial_history_cycles,
				     total_history_cycles, &corr_raw);
	if (ret)
		return ret;

	/*
	 * If there is a discontinuity in the history, scale monotonic raw
	 *	correction by:
	 *	mult(real)/mult(raw) yielding the realtime correction
	 * Otherwise, calculate the realtime correction similar to monotonic
	 *	raw calculation
	 */
	if (discontinuity) {
		corr_real = mul_u64_u32_div
			(corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
	} else {
		corr_real = (u64)ktime_to_ns(
			ktime_sub(ts->sys_realtime, history->real));
		ret = scale64_check_overflow(partial_history_cycles,
					     total_history_cycles, &corr_real);
		if (ret)
			return ret;
	}

	/* Fixup monotonic raw and real time time values */
	if (interp_forward) {
		ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
		ts->sys_realtime = ktime_add_ns(history->real, corr_real);
	} else {
		ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
		ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
	}

	return 0;
}

/*
 * cycle_between - true if test occurs chronologically between before and after
 */
1090
static bool cycle_between(u64 before, u64 test, u64 after)
1091 1092 1093 1094 1095 1096 1097 1098
{
	if (test > before && test < after)
		return true;
	if (test < before && before > after)
		return true;
	return false;
}

1099 1100
/**
 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101
 * @get_time_fn:	Callback to get simultaneous device time and
1102
 *	system counter from the device driver
1103 1104 1105
 * @ctx:		Context passed to get_time_fn()
 * @history_begin:	Historical reference point used to interpolate system
 *	time when counter provided by the driver is before the current interval
1106 1107 1108 1109 1110 1111 1112 1113 1114
 * @xtstamp:		Receives simultaneously captured system and device time
 *
 * Reads a timestamp from a device and correlates it to system time
 */
int get_device_system_crosststamp(int (*get_time_fn)
				  (ktime_t *device_time,
				   struct system_counterval_t *sys_counterval,
				   void *ctx),
				  void *ctx,
1115
				  struct system_time_snapshot *history_begin,
1116 1117 1118 1119
				  struct system_device_crosststamp *xtstamp)
{
	struct system_counterval_t system_counterval;
	struct timekeeper *tk = &tk_core.timekeeper;
1120
	u64 cycles, now, interval_start;
1121
	unsigned int clock_was_set_seq = 0;
1122
	ktime_t base_real, base_raw;
1123
	u64 nsec_real, nsec_raw;
1124
	u8 cs_was_changed_seq;
1125
	unsigned long seq;
1126
	bool do_interp;
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
	int ret;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		/*
		 * Try to synchronously capture device time and a system
		 * counter value calling back into the device driver
		 */
		ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
		if (ret)
			return ret;

		/*
		 * Verify that the clocksource associated with the captured
		 * system counter value is the same as the currently installed
		 * timekeeper clocksource
		 */
		if (tk->tkr_mono.clock != system_counterval.cs)
			return -ENODEV;
1146 1147 1148 1149 1150 1151
		cycles = system_counterval.cycles;

		/*
		 * Check whether the system counter value provided by the
		 * device driver is on the current timekeeping interval.
		 */
1152
		now = tk_clock_read(&tk->tkr_mono);
1153 1154 1155 1156 1157 1158 1159 1160 1161
		interval_start = tk->tkr_mono.cycle_last;
		if (!cycle_between(interval_start, cycles, now)) {
			clock_was_set_seq = tk->clock_was_set_seq;
			cs_was_changed_seq = tk->cs_was_changed_seq;
			cycles = interval_start;
			do_interp = true;
		} else {
			do_interp = false;
		}
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174

		base_real = ktime_add(tk->tkr_mono.base,
				      tk_core.timekeeper.offs_real);
		base_raw = tk->tkr_raw.base;

		nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
						     system_counterval.cycles);
		nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
						    system_counterval.cycles);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
	xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1175 1176 1177 1178 1179 1180

	/*
	 * Interpolate if necessary, adjusting back from the start of the
	 * current interval
	 */
	if (do_interp) {
1181
		u64 partial_history_cycles, total_history_cycles;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206
		bool discontinuity;

		/*
		 * Check that the counter value occurs after the provided
		 * history reference and that the history doesn't cross a
		 * clocksource change
		 */
		if (!history_begin ||
		    !cycle_between(history_begin->cycles,
				   system_counterval.cycles, cycles) ||
		    history_begin->cs_was_changed_seq != cs_was_changed_seq)
			return -EINVAL;
		partial_history_cycles = cycles - system_counterval.cycles;
		total_history_cycles = cycles - history_begin->cycles;
		discontinuity =
			history_begin->clock_was_set_seq != clock_was_set_seq;

		ret = adjust_historical_crosststamp(history_begin,
						    partial_history_cycles,
						    total_history_cycles,
						    discontinuity, xtstamp);
		if (ret)
			return ret;
	}

1207 1208 1209 1210
	return 0;
}
EXPORT_SYMBOL_GPL(get_device_system_crosststamp);

1211 1212 1213 1214
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
1215
 * NOTE: Users should be converted to using getnstimeofday()
1216 1217 1218
 */
void do_gettimeofday(struct timeval *tv)
{
1219
	struct timespec64 now;
1220

1221
	getnstimeofday64(&now);
1222 1223 1224 1225
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
1226

1227
/**
1228 1229
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
1230 1231 1232
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
1233
int do_settimeofday64(const struct timespec64 *ts)
1234
{
1235
	struct timekeeper *tk = &tk_core.timekeeper;
1236
	struct timespec64 ts_delta, xt;
1237
	unsigned long flags;
1238
	int ret = 0;
1239

1240
	if (!timespec64_valid_strict(ts))
1241 1242
		return -EINVAL;

1243
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1244
	write_seqcount_begin(&tk_core.seq);
1245

1246
	timekeeping_forward_now(tk);
1247

1248
	xt = tk_xtime(tk);
1249 1250
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1251

1252 1253 1254 1255 1256
	if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
		ret = -EINVAL;
		goto out;
	}

1257
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1258

1259
	tk_set_xtime(tk, ts);
1260
out:
1261
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1262

1263
	write_seqcount_end(&tk_core.seq);
1264
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1265 1266 1267 1268

	/* signal hrtimers about time change */
	clock_was_set();

1269
	return ret;
1270
}
1271
EXPORT_SYMBOL(do_settimeofday64);
1272

1273 1274 1275 1276 1277 1278
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
1279
static int timekeeping_inject_offset(struct timespec64 *ts)
1280
{
1281
	struct timekeeper *tk = &tk_core.timekeeper;
1282
	unsigned long flags;
1283
	struct timespec64 tmp;
1284
	int ret = 0;
1285

1286
	if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1287 1288
		return -EINVAL;

1289
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1290
	write_seqcount_begin(&tk_core.seq);
1291

1292
	timekeeping_forward_now(tk);
1293

1294
	/* Make sure the proposed value is valid */
1295 1296
	tmp = timespec64_add(tk_xtime(tk), *ts);
	if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1297
	    !timespec64_valid_strict(&tmp)) {
1298 1299 1300
		ret = -EINVAL;
		goto error;
	}
1301

1302 1303
	tk_xtime_add(tk, ts);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1304

1305
error: /* even if we error out, we forwarded the time, so call update */
1306
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1307

1308
	write_seqcount_end(&tk_core.seq);
1309
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1310 1311 1312 1313

	/* signal hrtimers about time change */
	clock_was_set();

1314
	return ret;
1315
}
1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341

/*
 * Indicates if there is an offset between the system clock and the hardware
 * clock/persistent clock/rtc.
 */
int persistent_clock_is_local;

/*
 * Adjust the time obtained from the CMOS to be UTC time instead of
 * local time.
 *
 * This is ugly, but preferable to the alternatives.  Otherwise we
 * would either need to write a program to do it in /etc/rc (and risk
 * confusion if the program gets run more than once; it would also be
 * hard to make the program warp the clock precisely n hours)  or
 * compile in the timezone information into the kernel.  Bad, bad....
 *
 *						- TYT, 1992-01-01
 *
 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 * as real UNIX machines always do it. This avoids all headaches about
 * daylight saving times and warping kernel clocks.
 */
void timekeeping_warp_clock(void)
{
	if (sys_tz.tz_minuteswest != 0) {
1342
		struct timespec64 adjust;
1343 1344 1345 1346 1347 1348 1349

		persistent_clock_is_local = 1;
		adjust.tv_sec = sys_tz.tz_minuteswest * 60;
		adjust.tv_nsec = 0;
		timekeeping_inject_offset(&adjust);
	}
}
1350

1351
/**
1352
 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1353 1354
 *
 */
1355
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1356 1357
{
	tk->tai_offset = tai_offset;
1358
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1359 1360
}

1361 1362 1363 1364 1365
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1366
static int change_clocksource(void *data)
1367
{
1368
	struct timekeeper *tk = &tk_core.timekeeper;
1369
	struct clocksource *new, *old;
1370
	unsigned long flags;
1371

1372
	new = (struct clocksource *) data;
1373

1374
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1375
	write_seqcount_begin(&tk_core.seq);
1376

1377
	timekeeping_forward_now(tk);
1378 1379 1380 1381 1382 1383
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1384
			old = tk->tkr_mono.clock;
1385 1386 1387 1388 1389 1390 1391
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1392
	}
1393
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1394

1395
	write_seqcount_end(&tk_core.seq);
1396
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1397

1398 1399
	return 0;
}
1400

1401 1402 1403 1404 1405 1406 1407
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1408
int timekeeping_notify(struct clocksource *clock)
1409
{
1410
	struct timekeeper *tk = &tk_core.timekeeper;
1411

1412
	if (tk->tkr_mono.clock == clock)
1413
		return 0;
1414
	stop_machine(change_clocksource, clock, NULL);
1415
	tick_clock_notify();
1416
	return tk->tkr_mono.clock == clock ? 0 : -1;
1417
}
1418

1419
/**
1420 1421
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1422 1423 1424
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1425
void getrawmonotonic64(struct timespec64 *ts)
1426
{
1427
	struct timekeeper *tk = &tk_core.timekeeper;
1428
	unsigned long seq;
1429
	u64 nsecs;
1430 1431

	do {
1432
		seq = read_seqcount_begin(&tk_core.seq);
1433
		ts->tv_sec = tk->raw_sec;
P
Peter Zijlstra 已提交
1434
		nsecs = timekeeping_get_ns(&tk->tkr_raw);
1435

1436
	} while (read_seqcount_retry(&tk_core.seq, seq));
1437

1438 1439
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsecs);
1440
}
1441 1442
EXPORT_SYMBOL(getrawmonotonic64);

1443

1444
/**
1445
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1446
 */
1447
int timekeeping_valid_for_hres(void)
1448
{
1449
	struct timekeeper *tk = &tk_core.timekeeper;
1450 1451 1452 1453
	unsigned long seq;
	int ret;

	do {
1454
		seq = read_seqcount_begin(&tk_core.seq);
1455

1456
		ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1457

1458
	} while (read_seqcount_retry(&tk_core.seq, seq));
1459 1460 1461 1462

	return ret;
}

1463 1464 1465 1466 1467
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1468
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1469 1470
	unsigned long seq;
	u64 ret;
1471

J
John Stultz 已提交
1472
	do {
1473
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1474

1475
		ret = tk->tkr_mono.clock->max_idle_ns;
J
John Stultz 已提交
1476

1477
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1478 1479

	return ret;
1480 1481
}

1482
/**
1483
 * read_persistent_clock -  Return time from the persistent clock.
1484 1485
 *
 * Weak dummy function for arches that do not yet support it.
1486 1487
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1488 1489 1490
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1491
void __weak read_persistent_clock(struct timespec *ts)
1492
{
1493 1494
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1495 1496
}

1497 1498 1499 1500 1501 1502 1503 1504
void __weak read_persistent_clock64(struct timespec64 *ts64)
{
	struct timespec ts;

	read_persistent_clock(&ts);
	*ts64 = timespec_to_timespec64(ts);
}

1505
/**
X
Xunlei Pang 已提交
1506
 * read_boot_clock64 -  Return time of the system start.
1507 1508 1509
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
X
Xunlei Pang 已提交
1510
 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1511 1512 1513
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
X
Xunlei Pang 已提交
1514
void __weak read_boot_clock64(struct timespec64 *ts)
1515 1516 1517 1518 1519
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1520 1521 1522 1523 1524 1525
/* Flag for if timekeeping_resume() has injected sleeptime */
static bool sleeptime_injected;

/* Flag for if there is a persistent clock on this platform */
static bool persistent_clock_exists;

1526 1527 1528 1529 1530
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1531
	struct timekeeper *tk = &tk_core.timekeeper;
1532
	struct clocksource *clock;
1533
	unsigned long flags;
1534
	struct timespec64 now, boot, tmp;
1535

1536
	read_persistent_clock64(&now);
1537
	if (!timespec64_valid_strict(&now)) {
1538 1539 1540 1541
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1542
	} else if (now.tv_sec || now.tv_nsec)
1543
		persistent_clock_exists = true;
1544

1545
	read_boot_clock64(&boot);
1546
	if (!timespec64_valid_strict(&boot)) {
1547 1548 1549 1550 1551
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1552

1553
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1554
	write_seqcount_begin(&tk_core.seq);
1555 1556
	ntp_init();

1557
	clock = clocksource_default_clock();
1558 1559
	if (clock->enable)
		clock->enable(clock);
1560
	tk_setup_internals(tk, clock);
1561

1562
	tk_set_xtime(tk, &now);
1563
	tk->raw_sec = 0;
1564
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1565
		boot = tk_xtime(tk);
1566

1567
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1568
	tk_set_wall_to_mono(tk, tmp);
1569

1570
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1571

1572
	write_seqcount_end(&tk_core.seq);
1573
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1574 1575
}

1576
/* time in seconds when suspend began for persistent clock */
1577
static struct timespec64 timekeeping_suspend_time;
1578

1579 1580 1581 1582 1583 1584 1585
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1586
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1587
					   struct timespec64 *delta)
1588
{
1589
	if (!timespec64_valid_strict(delta)) {
1590 1591 1592
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1593 1594
		return;
	}
1595
	tk_xtime_add(tk, delta);
1596
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1597
	tk_debug_account_sleep_time(delta);
1598 1599
}

1600
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
/**
 * We have three kinds of time sources to use for sleep time
 * injection, the preference order is:
 * 1) non-stop clocksource
 * 2) persistent clock (ie: RTC accessible when irqs are off)
 * 3) RTC
 *
 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
 * If system has neither 1) nor 2), 3) will be used finally.
 *
 *
 * If timekeeping has injected sleeptime via either 1) or 2),
 * 3) becomes needless, so in this case we don't need to call
 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
 * means.
 */
bool timekeeping_rtc_skipresume(void)
{
	return sleeptime_injected;
}

/**
 * 1) can be determined whether to use or not only when doing
 * timekeeping_resume() which is invoked after rtc_suspend(),
 * so we can't skip rtc_suspend() surely if system has 1).
 *
 * But if system has 2), 2) will definitely be used, so in this
 * case we don't need to call rtc_suspend(), and this is what
 * timekeeping_rtc_skipsuspend() means.
 */
bool timekeeping_rtc_skipsuspend(void)
{
	return persistent_clock_exists;
}

1636
/**
1637 1638
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1639
 *
1640
 * This hook is for architectures that cannot support read_persistent_clock64
1641
 * because their RTC/persistent clock is only accessible when irqs are enabled.
1642
 * and also don't have an effective nonstop clocksource.
1643 1644 1645 1646
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1647
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1648
{
1649
	struct timekeeper *tk = &tk_core.timekeeper;
1650
	unsigned long flags;
1651

1652
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1653
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1654

1655
	timekeeping_forward_now(tk);
1656

1657
	__timekeeping_inject_sleeptime(tk, delta);
1658

1659
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1660

1661
	write_seqcount_end(&tk_core.seq);
1662
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1663 1664 1665 1666

	/* signal hrtimers about time change */
	clock_was_set();
}
1667
#endif
1668

1669 1670 1671
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 */
1672
void timekeeping_resume(void)
1673
{
1674
	struct timekeeper *tk = &tk_core.timekeeper;
1675
	struct clocksource *clock = tk->tkr_mono.clock;
1676
	unsigned long flags;
1677
	struct timespec64 ts_new, ts_delta;
1678
	u64 cycle_now;
1679

1680
	sleeptime_injected = false;
1681
	read_persistent_clock64(&ts_new);
1682

1683
	clockevents_resume();
1684 1685
	clocksource_resume();

1686
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1687
	write_seqcount_begin(&tk_core.seq);
1688

1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1701
	cycle_now = tk_clock_read(&tk->tkr_mono);
1702
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1703
		cycle_now > tk->tkr_mono.cycle_last) {
1704
		u64 nsec, cyc_delta;
1705

1706 1707 1708
		cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
					      tk->tkr_mono.mask);
		nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1709
		ts_delta = ns_to_timespec64(nsec);
1710
		sleeptime_injected = true;
1711 1712
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1713
		sleeptime_injected = true;
1714
	}
1715

1716
	if (sleeptime_injected)
1717 1718 1719
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1720
	tk->tkr_mono.cycle_last = cycle_now;
P
Peter Zijlstra 已提交
1721 1722
	tk->tkr_raw.cycle_last  = cycle_now;

1723
	tk->ntp_error = 0;
1724
	timekeeping_suspended = 0;
1725
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1726
	write_seqcount_end(&tk_core.seq);
1727
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1728 1729 1730

	touch_softlockup_watchdog();

1731
	tick_resume();
1732
	hrtimers_resume();
1733 1734
}

1735
int timekeeping_suspend(void)
1736
{
1737
	struct timekeeper *tk = &tk_core.timekeeper;
1738
	unsigned long flags;
1739 1740
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
1741

1742
	read_persistent_clock64(&timekeeping_suspend_time);
1743

1744 1745 1746 1747 1748 1749
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1750
		persistent_clock_exists = true;
1751

1752
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1753
	write_seqcount_begin(&tk_core.seq);
1754
	timekeeping_forward_now(tk);
1755
	timekeeping_suspended = 1;
1756

1757
	if (persistent_clock_exists) {
1758
		/*
1759 1760 1761 1762
		 * To avoid drift caused by repeated suspend/resumes,
		 * which each can add ~1 second drift error,
		 * try to compensate so the difference in system time
		 * and persistent_clock time stays close to constant.
1763
		 */
1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776
		delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
		delta_delta = timespec64_sub(delta, old_delta);
		if (abs(delta_delta.tv_sec) >= 2) {
			/*
			 * if delta_delta is too large, assume time correction
			 * has occurred and set old_delta to the current delta.
			 */
			old_delta = delta;
		} else {
			/* Otherwise try to adjust old_system to compensate */
			timekeeping_suspend_time =
				timespec64_add(timekeeping_suspend_time, delta_delta);
		}
1777
	}
1778 1779

	timekeeping_update(tk, TK_MIRROR);
1780
	halt_fast_timekeeper(tk);
1781
	write_seqcount_end(&tk_core.seq);
1782
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1783

1784
	tick_suspend();
M
Magnus Damm 已提交
1785
	clocksource_suspend();
1786
	clockevents_suspend();
1787 1788 1789 1790 1791

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1792
static struct syscore_ops timekeeping_syscore_ops = {
1793 1794 1795 1796
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1797
static int __init timekeeping_init_ops(void)
1798
{
1799 1800
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1801
}
1802
device_initcall(timekeeping_init_ops);
1803 1804

/*
1805
 * Apply a multiplier adjustment to the timekeeper
1806
 */
1807 1808
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
1809
							 s32 mult_adj)
1810
{
1811
	s64 interval = tk->cycle_interval;
1812

1813 1814 1815
	if (mult_adj == 0) {
		return;
	} else if (mult_adj == -1) {
1816
		interval = -interval;
1817 1818 1819 1820
		offset = -offset;
	} else if (mult_adj != 1) {
		interval *= mult_adj;
		offset *= mult_adj;
1821
	}
1822

1823 1824 1825
	/*
	 * So the following can be confusing.
	 *
1826
	 * To keep things simple, lets assume mult_adj == 1 for now.
1827
	 *
1828
	 * When mult_adj != 1, remember that the interval and offset values
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 */
1870
	if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1871 1872 1873 1874 1875
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1876
	tk->tkr_mono.mult += mult_adj;
1877
	tk->xtime_interval += interval;
1878
	tk->tkr_mono.xtime_nsec -= offset;
1879 1880 1881
}

/*
1882 1883
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
1884
 */
1885
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1886
{
1887
	u32 mult;
1888

1889
	/*
1890 1891
	 * Determine the multiplier from the current NTP tick length.
	 * Avoid expensive division when the tick length doesn't change.
1892
	 */
1893 1894 1895 1896 1897 1898
	if (likely(tk->ntp_tick == ntp_tick_length())) {
		mult = tk->tkr_mono.mult - tk->ntp_err_mult;
	} else {
		tk->ntp_tick = ntp_tick_length();
		mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
				 tk->xtime_remainder, tk->cycle_interval);
1899
	}
1900

1901 1902 1903 1904 1905 1906 1907 1908
	/*
	 * If the clock is behind the NTP time, increase the multiplier by 1
	 * to catch up with it. If it's ahead and there was a remainder in the
	 * tick division, the clock will slow down. Otherwise it will stay
	 * ahead until the tick length changes to a non-divisible value.
	 */
	tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
	mult += tk->ntp_err_mult;
1909

1910
	timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1911

1912 1913 1914
	if (unlikely(tk->tkr_mono.clock->maxadj &&
		(abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
			> tk->tkr_mono.clock->maxadj))) {
1915 1916
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
1917 1918
			tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
			(long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1919
	}
1920 1921 1922 1923 1924 1925 1926

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
1927 1928 1929
	 * Now, since we have already accumulated the second and the NTP
	 * subsystem has been notified via second_overflow(), we need to skip
	 * the next update.
1930
	 */
1931
	if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1932 1933 1934 1935
		tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
							tk->tkr_mono.shift;
		tk->xtime_sec--;
		tk->skip_second_overflow = 1;
1936
	}
1937 1938
}

1939 1940 1941
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
Z
Zhen Lei 已提交
1942
 * Helper function that accumulates the nsecs greater than a second
1943 1944 1945 1946
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1947
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1948
{
1949
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1950
	unsigned int clock_set = 0;
1951

1952
	while (tk->tkr_mono.xtime_nsec >= nsecps) {
1953 1954
		int leap;

1955
		tk->tkr_mono.xtime_nsec -= nsecps;
1956 1957
		tk->xtime_sec++;

1958 1959 1960 1961 1962 1963 1964 1965 1966
		/*
		 * Skip NTP update if this second was accumulated before,
		 * i.e. xtime_nsec underflowed in timekeeping_adjust()
		 */
		if (unlikely(tk->skip_second_overflow)) {
			tk->skip_second_overflow = 0;
			continue;
		}

1967 1968
		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1969
		if (unlikely(leap)) {
1970
			struct timespec64 ts;
1971 1972

			tk->xtime_sec += leap;
1973

1974 1975 1976
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1977
				timespec64_sub(tk->wall_to_monotonic, ts));
1978

1979 1980
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1981
			clock_set = TK_CLOCK_WAS_SET;
1982
		}
1983
	}
1984
	return clock_set;
1985 1986
}

1987 1988 1989 1990 1991 1992 1993 1994 1995
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1996 1997
static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
				    u32 shift, unsigned int *clock_set)
1998
{
1999
	u64 interval = tk->cycle_interval << shift;
2000
	u64 snsec_per_sec;
2001

Z
Zhen Lei 已提交
2002
	/* If the offset is smaller than a shifted interval, do nothing */
T
Thomas Gleixner 已提交
2003
	if (offset < interval)
2004 2005 2006
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
2007
	offset -= interval;
2008
	tk->tkr_mono.cycle_last += interval;
P
Peter Zijlstra 已提交
2009
	tk->tkr_raw.cycle_last  += interval;
2010

2011
	tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2012
	*clock_set |= accumulate_nsecs_to_secs(tk);
2013

2014
	/* Accumulate raw time */
2015 2016 2017 2018
	tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
	snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
	while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
		tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2019
		tk->raw_sec++;
2020 2021 2022
	}

	/* Accumulate error between NTP and clock interval */
2023
	tk->ntp_error += tk->ntp_tick << shift;
2024 2025
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
2026 2027 2028 2029

	return offset;
}

2030 2031 2032 2033
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
2034
void update_wall_time(void)
2035
{
2036
	struct timekeeper *real_tk = &tk_core.timekeeper;
2037
	struct timekeeper *tk = &shadow_timekeeper;
2038
	u64 offset;
2039
	int shift = 0, maxshift;
2040
	unsigned int clock_set = 0;
J
John Stultz 已提交
2041 2042
	unsigned long flags;

2043
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2044 2045 2046

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
2047
		goto out;
2048

J
John Stultz 已提交
2049
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
2051
#else
2052
	offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2053
				   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054 2055
#endif

2056
	/* Check if there's really nothing to do */
2057
	if (offset < real_tk->cycle_interval)
2058 2059
		goto out;

2060
	/* Do some additional sanity checking */
2061
	timekeeping_check_update(tk, offset);
2062

2063 2064 2065 2066
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
2067
	 * that is smaller than the offset.  We then accumulate that
2068 2069
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
2070
	 */
2071
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072
	shift = max(0, shift);
2073
	/* Bound shift to one less than what overflows tick_length */
2074
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075
	shift = min(shift, maxshift);
2076
	while (offset >= tk->cycle_interval) {
2077 2078
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
2079
		if (offset < tk->cycle_interval<<shift)
2080
			shift--;
2081 2082
	}

2083
	/* Adjust the multiplier to correct NTP error */
2084
	timekeeping_adjust(tk, offset);
2085

J
John Stultz 已提交
2086 2087
	/*
	 * Finally, make sure that after the rounding
2088
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
2089
	 */
2090
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
2091

2092
	write_seqcount_begin(&tk_core.seq);
2093 2094 2095 2096 2097 2098 2099
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
2100
	 * memcpy under the tk_core.seq against one before we start
2101 2102
	 * updating.
	 */
2103
	timekeeping_update(tk, clock_set);
2104
	memcpy(real_tk, tk, sizeof(*tk));
2105
	/* The memcpy must come last. Do not put anything here! */
2106
	write_seqcount_end(&tk_core.seq);
2107
out:
2108
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2109
	if (clock_set)
2110 2111
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
2112
}
T
Tomas Janousek 已提交
2113 2114

/**
2115 2116
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
2117
 *
2118
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
2119 2120 2121 2122 2123 2124
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
2125
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
2126
{
2127
	struct timekeeper *tk = &tk_core.timekeeper;
2128
	ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended);
2129

2130
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
2131
}
2132
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
2133

2134 2135
unsigned long get_seconds(void)
{
2136
	struct timekeeper *tk = &tk_core.timekeeper;
2137 2138

	return tk->xtime_sec;
2139 2140 2141
}
EXPORT_SYMBOL(get_seconds);

2142
struct timespec64 current_kernel_time64(void)
2143
{
2144
	struct timekeeper *tk = &tk_core.timekeeper;
2145
	struct timespec64 now;
2146 2147 2148
	unsigned long seq;

	do {
2149
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2150

2151
		now = tk_xtime(tk);
2152
	} while (read_seqcount_retry(&tk_core.seq, seq));
2153

2154
	return now;
2155
}
2156
EXPORT_SYMBOL(current_kernel_time64);
2157

2158
struct timespec64 get_monotonic_coarse64(void)
2159
{
2160
	struct timekeeper *tk = &tk_core.timekeeper;
2161
	struct timespec64 now, mono;
2162 2163 2164
	unsigned long seq;

	do {
2165
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
2166

2167 2168
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
2169
	} while (read_seqcount_retry(&tk_core.seq, seq));
2170

2171
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2172
				now.tv_nsec + mono.tv_nsec);
2173

2174
	return now;
2175
}
2176
EXPORT_SYMBOL(get_monotonic_coarse64);
2177 2178

/*
2179
 * Must hold jiffies_lock
2180 2181 2182 2183 2184 2185
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
2186

2187
/**
2188
 * ktime_get_update_offsets_now - hrtimer helper
2189
 * @cwsseq:	pointer to check and store the clock was set sequence number
2190
 * @offs_real:	pointer to storage for monotonic -> realtime offset
2191
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
2192
 *
2193 2194 2195 2196
 * Returns current monotonic time and updates the offsets if the
 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
 * different.
 *
2197
 * Called from hrtimer_interrupt() or retrigger_next_event()
2198
 */
2199
ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2200
				     ktime_t *offs_tai)
2201
{
2202
	struct timekeeper *tk = &tk_core.timekeeper;
2203
	unsigned int seq;
2204 2205
	ktime_t base;
	u64 nsecs;
2206 2207

	do {
2208
		seq = read_seqcount_begin(&tk_core.seq);
2209

2210 2211
		base = tk->tkr_mono.base;
		nsecs = timekeeping_get_ns(&tk->tkr_mono);
2212 2213
		base = ktime_add_ns(base, nsecs);

2214 2215 2216 2217 2218
		if (*cwsseq != tk->clock_was_set_seq) {
			*cwsseq = tk->clock_was_set_seq;
			*offs_real = tk->offs_real;
			*offs_tai = tk->offs_tai;
		}
2219 2220

		/* Handle leapsecond insertion adjustments */
T
Thomas Gleixner 已提交
2221
		if (unlikely(base >= tk->next_leap_ktime))
2222 2223
			*offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));

2224
	} while (read_seqcount_retry(&tk_core.seq, seq));
2225

2226
	return base;
2227 2228
}

2229
/**
2230
 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2231
 */
2232
static int timekeeping_validate_timex(struct timex *txc)
2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
{
	if (txc->modes & ADJ_ADJTIME) {
		/* singleshot must not be used with any other mode bits */
		if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
			return -EINVAL;
		if (!(txc->modes & ADJ_OFFSET_READONLY) &&
		    !capable(CAP_SYS_TIME))
			return -EPERM;
	} else {
		/* In order to modify anything, you gotta be super-user! */
		if (txc->modes && !capable(CAP_SYS_TIME))
			return -EPERM;
		/*
		 * if the quartz is off by more than 10% then
		 * something is VERY wrong!
		 */
		if (txc->modes & ADJ_TICK &&
		    (txc->tick <  900000/USER_HZ ||
		     txc->tick > 1100000/USER_HZ))
			return -EINVAL;
	}

	if (txc->modes & ADJ_SETOFFSET) {
		/* In order to inject time, you gotta be super-user! */
		if (!capable(CAP_SYS_TIME))
			return -EPERM;

2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
		/*
		 * Validate if a timespec/timeval used to inject a time
		 * offset is valid.  Offsets can be postive or negative, so
		 * we don't check tv_sec. The value of the timeval/timespec
		 * is the sum of its fields,but *NOTE*:
		 * The field tv_usec/tv_nsec must always be non-negative and
		 * we can't have more nanoseconds/microseconds than a second.
		 */
		if (txc->time.tv_usec < 0)
			return -EINVAL;
2270

2271 2272
		if (txc->modes & ADJ_NANO) {
			if (txc->time.tv_usec >= NSEC_PER_SEC)
2273 2274
				return -EINVAL;
		} else {
2275
			if (txc->time.tv_usec >= USEC_PER_SEC)
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294
				return -EINVAL;
		}
	}

	/*
	 * Check for potential multiplication overflows that can
	 * only happen on 64-bit systems:
	 */
	if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
		if (LLONG_MIN / PPM_SCALE > txc->freq)
			return -EINVAL;
		if (LLONG_MAX / PPM_SCALE < txc->freq)
			return -EINVAL;
	}

	return 0;
}


2295 2296 2297 2298 2299
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
2300
	struct timekeeper *tk = &tk_core.timekeeper;
2301
	unsigned long flags;
2302
	struct timespec64 ts;
2303
	s32 orig_tai, tai;
2304 2305 2306
	int ret;

	/* Validate the data before disabling interrupts */
2307
	ret = timekeeping_validate_timex(txc);
2308 2309 2310
	if (ret)
		return ret;

2311
	if (txc->modes & ADJ_SETOFFSET) {
2312
		struct timespec64 delta;
2313 2314 2315 2316 2317 2318 2319 2320 2321
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

2322
	getnstimeofday64(&ts);
2323

2324
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2325
	write_seqcount_begin(&tk_core.seq);
2326

2327
	orig_tai = tai = tk->tai_offset;
2328
	ret = __do_adjtimex(txc, &ts, &tai);
2329

2330 2331
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
2332
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2333
	}
2334 2335
	tk_update_leap_state(tk);

2336
	write_seqcount_end(&tk_core.seq);
2337 2338
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

2339 2340 2341
	if (tai != orig_tai)
		clock_was_set();

2342 2343
	ntp_notify_cmos_timer();

2344 2345
	return ret;
}
2346 2347 2348 2349 2350

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
2351
void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2352
{
2353 2354 2355
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
2356
	write_seqcount_begin(&tk_core.seq);
2357

2358
	__hardpps(phase_ts, raw_ts);
2359

2360
	write_seqcount_end(&tk_core.seq);
2361
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2362 2363
}
EXPORT_SYMBOL(hardpps);
2364
#endif /* CONFIG_NTP_PPS */
2365

T
Torben Hohn 已提交
2366 2367 2368 2369 2370 2371 2372 2373
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2374
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2375
	do_timer(ticks);
2376
	write_sequnlock(&jiffies_lock);
2377
	update_wall_time();
T
Torben Hohn 已提交
2378
}