timekeeping.c 53.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 *  linux/kernel/time/timekeeping.c
 *
 *  Kernel timekeeping code and accessor functions
 *
 *  This code was moved from linux/kernel/timer.c.
 *  Please see that file for copyright and history logs.
 *
 */

11
#include <linux/timekeeper_internal.h>
12 13 14 15 16
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
17
#include <linux/sched.h>
18
#include <linux/syscore_ops.h>
19 20 21 22
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
23
#include <linux/stop_machine.h>
24
#include <linux/pvclock_gtod.h>
25
#include <linux/compiler.h>
26

27
#include "tick-internal.h"
28
#include "ntp_internal.h"
29
#include "timekeeping_internal.h"
30

31 32
#define TK_CLEAR_NTP		(1 << 0)
#define TK_MIRROR		(1 << 1)
33
#define TK_CLOCK_WAS_SET	(1 << 2)
34

35 36 37 38 39 40 41 42 43
/*
 * The most important data for readout fits into a single 64 byte
 * cache line.
 */
static struct {
	seqcount_t		seq;
	struct timekeeper	timekeeper;
} tk_core ____cacheline_aligned;

44
static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45
static struct timekeeper shadow_timekeeper;
46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
/**
 * struct tk_fast - NMI safe timekeeper
 * @seq:	Sequence counter for protecting updates. The lowest bit
 *		is the index for the tk_read_base array
 * @base:	tk_read_base array. Access is indexed by the lowest bit of
 *		@seq.
 *
 * See @update_fast_timekeeper() below.
 */
struct tk_fast {
	seqcount_t		seq;
	struct tk_read_base	base[2];
};

static struct tk_fast tk_fast_mono ____cacheline_aligned;

63 64 65
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;

66 67 68
/* Flag for if there is a persistent clock on this platform */
bool __read_mostly persistent_clock_exist = false;

69 70
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
71 72
	while (tk->tkr.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr.shift)) {
		tk->tkr.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr.shift;
73 74 75 76
		tk->xtime_sec++;
	}
}

77 78 79 80 81
static inline struct timespec64 tk_xtime(struct timekeeper *tk)
{
	struct timespec64 ts;

	ts.tv_sec = tk->xtime_sec;
82
	ts.tv_nsec = (long)(tk->tkr.xtime_nsec >> tk->tkr.shift);
83 84 85
	return ts;
}

86
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
87 88
{
	tk->xtime_sec = ts->tv_sec;
89
	tk->tkr.xtime_nsec = (u64)ts->tv_nsec << tk->tkr.shift;
90 91
}

92
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
93 94
{
	tk->xtime_sec += ts->tv_sec;
95
	tk->tkr.xtime_nsec += (u64)ts->tv_nsec << tk->tkr.shift;
96
	tk_normalize_xtime(tk);
97
}
98

99
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
100
{
101
	struct timespec64 tmp;
102 103 104 105 106

	/*
	 * Verify consistency of: offset_real = -wall_to_monotonic
	 * before modifying anything
	 */
107
	set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
108
					-tk->wall_to_monotonic.tv_nsec);
109
	WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
110
	tk->wall_to_monotonic = wtm;
111 112
	set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
	tk->offs_real = timespec64_to_ktime(tmp);
113
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
114 115
}

116
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
117
{
118
	tk->offs_boot = ktime_add(tk->offs_boot, delta);
119 120
}

121
#ifdef CONFIG_DEBUG_TIMEKEEPING
122 123 124 125 126 127 128 129 130 131 132 133 134 135
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
/*
 * These simple flag variables are managed
 * without locks, which is racy, but ok since
 * we don't really care about being super
 * precise about how many events were seen,
 * just that a problem was observed.
 */
static int timekeeping_underflow_seen;
static int timekeeping_overflow_seen;

/* last_warning is only modified under the timekeeping lock */
static long timekeeping_last_warning;

136 137 138 139 140 141 142
static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{

	cycle_t max_cycles = tk->tkr.clock->max_cycles;
	const char *name = tk->tkr.clock->name;

	if (offset > max_cycles) {
143
		printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
144
				offset, name, max_cycles);
145
		printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
146 147 148 149 150 151 152
	} else {
		if (offset > (max_cycles >> 1)) {
			printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the the '%s' clock's 50%% safety margin (%lld)\n",
					offset, name, max_cycles >> 1);
			printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
		}
	}
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

	if (timekeeping_underflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_underflow_seen = 0;
	}

	if (timekeeping_overflow_seen) {
		if (jiffies - timekeeping_last_warning > WARNING_FREQ) {
			printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
			printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
			printk_deferred("         Your kernel is probably still fine.\n");
			timekeeping_last_warning = jiffies;
		}
		timekeeping_overflow_seen = 0;
	}
173
}
174 175 176

static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
177 178
	cycle_t now, last, mask, max, delta;
	unsigned int seq;
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193
	/*
	 * Since we're called holding a seqlock, the data may shift
	 * under us while we're doing the calculation. This can cause
	 * false positives, since we'd note a problem but throw the
	 * results away. So nest another seqlock here to atomically
	 * grab the points we are checking with.
	 */
	do {
		seq = read_seqcount_begin(&tk_core.seq);
		now = tkr->read(tkr->clock);
		last = tkr->cycle_last;
		mask = tkr->mask;
		max = tkr->clock->max_cycles;
	} while (read_seqcount_retry(&tk_core.seq, seq));
194

195
	delta = clocksource_delta(now, last, mask);
196

197 198 199 200
	/*
	 * Try to catch underflows by checking if we are seeing small
	 * mask-relative negative values.
	 */
201 202
	if (unlikely((~delta & mask) < (mask >> 3))) {
		timekeeping_underflow_seen = 1;
203
		delta = 0;
204
	}
205

206
	/* Cap delta value to the max_cycles values to avoid mult overflows */
207 208
	if (unlikely(delta > max)) {
		timekeeping_overflow_seen = 1;
209
		delta = tkr->clock->max_cycles;
210
	}
211 212 213

	return delta;
}
214 215 216 217
#else
static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
{
}
218 219 220 221 222 223 224 225 226 227 228 229
static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
{
	cycle_t cycle_now, delta;

	/* read clocksource */
	cycle_now = tkr->read(tkr->clock);

	/* calculate the delta since the last update_wall_time */
	delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);

	return delta;
}
230 231
#endif

232
/**
233
 * tk_setup_internals - Set up internals to use clocksource clock.
234
 *
235
 * @tk:		The target timekeeper to setup.
236 237 238 239 240 241 242
 * @clock:		Pointer to clocksource.
 *
 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 * pair and interval request.
 *
 * Unless you're the timekeeping code, you should not be using this!
 */
243
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
244 245
{
	cycle_t interval;
246
	u64 tmp, ntpinterval;
247
	struct clocksource *old_clock;
248

249 250 251 252 253
	old_clock = tk->tkr.clock;
	tk->tkr.clock = clock;
	tk->tkr.read = clock->read;
	tk->tkr.mask = clock->mask;
	tk->tkr.cycle_last = tk->tkr.read(clock);
254 255 256 257

	/* Do the ns -> cycle conversion first, using original mult */
	tmp = NTP_INTERVAL_LENGTH;
	tmp <<= clock->shift;
258
	ntpinterval = tmp;
259 260
	tmp += clock->mult/2;
	do_div(tmp, clock->mult);
261 262 263 264
	if (tmp == 0)
		tmp = 1;

	interval = (cycle_t) tmp;
265
	tk->cycle_interval = interval;
266 267

	/* Go back from cycles -> shifted ns */
268 269 270
	tk->xtime_interval = (u64) interval * clock->mult;
	tk->xtime_remainder = ntpinterval - tk->xtime_interval;
	tk->raw_interval =
271
		((u64) interval * clock->mult) >> clock->shift;
272

273 274 275 276
	 /* if changing clocks, convert xtime_nsec shift units */
	if (old_clock) {
		int shift_change = clock->shift - old_clock->shift;
		if (shift_change < 0)
277
			tk->tkr.xtime_nsec >>= -shift_change;
278
		else
279
			tk->tkr.xtime_nsec <<= shift_change;
280
	}
281
	tk->tkr.shift = clock->shift;
282

283 284
	tk->ntp_error = 0;
	tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
285
	tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
286 287 288 289 290 291

	/*
	 * The timekeeper keeps its own mult values for the currently
	 * active clocksource. These value will be adjusted via NTP
	 * to counteract clock drifting.
	 */
292
	tk->tkr.mult = clock->mult;
293
	tk->ntp_err_mult = 0;
294
}
295

296
/* Timekeeper helper functions. */
297 298

#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
299 300
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
301
#else
302
static inline u32 arch_gettimeoffset(void) { return 0; }
303 304
#endif

305
static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
306
{
307
	cycle_t delta;
308
	s64 nsec;
309

310
	delta = timekeeping_get_delta(tkr);
311

312 313
	nsec = delta * tkr->mult + tkr->xtime_nsec;
	nsec >>= tkr->shift;
314

315
	/* If arch requires, add in get_arch_timeoffset() */
316
	return nsec + arch_gettimeoffset();
317 318
}

319
static inline s64 timekeeping_get_ns_raw(struct timekeeper *tk)
320
{
321
	struct clocksource *clock = tk->tkr.clock;
322
	cycle_t delta;
323
	s64 nsec;
324

325
	delta = timekeeping_get_delta(&tk->tkr);
326

327
	/* convert delta to nanoseconds. */
328
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
329

330
	/* If arch requires, add in get_arch_timeoffset() */
331
	return nsec + arch_gettimeoffset();
332 333
}

334 335
/**
 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
336
 * @tkr: Timekeeping readout base from which we take the update
337 338 339 340 341 342 343 344 345 346 347
 *
 * We want to use this from any context including NMI and tracing /
 * instrumenting the timekeeping code itself.
 *
 * So we handle this differently than the other timekeeping accessor
 * functions which retry when the sequence count has changed. The
 * update side does:
 *
 * smp_wmb();	<- Ensure that the last base[1] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
348
 * update(tkf->base[0], tkr);
349 350 351
 * smp_wmb();	<- Ensure that the base[0] update is visible
 * tkf->seq++;
 * smp_wmb();	<- Ensure that the seqcount update is visible
352
 * update(tkf->base[1], tkr);
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
 *
 * The reader side does:
 *
 * do {
 *	seq = tkf->seq;
 *	smp_rmb();
 *	idx = seq & 0x01;
 *	now = now(tkf->base[idx]);
 *	smp_rmb();
 * } while (seq != tkf->seq)
 *
 * As long as we update base[0] readers are forced off to
 * base[1]. Once base[0] is updated readers are redirected to base[0]
 * and the base[1] update takes place.
 *
 * So if a NMI hits the update of base[0] then it will use base[1]
 * which is still consistent. In the worst case this can result is a
 * slightly wrong timestamp (a few nanoseconds). See
 * @ktime_get_mono_fast_ns.
 */
373
static void update_fast_timekeeper(struct tk_read_base *tkr)
374 375 376 377 378 379 380
{
	struct tk_read_base *base = tk_fast_mono.base;

	/* Force readers off to base[1] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[0] */
381
	memcpy(base, tkr, sizeof(*base));
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

	/* Force readers back to base[0] */
	raw_write_seqcount_latch(&tk_fast_mono.seq);

	/* Update base[1] */
	memcpy(base + 1, base, sizeof(*base));
}

/**
 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 *
 * This timestamp is not guaranteed to be monotonic across an update.
 * The timestamp is calculated by:
 *
 *	now = base_mono + clock_delta * slope
 *
 * So if the update lowers the slope, readers who are forced to the
 * not yet updated second array are still using the old steeper slope.
 *
 * tmono
 * ^
 * |    o  n
 * |   o n
 * |  u
 * | o
 * |o
 * |12345678---> reader order
 *
 * o = old slope
 * u = update
 * n = new slope
 *
 * So reader 6 will observe time going backwards versus reader 5.
 *
 * While other CPUs are likely to be able observe that, the only way
 * for a CPU local observation is when an NMI hits in the middle of
 * the update. Timestamps taken from that NMI context might be ahead
 * of the following timestamps. Callers need to be aware of that and
 * deal with it.
 */
u64 notrace ktime_get_mono_fast_ns(void)
{
	struct tk_read_base *tkr;
	unsigned int seq;
	u64 now;

	do {
		seq = raw_read_seqcount(&tk_fast_mono.seq);
		tkr = tk_fast_mono.base + (seq & 0x01);
		now = ktime_to_ns(tkr->base_mono) + timekeeping_get_ns(tkr);

	} while (read_seqcount_retry(&tk_fast_mono.seq, seq));
	return now;
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/* Suspend-time cycles value for halted fast timekeeper. */
static cycle_t cycles_at_suspend;

static cycle_t dummy_clock_read(struct clocksource *cs)
{
	return cycles_at_suspend;
}

/**
 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 * @tk: Timekeeper to snapshot.
 *
 * It generally is unsafe to access the clocksource after timekeeping has been
 * suspended, so take a snapshot of the readout base of @tk and use it as the
 * fast timekeeper's readout base while suspended.  It will return the same
 * number of cycles every time until timekeeping is resumed at which time the
 * proper readout base for the fast timekeeper will be restored automatically.
 */
static void halt_fast_timekeeper(struct timekeeper *tk)
{
	static struct tk_read_base tkr_dummy;
	struct tk_read_base *tkr = &tk->tkr;

	memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
	cycles_at_suspend = tkr->read(tkr->clock);
	tkr_dummy.read = dummy_clock_read;
	update_fast_timekeeper(&tkr_dummy);
}

467 468 469 470
#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD

static inline void update_vsyscall(struct timekeeper *tk)
{
471
	struct timespec xt, wm;
472

473
	xt = timespec64_to_timespec(tk_xtime(tk));
474 475
	wm = timespec64_to_timespec(tk->wall_to_monotonic);
	update_vsyscall_old(&xt, &wm, tk->tkr.clock, tk->tkr.mult,
476
			    tk->tkr.cycle_last);
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
}

static inline void old_vsyscall_fixup(struct timekeeper *tk)
{
	s64 remainder;

	/*
	* Store only full nanoseconds into xtime_nsec after rounding
	* it up and add the remainder to the error difference.
	* XXX - This is necessary to avoid small 1ns inconsistnecies caused
	* by truncating the remainder in vsyscalls. However, it causes
	* additional work to be done in timekeeping_adjust(). Once
	* the vsyscall implementations are converted to use xtime_nsec
	* (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
	* users are removed, this can be killed.
	*/
493 494 495
	remainder = tk->tkr.xtime_nsec & ((1ULL << tk->tkr.shift) - 1);
	tk->tkr.xtime_nsec -= remainder;
	tk->tkr.xtime_nsec += 1ULL << tk->tkr.shift;
496
	tk->ntp_error += remainder << tk->ntp_error_shift;
497
	tk->ntp_error -= (1ULL << tk->tkr.shift) << tk->ntp_error_shift;
498 499 500 501 502
}
#else
#define old_vsyscall_fixup(tk)
#endif

503 504
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);

505
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
506
{
507
	raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
508 509 510 511 512 513 514
}

/**
 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 */
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
515
	struct timekeeper *tk = &tk_core.timekeeper;
516 517 518
	unsigned long flags;
	int ret;

519
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
520
	ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
521
	update_pvclock_gtod(tk, true);
522
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
523 524 525 526 527 528 529 530 531 532 533 534 535 536

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);

/**
 * pvclock_gtod_unregister_notifier - unregister a pvclock
 * timedata update listener
 */
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
	unsigned long flags;
	int ret;

537
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
538
	ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
539
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
540 541 542 543 544

	return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);

545 546 547 548 549
/*
 * Update the ktime_t based scalar nsec members of the timekeeper
 */
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
550 551
	u64 seconds;
	u32 nsec;
552 553 554 555 556 557 558 559

	/*
	 * The xtime based monotonic readout is:
	 *	nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
	 * The ktime based monotonic readout is:
	 *	nsec = base_mono + now();
	 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
	 */
560 561 562
	seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
	nsec = (u32) tk->wall_to_monotonic.tv_nsec;
	tk->tkr.base_mono = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
563 564 565

	/* Update the monotonic raw base */
	tk->base_raw = timespec64_to_ktime(tk->raw_time);
566 567 568 569 570 571 572 573 574 575

	/*
	 * The sum of the nanoseconds portions of xtime and
	 * wall_to_monotonic can be greater/equal one second. Take
	 * this into account before updating tk->ktime_sec.
	 */
	nsec += (u32)(tk->tkr.xtime_nsec >> tk->tkr.shift);
	if (nsec >= NSEC_PER_SEC)
		seconds++;
	tk->ktime_sec = seconds;
576 577
}

578
/* must hold timekeeper_lock */
579
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
580
{
581
	if (action & TK_CLEAR_NTP) {
582
		tk->ntp_error = 0;
583 584
		ntp_clear();
	}
585

586 587
	tk_update_ktime_data(tk);

588 589 590
	update_vsyscall(tk);
	update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);

591
	if (action & TK_MIRROR)
592 593
		memcpy(&shadow_timekeeper, &tk_core.timekeeper,
		       sizeof(tk_core.timekeeper));
594

595
	update_fast_timekeeper(&tk->tkr);
596 597
}

598
/**
599
 * timekeeping_forward_now - update clock to the current time
600
 *
601 602 603
 * Forward the current clock to update its state since the last call to
 * update_wall_time(). This is useful before significant clock changes,
 * as it avoids having to deal with this time offset explicitly.
604
 */
605
static void timekeeping_forward_now(struct timekeeper *tk)
606
{
607
	struct clocksource *clock = tk->tkr.clock;
608
	cycle_t cycle_now, delta;
609
	s64 nsec;
610

611 612 613
	cycle_now = tk->tkr.read(clock);
	delta = clocksource_delta(cycle_now, tk->tkr.cycle_last, tk->tkr.mask);
	tk->tkr.cycle_last = cycle_now;
614

615
	tk->tkr.xtime_nsec += delta * tk->tkr.mult;
616

617
	/* If arch requires, add in get_arch_timeoffset() */
618
	tk->tkr.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr.shift;
619

620
	tk_normalize_xtime(tk);
621

622
	nsec = clocksource_cyc2ns(delta, clock->mult, clock->shift);
623
	timespec64_add_ns(&tk->raw_time, nsec);
624 625 626
}

/**
627
 * __getnstimeofday64 - Returns the time of day in a timespec64.
628 629
 * @ts:		pointer to the timespec to be set
 *
630 631
 * Updates the time of day in the timespec.
 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
632
 */
633
int __getnstimeofday64(struct timespec64 *ts)
634
{
635
	struct timekeeper *tk = &tk_core.timekeeper;
636
	unsigned long seq;
637
	s64 nsecs = 0;
638 639

	do {
640
		seq = read_seqcount_begin(&tk_core.seq);
641

642
		ts->tv_sec = tk->xtime_sec;
643
		nsecs = timekeeping_get_ns(&tk->tkr);
644

645
	} while (read_seqcount_retry(&tk_core.seq, seq));
646

647
	ts->tv_nsec = 0;
648
	timespec64_add_ns(ts, nsecs);
649 650 651 652 653 654 655 656 657

	/*
	 * Do not bail out early, in case there were callers still using
	 * the value, even in the face of the WARN_ON.
	 */
	if (unlikely(timekeeping_suspended))
		return -EAGAIN;
	return 0;
}
658
EXPORT_SYMBOL(__getnstimeofday64);
659 660

/**
661
 * getnstimeofday64 - Returns the time of day in a timespec64.
662
 * @ts:		pointer to the timespec64 to be set
663
 *
664
 * Returns the time of day in a timespec64 (WARN if suspended).
665
 */
666
void getnstimeofday64(struct timespec64 *ts)
667
{
668
	WARN_ON(__getnstimeofday64(ts));
669
}
670
EXPORT_SYMBOL(getnstimeofday64);
671

672 673
ktime_t ktime_get(void)
{
674
	struct timekeeper *tk = &tk_core.timekeeper;
675
	unsigned int seq;
676 677
	ktime_t base;
	s64 nsecs;
678 679 680 681

	WARN_ON(timekeeping_suspended);

	do {
682
		seq = read_seqcount_begin(&tk_core.seq);
683
		base = tk->tkr.base_mono;
684
		nsecs = timekeeping_get_ns(&tk->tkr);
685

686
	} while (read_seqcount_retry(&tk_core.seq, seq));
687

688
	return ktime_add_ns(base, nsecs);
689 690 691
}
EXPORT_SYMBOL_GPL(ktime_get);

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
static ktime_t *offsets[TK_OFFS_MAX] = {
	[TK_OFFS_REAL]	= &tk_core.timekeeper.offs_real,
	[TK_OFFS_BOOT]	= &tk_core.timekeeper.offs_boot,
	[TK_OFFS_TAI]	= &tk_core.timekeeper.offs_tai,
};

ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base, *offset = offsets[offs];
	s64 nsecs;

	WARN_ON(timekeeping_suspended);

	do {
		seq = read_seqcount_begin(&tk_core.seq);
709
		base = ktime_add(tk->tkr.base_mono, *offset);
710
		nsecs = timekeeping_get_ns(&tk->tkr);
711 712 713 714 715 716 717 718

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);

}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/**
 * ktime_mono_to_any() - convert mononotic time to any other time
 * @tmono:	time to convert.
 * @offs:	which offset to use
 */
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
	ktime_t *offset = offsets[offs];
	unsigned long seq;
	ktime_t tconv;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		tconv = ktime_add(tmono, *offset);
	} while (read_seqcount_retry(&tk_core.seq, seq));

	return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);

739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
/**
 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 */
ktime_t ktime_get_raw(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	unsigned int seq;
	ktime_t base;
	s64 nsecs;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		base = tk->base_raw;
		nsecs = timekeeping_get_ns_raw(tk);

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);

760
/**
761
 * ktime_get_ts64 - get the monotonic clock in timespec64 format
762 763 764 765
 * @ts:		pointer to timespec variable
 *
 * The function calculates the monotonic clock from the realtime
 * clock and the wall_to_monotonic offset and stores the result
766
 * in normalized timespec64 format in the variable pointed to by @ts.
767
 */
768
void ktime_get_ts64(struct timespec64 *ts)
769
{
770
	struct timekeeper *tk = &tk_core.timekeeper;
771
	struct timespec64 tomono;
772
	s64 nsec;
773 774 775 776 777
	unsigned int seq;

	WARN_ON(timekeeping_suspended);

	do {
778
		seq = read_seqcount_begin(&tk_core.seq);
779
		ts->tv_sec = tk->xtime_sec;
780
		nsec = timekeeping_get_ns(&tk->tkr);
781
		tomono = tk->wall_to_monotonic;
782

783
	} while (read_seqcount_retry(&tk_core.seq, seq));
784

785 786 787
	ts->tv_sec += tomono.tv_sec;
	ts->tv_nsec = 0;
	timespec64_add_ns(ts, nsec + tomono.tv_nsec);
788
}
789
EXPORT_SYMBOL_GPL(ktime_get_ts64);
790

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
/**
 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 *
 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 * covers ~136 years of uptime which should be enough to prevent
 * premature wrap arounds.
 */
time64_t ktime_get_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;

	WARN_ON(timekeeping_suspended);
	return tk->ktime_sec;
}
EXPORT_SYMBOL_GPL(ktime_get_seconds);

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/**
 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 *
 * Returns the wall clock seconds since 1970. This replaces the
 * get_seconds() interface which is not y2038 safe on 32bit systems.
 *
 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 * 32bit systems the access must be protected with the sequence
 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 * value.
 */
time64_t ktime_get_real_seconds(void)
{
	struct timekeeper *tk = &tk_core.timekeeper;
	time64_t seconds;
	unsigned int seq;

	if (IS_ENABLED(CONFIG_64BIT))
		return tk->xtime_sec;

	do {
		seq = read_seqcount_begin(&tk_core.seq);
		seconds = tk->xtime_sec;

	} while (read_seqcount_retry(&tk_core.seq, seq));

	return seconds;
}
EXPORT_SYMBOL_GPL(ktime_get_real_seconds);

839 840 841 842 843 844 845 846 847 848 849 850 851
#ifdef CONFIG_NTP_PPS

/**
 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
 * @ts_raw:	pointer to the timespec to be set to raw monotonic time
 * @ts_real:	pointer to the timespec to be set to the time of day
 *
 * This function reads both the time of day and raw monotonic time at the
 * same time atomically and stores the resulting timestamps in timespec
 * format.
 */
void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
{
852
	struct timekeeper *tk = &tk_core.timekeeper;
853 854 855 856 857 858
	unsigned long seq;
	s64 nsecs_raw, nsecs_real;

	WARN_ON_ONCE(timekeeping_suspended);

	do {
859
		seq = read_seqcount_begin(&tk_core.seq);
860

861
		*ts_raw = timespec64_to_timespec(tk->raw_time);
862
		ts_real->tv_sec = tk->xtime_sec;
863
		ts_real->tv_nsec = 0;
864

865
		nsecs_raw = timekeeping_get_ns_raw(tk);
866
		nsecs_real = timekeeping_get_ns(&tk->tkr);
867

868
	} while (read_seqcount_retry(&tk_core.seq, seq));
869 870 871 872 873 874 875 876

	timespec_add_ns(ts_raw, nsecs_raw);
	timespec_add_ns(ts_real, nsecs_real);
}
EXPORT_SYMBOL(getnstime_raw_and_real);

#endif /* CONFIG_NTP_PPS */

877 878 879 880
/**
 * do_gettimeofday - Returns the time of day in a timeval
 * @tv:		pointer to the timeval to be set
 *
881
 * NOTE: Users should be converted to using getnstimeofday()
882 883 884
 */
void do_gettimeofday(struct timeval *tv)
{
885
	struct timespec64 now;
886

887
	getnstimeofday64(&now);
888 889 890 891
	tv->tv_sec = now.tv_sec;
	tv->tv_usec = now.tv_nsec/1000;
}
EXPORT_SYMBOL(do_gettimeofday);
892

893
/**
894 895
 * do_settimeofday64 - Sets the time of day.
 * @ts:     pointer to the timespec64 variable containing the new time
896 897 898
 *
 * Sets the time of day to the new time and update NTP and notify hrtimers
 */
899
int do_settimeofday64(const struct timespec64 *ts)
900
{
901
	struct timekeeper *tk = &tk_core.timekeeper;
902
	struct timespec64 ts_delta, xt;
903
	unsigned long flags;
904

905
	if (!timespec64_valid_strict(ts))
906 907
		return -EINVAL;

908
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
909
	write_seqcount_begin(&tk_core.seq);
910

911
	timekeeping_forward_now(tk);
912

913
	xt = tk_xtime(tk);
914 915
	ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
	ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
916

917
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
918

919
	tk_set_xtime(tk, ts);
920

921
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
922

923
	write_seqcount_end(&tk_core.seq);
924
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
925 926 927 928 929 930

	/* signal hrtimers about time change */
	clock_was_set();

	return 0;
}
931
EXPORT_SYMBOL(do_settimeofday64);
932

933 934 935 936 937 938 939 940
/**
 * timekeeping_inject_offset - Adds or subtracts from the current time.
 * @tv:		pointer to the timespec variable containing the offset
 *
 * Adds or subtracts an offset value from the current time.
 */
int timekeeping_inject_offset(struct timespec *ts)
{
941
	struct timekeeper *tk = &tk_core.timekeeper;
942
	unsigned long flags;
943
	struct timespec64 ts64, tmp;
944
	int ret = 0;
945 946 947 948

	if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
		return -EINVAL;

949 950
	ts64 = timespec_to_timespec64(*ts);

951
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
952
	write_seqcount_begin(&tk_core.seq);
953

954
	timekeeping_forward_now(tk);
955

956
	/* Make sure the proposed value is valid */
957 958
	tmp = timespec64_add(tk_xtime(tk),  ts64);
	if (!timespec64_valid_strict(&tmp)) {
959 960 961
		ret = -EINVAL;
		goto error;
	}
962

963 964
	tk_xtime_add(tk, &ts64);
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
965

966
error: /* even if we error out, we forwarded the time, so call update */
967
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
968

969
	write_seqcount_end(&tk_core.seq);
970
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
971 972 973 974

	/* signal hrtimers about time change */
	clock_was_set();

975
	return ret;
976 977 978
}
EXPORT_SYMBOL(timekeeping_inject_offset);

979 980 981 982 983 984 985

/**
 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
 *
 */
s32 timekeeping_get_tai_offset(void)
{
986
	struct timekeeper *tk = &tk_core.timekeeper;
987 988 989 990
	unsigned int seq;
	s32 ret;

	do {
991
		seq = read_seqcount_begin(&tk_core.seq);
992
		ret = tk->tai_offset;
993
	} while (read_seqcount_retry(&tk_core.seq, seq));
994 995 996 997 998 999 1000 1001

	return ret;
}

/**
 * __timekeeping_set_tai_offset - Lock free worker function
 *
 */
1002
static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1003 1004
{
	tk->tai_offset = tai_offset;
1005
	tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1006 1007 1008 1009 1010 1011 1012 1013
}

/**
 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
 *
 */
void timekeeping_set_tai_offset(s32 tai_offset)
{
1014
	struct timekeeper *tk = &tk_core.timekeeper;
1015 1016
	unsigned long flags;

1017
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1018
	write_seqcount_begin(&tk_core.seq);
1019
	__timekeeping_set_tai_offset(tk, tai_offset);
1020
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1021
	write_seqcount_end(&tk_core.seq);
1022
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1023
	clock_was_set();
1024 1025
}

1026 1027 1028 1029 1030
/**
 * change_clocksource - Swaps clocksources if a new one is available
 *
 * Accumulates current time interval and initializes new clocksource
 */
1031
static int change_clocksource(void *data)
1032
{
1033
	struct timekeeper *tk = &tk_core.timekeeper;
1034
	struct clocksource *new, *old;
1035
	unsigned long flags;
1036

1037
	new = (struct clocksource *) data;
1038

1039
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1040
	write_seqcount_begin(&tk_core.seq);
1041

1042
	timekeeping_forward_now(tk);
1043 1044 1045 1046 1047 1048
	/*
	 * If the cs is in module, get a module reference. Succeeds
	 * for built-in code (owner == NULL) as well.
	 */
	if (try_module_get(new->owner)) {
		if (!new->enable || new->enable(new) == 0) {
1049
			old = tk->tkr.clock;
1050 1051 1052 1053 1054 1055 1056
			tk_setup_internals(tk, new);
			if (old->disable)
				old->disable(old);
			module_put(old->owner);
		} else {
			module_put(new->owner);
		}
1057
	}
1058
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1059

1060
	write_seqcount_end(&tk_core.seq);
1061
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1062

1063 1064
	return 0;
}
1065

1066 1067 1068 1069 1070 1071 1072
/**
 * timekeeping_notify - Install a new clock source
 * @clock:		pointer to the clock source
 *
 * This function is called from clocksource.c after a new, better clock
 * source has been registered. The caller holds the clocksource_mutex.
 */
1073
int timekeeping_notify(struct clocksource *clock)
1074
{
1075
	struct timekeeper *tk = &tk_core.timekeeper;
1076

1077
	if (tk->tkr.clock == clock)
1078
		return 0;
1079
	stop_machine(change_clocksource, clock, NULL);
1080
	tick_clock_notify();
1081
	return tk->tkr.clock == clock ? 0 : -1;
1082
}
1083

1084
/**
1085 1086
 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
 * @ts:		pointer to the timespec64 to be set
1087 1088 1089
 *
 * Returns the raw monotonic time (completely un-modified by ntp)
 */
1090
void getrawmonotonic64(struct timespec64 *ts)
1091
{
1092
	struct timekeeper *tk = &tk_core.timekeeper;
1093
	struct timespec64 ts64;
1094 1095 1096 1097
	unsigned long seq;
	s64 nsecs;

	do {
1098
		seq = read_seqcount_begin(&tk_core.seq);
1099
		nsecs = timekeeping_get_ns_raw(tk);
1100
		ts64 = tk->raw_time;
1101

1102
	} while (read_seqcount_retry(&tk_core.seq, seq));
1103

1104
	timespec64_add_ns(&ts64, nsecs);
1105
	*ts = ts64;
1106
}
1107 1108
EXPORT_SYMBOL(getrawmonotonic64);

1109

1110
/**
1111
 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1112
 */
1113
int timekeeping_valid_for_hres(void)
1114
{
1115
	struct timekeeper *tk = &tk_core.timekeeper;
1116 1117 1118 1119
	unsigned long seq;
	int ret;

	do {
1120
		seq = read_seqcount_begin(&tk_core.seq);
1121

1122
		ret = tk->tkr.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1123

1124
	} while (read_seqcount_retry(&tk_core.seq, seq));
1125 1126 1127 1128

	return ret;
}

1129 1130 1131 1132 1133
/**
 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
 */
u64 timekeeping_max_deferment(void)
{
1134
	struct timekeeper *tk = &tk_core.timekeeper;
J
John Stultz 已提交
1135 1136
	unsigned long seq;
	u64 ret;
1137

J
John Stultz 已提交
1138
	do {
1139
		seq = read_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1140

1141
		ret = tk->tkr.clock->max_idle_ns;
J
John Stultz 已提交
1142

1143
	} while (read_seqcount_retry(&tk_core.seq, seq));
J
John Stultz 已提交
1144 1145

	return ret;
1146 1147
}

1148
/**
1149
 * read_persistent_clock -  Return time from the persistent clock.
1150 1151
 *
 * Weak dummy function for arches that do not yet support it.
1152 1153
 * Reads the time from the battery backed persistent clock.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1154 1155 1156
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1157
void __weak read_persistent_clock(struct timespec *ts)
1158
{
1159 1160
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
1161 1162
}

1163 1164 1165 1166 1167 1168 1169 1170 1171
/**
 * read_boot_clock -  Return time of the system start.
 *
 * Weak dummy function for arches that do not yet support it.
 * Function to read the exact time the system has been started.
 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
 *
 *  XXX - Do be sure to remove it once all arches implement it.
 */
1172
void __weak read_boot_clock(struct timespec *ts)
1173 1174 1175 1176 1177
{
	ts->tv_sec = 0;
	ts->tv_nsec = 0;
}

1178 1179 1180 1181 1182
/*
 * timekeeping_init - Initializes the clocksource and common timekeeping values
 */
void __init timekeeping_init(void)
{
1183
	struct timekeeper *tk = &tk_core.timekeeper;
1184
	struct clocksource *clock;
1185
	unsigned long flags;
1186 1187
	struct timespec64 now, boot, tmp;
	struct timespec ts;
1188

1189 1190 1191
	read_persistent_clock(&ts);
	now = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&now)) {
1192 1193 1194 1195
		pr_warn("WARNING: Persistent clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		now.tv_sec = 0;
		now.tv_nsec = 0;
1196 1197
	} else if (now.tv_sec || now.tv_nsec)
		persistent_clock_exist = true;
1198

1199 1200 1201
	read_boot_clock(&ts);
	boot = timespec_to_timespec64(ts);
	if (!timespec64_valid_strict(&boot)) {
1202 1203 1204 1205 1206
		pr_warn("WARNING: Boot clock returned invalid value!\n"
			"         Check your CMOS/BIOS settings.\n");
		boot.tv_sec = 0;
		boot.tv_nsec = 0;
	}
1207

1208
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1209
	write_seqcount_begin(&tk_core.seq);
1210 1211
	ntp_init();

1212
	clock = clocksource_default_clock();
1213 1214
	if (clock->enable)
		clock->enable(clock);
1215
	tk_setup_internals(tk, clock);
1216

1217 1218 1219
	tk_set_xtime(tk, &now);
	tk->raw_time.tv_sec = 0;
	tk->raw_time.tv_nsec = 0;
1220
	tk->base_raw.tv64 = 0;
1221
	if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1222
		boot = tk_xtime(tk);
1223

1224
	set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1225
	tk_set_wall_to_mono(tk, tmp);
1226

1227
	timekeeping_update(tk, TK_MIRROR);
1228

1229
	write_seqcount_end(&tk_core.seq);
1230
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1231 1232 1233
}

/* time in seconds when suspend began */
1234
static struct timespec64 timekeeping_suspend_time;
1235

1236 1237 1238 1239 1240 1241 1242
/**
 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
 * @delta: pointer to a timespec delta value
 *
 * Takes a timespec offset measuring a suspend interval and properly
 * adds the sleep offset to the timekeeping variables.
 */
1243
static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1244
					   struct timespec64 *delta)
1245
{
1246
	if (!timespec64_valid_strict(delta)) {
1247 1248 1249
		printk_deferred(KERN_WARNING
				"__timekeeping_inject_sleeptime: Invalid "
				"sleep delta value!\n");
1250 1251
		return;
	}
1252
	tk_xtime_add(tk, delta);
1253
	tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1254
	tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1255
	tk_debug_account_sleep_time(delta);
1256 1257 1258
}

/**
1259 1260
 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
 * @delta: pointer to a timespec64 delta value
1261 1262 1263 1264 1265 1266 1267
 *
 * This hook is for architectures that cannot support read_persistent_clock
 * because their RTC/persistent clock is only accessible when irqs are enabled.
 *
 * This function should only be called by rtc_resume(), and allows
 * a suspend offset to be injected into the timekeeping values.
 */
1268
void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1269
{
1270
	struct timekeeper *tk = &tk_core.timekeeper;
1271
	unsigned long flags;
1272

1273 1274 1275 1276 1277
	/*
	 * Make sure we don't set the clock twice, as timekeeping_resume()
	 * already did it
	 */
	if (has_persistent_clock())
1278 1279
		return;

1280
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1281
	write_seqcount_begin(&tk_core.seq);
J
John Stultz 已提交
1282

1283
	timekeeping_forward_now(tk);
1284

1285
	__timekeeping_inject_sleeptime(tk, delta);
1286

1287
	timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1288

1289
	write_seqcount_end(&tk_core.seq);
1290
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1291 1292 1293 1294 1295

	/* signal hrtimers about time change */
	clock_was_set();
}

1296 1297 1298 1299 1300 1301 1302
/**
 * timekeeping_resume - Resumes the generic timekeeping subsystem.
 *
 * This is for the generic clocksource timekeeping.
 * xtime/wall_to_monotonic/jiffies/etc are
 * still managed by arch specific suspend/resume code.
 */
1303
void timekeeping_resume(void)
1304
{
1305
	struct timekeeper *tk = &tk_core.timekeeper;
1306
	struct clocksource *clock = tk->tkr.clock;
1307
	unsigned long flags;
1308 1309
	struct timespec64 ts_new, ts_delta;
	struct timespec tmp;
1310 1311
	cycle_t cycle_now, cycle_delta;
	bool suspendtime_found = false;
1312

1313 1314
	read_persistent_clock(&tmp);
	ts_new = timespec_to_timespec64(tmp);
1315

1316
	clockevents_resume();
1317 1318
	clocksource_resume();

1319
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1320
	write_seqcount_begin(&tk_core.seq);
1321

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
	/*
	 * After system resumes, we need to calculate the suspended time and
	 * compensate it for the OS time. There are 3 sources that could be
	 * used: Nonstop clocksource during suspend, persistent clock and rtc
	 * device.
	 *
	 * One specific platform may have 1 or 2 or all of them, and the
	 * preference will be:
	 *	suspend-nonstop clocksource -> persistent clock -> rtc
	 * The less preferred source will only be tried if there is no better
	 * usable source. The rtc part is handled separately in rtc core code.
	 */
1334
	cycle_now = tk->tkr.read(clock);
1335
	if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1336
		cycle_now > tk->tkr.cycle_last) {
1337 1338 1339 1340 1341
		u64 num, max = ULLONG_MAX;
		u32 mult = clock->mult;
		u32 shift = clock->shift;
		s64 nsec = 0;

1342 1343
		cycle_delta = clocksource_delta(cycle_now, tk->tkr.cycle_last,
						tk->tkr.mask);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

		/*
		 * "cycle_delta * mutl" may cause 64 bits overflow, if the
		 * suspended time is too long. In that case we need do the
		 * 64 bits math carefully
		 */
		do_div(max, mult);
		if (cycle_delta > max) {
			num = div64_u64(cycle_delta, max);
			nsec = (((u64) max * mult) >> shift) * num;
			cycle_delta -= num * max;
		}
		nsec += ((u64) cycle_delta * mult) >> shift;

1358
		ts_delta = ns_to_timespec64(nsec);
1359
		suspendtime_found = true;
1360 1361
	} else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
		ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1362
		suspendtime_found = true;
1363
	}
1364 1365 1366 1367 1368

	if (suspendtime_found)
		__timekeeping_inject_sleeptime(tk, &ts_delta);

	/* Re-base the last cycle value */
1369
	tk->tkr.cycle_last = cycle_now;
1370
	tk->ntp_error = 0;
1371
	timekeeping_suspended = 0;
1372
	timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1373
	write_seqcount_end(&tk_core.seq);
1374
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1375 1376 1377 1378 1379 1380

	touch_softlockup_watchdog();

	clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);

	/* Resume hrtimers */
1381
	hrtimers_resume();
1382 1383
}

1384
int timekeeping_suspend(void)
1385
{
1386
	struct timekeeper *tk = &tk_core.timekeeper;
1387
	unsigned long flags;
1388 1389 1390
	struct timespec64		delta, delta_delta;
	static struct timespec64	old_delta;
	struct timespec tmp;
1391

1392 1393
	read_persistent_clock(&tmp);
	timekeeping_suspend_time = timespec_to_timespec64(tmp);
1394

1395 1396 1397 1398 1399 1400 1401 1402
	/*
	 * On some systems the persistent_clock can not be detected at
	 * timekeeping_init by its return value, so if we see a valid
	 * value returned, update the persistent_clock_exists flag.
	 */
	if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
		persistent_clock_exist = true;

1403
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1404
	write_seqcount_begin(&tk_core.seq);
1405
	timekeeping_forward_now(tk);
1406
	timekeeping_suspended = 1;
1407 1408 1409 1410 1411 1412 1413

	/*
	 * To avoid drift caused by repeated suspend/resumes,
	 * which each can add ~1 second drift error,
	 * try to compensate so the difference in system time
	 * and persistent_clock time stays close to constant.
	 */
1414 1415
	delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
	delta_delta = timespec64_sub(delta, old_delta);
1416 1417 1418 1419 1420 1421 1422 1423 1424
	if (abs(delta_delta.tv_sec)  >= 2) {
		/*
		 * if delta_delta is too large, assume time correction
		 * has occured and set old_delta to the current delta.
		 */
		old_delta = delta;
	} else {
		/* Otherwise try to adjust old_system to compensate */
		timekeeping_suspend_time =
1425
			timespec64_add(timekeeping_suspend_time, delta_delta);
1426
	}
1427 1428

	timekeeping_update(tk, TK_MIRROR);
1429
	halt_fast_timekeeper(tk);
1430
	write_seqcount_end(&tk_core.seq);
1431
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1432 1433

	clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
M
Magnus Damm 已提交
1434
	clocksource_suspend();
1435
	clockevents_suspend();
1436 1437 1438 1439 1440

	return 0;
}

/* sysfs resume/suspend bits for timekeeping */
1441
static struct syscore_ops timekeeping_syscore_ops = {
1442 1443 1444 1445
	.resume		= timekeeping_resume,
	.suspend	= timekeeping_suspend,
};

1446
static int __init timekeeping_init_ops(void)
1447
{
1448 1449
	register_syscore_ops(&timekeeping_syscore_ops);
	return 0;
1450
}
1451
device_initcall(timekeeping_init_ops);
1452 1453

/*
1454
 * Apply a multiplier adjustment to the timekeeper
1455
 */
1456 1457 1458 1459
static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
							 s64 offset,
							 bool negative,
							 int adj_scale)
1460
{
1461 1462
	s64 interval = tk->cycle_interval;
	s32 mult_adj = 1;
1463

1464 1465 1466 1467
	if (negative) {
		mult_adj = -mult_adj;
		interval = -interval;
		offset  = -offset;
1468
	}
1469 1470 1471
	mult_adj <<= adj_scale;
	interval <<= adj_scale;
	offset <<= adj_scale;
1472

1473 1474 1475
	/*
	 * So the following can be confusing.
	 *
1476
	 * To keep things simple, lets assume mult_adj == 1 for now.
1477
	 *
1478
	 * When mult_adj != 1, remember that the interval and offset values
1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
	 * have been appropriately scaled so the math is the same.
	 *
	 * The basic idea here is that we're increasing the multiplier
	 * by one, this causes the xtime_interval to be incremented by
	 * one cycle_interval. This is because:
	 *	xtime_interval = cycle_interval * mult
	 * So if mult is being incremented by one:
	 *	xtime_interval = cycle_interval * (mult + 1)
	 * Its the same as:
	 *	xtime_interval = (cycle_interval * mult) + cycle_interval
	 * Which can be shortened to:
	 *	xtime_interval += cycle_interval
	 *
	 * So offset stores the non-accumulated cycles. Thus the current
	 * time (in shifted nanoseconds) is:
	 *	now = (offset * adj) + xtime_nsec
	 * Now, even though we're adjusting the clock frequency, we have
	 * to keep time consistent. In other words, we can't jump back
	 * in time, and we also want to avoid jumping forward in time.
	 *
	 * So given the same offset value, we need the time to be the same
	 * both before and after the freq adjustment.
	 *	now = (offset * adj_1) + xtime_nsec_1
	 *	now = (offset * adj_2) + xtime_nsec_2
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_2) + xtime_nsec_2
	 * And we know:
	 *	adj_2 = adj_1 + 1
	 * So:
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * (adj_1+1)) + xtime_nsec_2
	 *	(offset * adj_1) + xtime_nsec_1 =
	 *		(offset * adj_1) + offset + xtime_nsec_2
	 * Canceling the sides:
	 *	xtime_nsec_1 = offset + xtime_nsec_2
	 * Which gives us:
	 *	xtime_nsec_2 = xtime_nsec_1 - offset
	 * Which simplfies to:
	 *	xtime_nsec -= offset
	 *
	 * XXX - TODO: Doc ntp_error calculation.
	 */
1522
	if ((mult_adj > 0) && (tk->tkr.mult + mult_adj < mult_adj)) {
1523 1524 1525 1526 1527
		/* NTP adjustment caused clocksource mult overflow */
		WARN_ON_ONCE(1);
		return;
	}

1528
	tk->tkr.mult += mult_adj;
1529
	tk->xtime_interval += interval;
1530
	tk->tkr.xtime_nsec -= offset;
1531
	tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
}

/*
 * Calculate the multiplier adjustment needed to match the frequency
 * specified by NTP
 */
static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
							s64 offset)
{
	s64 interval = tk->cycle_interval;
	s64 xinterval = tk->xtime_interval;
	s64 tick_error;
	bool negative;
	u32 adj;

	/* Remove any current error adj from freq calculation */
	if (tk->ntp_err_mult)
		xinterval -= tk->cycle_interval;

1551 1552
	tk->ntp_tick = ntp_tick_length();

1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592
	/* Calculate current error per tick */
	tick_error = ntp_tick_length() >> tk->ntp_error_shift;
	tick_error -= (xinterval + tk->xtime_remainder);

	/* Don't worry about correcting it if its small */
	if (likely((tick_error >= 0) && (tick_error <= interval)))
		return;

	/* preserve the direction of correction */
	negative = (tick_error < 0);

	/* Sort out the magnitude of the correction */
	tick_error = abs(tick_error);
	for (adj = 0; tick_error > interval; adj++)
		tick_error >>= 1;

	/* scale the corrections */
	timekeeping_apply_adjustment(tk, offset, negative, adj);
}

/*
 * Adjust the timekeeper's multiplier to the correct frequency
 * and also to reduce the accumulated error value.
 */
static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
{
	/* Correct for the current frequency error */
	timekeeping_freqadjust(tk, offset);

	/* Next make a small adjustment to fix any cumulative error */
	if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
		tk->ntp_err_mult = 1;
		timekeeping_apply_adjustment(tk, offset, 0, 0);
	} else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
		/* Undo any existing error adjustment */
		timekeeping_apply_adjustment(tk, offset, 1, 0);
		tk->ntp_err_mult = 0;
	}

	if (unlikely(tk->tkr.clock->maxadj &&
1593 1594
		(abs(tk->tkr.mult - tk->tkr.clock->mult)
			> tk->tkr.clock->maxadj))) {
1595 1596 1597 1598 1599
		printk_once(KERN_WARNING
			"Adjusting %s more than 11%% (%ld vs %ld)\n",
			tk->tkr.clock->name, (long)tk->tkr.mult,
			(long)tk->tkr.clock->mult + tk->tkr.clock->maxadj);
	}
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614

	/*
	 * It may be possible that when we entered this function, xtime_nsec
	 * was very small.  Further, if we're slightly speeding the clocksource
	 * in the code above, its possible the required corrective factor to
	 * xtime_nsec could cause it to underflow.
	 *
	 * Now, since we already accumulated the second, cannot simply roll
	 * the accumulated second back, since the NTP subsystem has been
	 * notified via second_overflow. So instead we push xtime_nsec forward
	 * by the amount we underflowed, and add that amount into the error.
	 *
	 * We'll correct this error next time through this function, when
	 * xtime_nsec is not as small.
	 */
1615 1616 1617
	if (unlikely((s64)tk->tkr.xtime_nsec < 0)) {
		s64 neg = -(s64)tk->tkr.xtime_nsec;
		tk->tkr.xtime_nsec = 0;
1618
		tk->ntp_error += neg << tk->ntp_error_shift;
1619
	}
1620 1621
}

1622 1623 1624 1625 1626 1627 1628 1629
/**
 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
 *
 * Helper function that accumulates a the nsecs greater then a second
 * from the xtime_nsec field to the xtime_secs field.
 * It also calls into the NTP code to handle leapsecond processing.
 *
 */
1630
static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1631
{
1632
	u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr.shift;
1633
	unsigned int clock_set = 0;
1634

1635
	while (tk->tkr.xtime_nsec >= nsecps) {
1636 1637
		int leap;

1638
		tk->tkr.xtime_nsec -= nsecps;
1639 1640 1641 1642
		tk->xtime_sec++;

		/* Figure out if its a leap sec and apply if needed */
		leap = second_overflow(tk->xtime_sec);
1643
		if (unlikely(leap)) {
1644
			struct timespec64 ts;
1645 1646

			tk->xtime_sec += leap;
1647

1648 1649 1650
			ts.tv_sec = leap;
			ts.tv_nsec = 0;
			tk_set_wall_to_mono(tk,
1651
				timespec64_sub(tk->wall_to_monotonic, ts));
1652

1653 1654
			__timekeeping_set_tai_offset(tk, tk->tai_offset - leap);

1655
			clock_set = TK_CLOCK_WAS_SET;
1656
		}
1657
	}
1658
	return clock_set;
1659 1660
}

1661 1662 1663 1664 1665 1666 1667 1668 1669
/**
 * logarithmic_accumulation - shifted accumulation of cycles
 *
 * This functions accumulates a shifted interval of cycles into
 * into a shifted interval nanoseconds. Allows for O(log) accumulation
 * loop.
 *
 * Returns the unconsumed cycles.
 */
1670
static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
1671 1672
						u32 shift,
						unsigned int *clock_set)
1673
{
T
Thomas Gleixner 已提交
1674
	cycle_t interval = tk->cycle_interval << shift;
1675
	u64 raw_nsecs;
1676

1677
	/* If the offset is smaller then a shifted interval, do nothing */
T
Thomas Gleixner 已提交
1678
	if (offset < interval)
1679 1680 1681
		return offset;

	/* Accumulate one shifted interval */
T
Thomas Gleixner 已提交
1682
	offset -= interval;
1683
	tk->tkr.cycle_last += interval;
1684

1685
	tk->tkr.xtime_nsec += tk->xtime_interval << shift;
1686
	*clock_set |= accumulate_nsecs_to_secs(tk);
1687

1688
	/* Accumulate raw time */
1689
	raw_nsecs = (u64)tk->raw_interval << shift;
1690
	raw_nsecs += tk->raw_time.tv_nsec;
1691 1692 1693
	if (raw_nsecs >= NSEC_PER_SEC) {
		u64 raw_secs = raw_nsecs;
		raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1694
		tk->raw_time.tv_sec += raw_secs;
1695
	}
1696
	tk->raw_time.tv_nsec = raw_nsecs;
1697 1698

	/* Accumulate error between NTP and clock interval */
1699
	tk->ntp_error += tk->ntp_tick << shift;
1700 1701
	tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
						(tk->ntp_error_shift + shift);
1702 1703 1704 1705

	return offset;
}

1706 1707 1708 1709
/**
 * update_wall_time - Uses the current clocksource to increment the wall time
 *
 */
1710
void update_wall_time(void)
1711
{
1712
	struct timekeeper *real_tk = &tk_core.timekeeper;
1713
	struct timekeeper *tk = &shadow_timekeeper;
1714
	cycle_t offset;
1715
	int shift = 0, maxshift;
1716
	unsigned int clock_set = 0;
J
John Stultz 已提交
1717 1718
	unsigned long flags;

1719
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1720 1721 1722

	/* Make sure we're fully resumed: */
	if (unlikely(timekeeping_suspended))
J
John Stultz 已提交
1723
		goto out;
1724

J
John Stultz 已提交
1725
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
1726
	offset = real_tk->cycle_interval;
J
John Stultz 已提交
1727
#else
1728 1729
	offset = clocksource_delta(tk->tkr.read(tk->tkr.clock),
				   tk->tkr.cycle_last, tk->tkr.mask);
1730 1731
#endif

1732
	/* Check if there's really nothing to do */
1733
	if (offset < real_tk->cycle_interval)
1734 1735
		goto out;

1736 1737 1738
	/* Do some additional sanity checking */
	timekeeping_check_update(real_tk, offset);

1739 1740 1741 1742
	/*
	 * With NO_HZ we may have to accumulate many cycle_intervals
	 * (think "ticks") worth of time at once. To do this efficiently,
	 * we calculate the largest doubling multiple of cycle_intervals
1743
	 * that is smaller than the offset.  We then accumulate that
1744 1745
	 * chunk in one go, and then try to consume the next smaller
	 * doubled multiple.
1746
	 */
1747
	shift = ilog2(offset) - ilog2(tk->cycle_interval);
1748
	shift = max(0, shift);
1749
	/* Bound shift to one less than what overflows tick_length */
1750
	maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
1751
	shift = min(shift, maxshift);
1752
	while (offset >= tk->cycle_interval) {
1753 1754
		offset = logarithmic_accumulation(tk, offset, shift,
							&clock_set);
1755
		if (offset < tk->cycle_interval<<shift)
1756
			shift--;
1757 1758 1759
	}

	/* correct the clock when NTP error is too big */
1760
	timekeeping_adjust(tk, offset);
1761

J
John Stultz 已提交
1762
	/*
1763 1764 1765 1766
	 * XXX This can be killed once everyone converts
	 * to the new update_vsyscall.
	 */
	old_vsyscall_fixup(tk);
1767

J
John Stultz 已提交
1768 1769
	/*
	 * Finally, make sure that after the rounding
1770
	 * xtime_nsec isn't larger than NSEC_PER_SEC
J
John Stultz 已提交
1771
	 */
1772
	clock_set |= accumulate_nsecs_to_secs(tk);
L
Linus Torvalds 已提交
1773

1774
	write_seqcount_begin(&tk_core.seq);
1775 1776 1777 1778 1779 1780 1781
	/*
	 * Update the real timekeeper.
	 *
	 * We could avoid this memcpy by switching pointers, but that
	 * requires changes to all other timekeeper usage sites as
	 * well, i.e. move the timekeeper pointer getter into the
	 * spinlocked/seqcount protected sections. And we trade this
1782
	 * memcpy under the tk_core.seq against one before we start
1783 1784 1785
	 * updating.
	 */
	memcpy(real_tk, tk, sizeof(*tk));
1786
	timekeeping_update(real_tk, clock_set);
1787
	write_seqcount_end(&tk_core.seq);
1788
out:
1789
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1790
	if (clock_set)
1791 1792
		/* Have to call _delayed version, since in irq context*/
		clock_was_set_delayed();
1793
}
T
Tomas Janousek 已提交
1794 1795

/**
1796 1797
 * getboottime64 - Return the real time of system boot.
 * @ts:		pointer to the timespec64 to be set
T
Tomas Janousek 已提交
1798
 *
1799
 * Returns the wall-time of boot in a timespec64.
T
Tomas Janousek 已提交
1800 1801 1802 1803 1804 1805
 *
 * This is based on the wall_to_monotonic offset and the total suspend
 * time. Calls to settimeofday will affect the value returned (which
 * basically means that however wrong your real time clock is at boot time,
 * you get the right time here).
 */
1806
void getboottime64(struct timespec64 *ts)
T
Tomas Janousek 已提交
1807
{
1808
	struct timekeeper *tk = &tk_core.timekeeper;
1809 1810
	ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);

1811
	*ts = ktime_to_timespec64(t);
T
Tomas Janousek 已提交
1812
}
1813
EXPORT_SYMBOL_GPL(getboottime64);
T
Tomas Janousek 已提交
1814

1815 1816
unsigned long get_seconds(void)
{
1817
	struct timekeeper *tk = &tk_core.timekeeper;
1818 1819

	return tk->xtime_sec;
1820 1821 1822
}
EXPORT_SYMBOL(get_seconds);

1823 1824
struct timespec __current_kernel_time(void)
{
1825
	struct timekeeper *tk = &tk_core.timekeeper;
1826

1827
	return timespec64_to_timespec(tk_xtime(tk));
1828
}
1829

1830 1831
struct timespec current_kernel_time(void)
{
1832
	struct timekeeper *tk = &tk_core.timekeeper;
1833
	struct timespec64 now;
1834 1835 1836
	unsigned long seq;

	do {
1837
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1838

1839
		now = tk_xtime(tk);
1840
	} while (read_seqcount_retry(&tk_core.seq, seq));
1841

1842
	return timespec64_to_timespec(now);
1843 1844
}
EXPORT_SYMBOL(current_kernel_time);
1845

1846
struct timespec64 get_monotonic_coarse64(void)
1847
{
1848
	struct timekeeper *tk = &tk_core.timekeeper;
1849
	struct timespec64 now, mono;
1850 1851 1852
	unsigned long seq;

	do {
1853
		seq = read_seqcount_begin(&tk_core.seq);
L
Linus Torvalds 已提交
1854

1855 1856
		now = tk_xtime(tk);
		mono = tk->wall_to_monotonic;
1857
	} while (read_seqcount_retry(&tk_core.seq, seq));
1858

1859
	set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
1860
				now.tv_nsec + mono.tv_nsec);
1861

1862
	return now;
1863
}
1864 1865

/*
1866
 * Must hold jiffies_lock
1867 1868 1869 1870 1871 1872
 */
void do_timer(unsigned long ticks)
{
	jiffies_64 += ticks;
	calc_global_load(ticks);
}
1873 1874

/**
1875 1876 1877 1878 1879 1880
 * ktime_get_update_offsets_tick - hrtimer helper
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
 *
 * Returns monotonic time at last tick and various offsets
1881
 */
1882 1883
ktime_t ktime_get_update_offsets_tick(ktime_t *offs_real, ktime_t *offs_boot,
							ktime_t *offs_tai)
1884
{
1885
	struct timekeeper *tk = &tk_core.timekeeper;
1886
	unsigned int seq;
1887 1888
	ktime_t base;
	u64 nsecs;
1889 1890

	do {
1891
		seq = read_seqcount_begin(&tk_core.seq);
1892

1893 1894
		base = tk->tkr.base_mono;
		nsecs = tk->tkr.xtime_nsec >> tk->tkr.shift;
1895

1896 1897 1898
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
		*offs_tai = tk->offs_tai;
1899
	} while (read_seqcount_retry(&tk_core.seq, seq));
1900

1901
	return ktime_add_ns(base, nsecs);
1902
}
T
Torben Hohn 已提交
1903

1904 1905
#ifdef CONFIG_HIGH_RES_TIMERS
/**
1906
 * ktime_get_update_offsets_now - hrtimer helper
1907 1908
 * @offs_real:	pointer to storage for monotonic -> realtime offset
 * @offs_boot:	pointer to storage for monotonic -> boottime offset
1909
 * @offs_tai:	pointer to storage for monotonic -> clock tai offset
1910 1911
 *
 * Returns current monotonic time and updates the offsets
1912
 * Called from hrtimer_interrupt() or retrigger_next_event()
1913
 */
1914
ktime_t ktime_get_update_offsets_now(ktime_t *offs_real, ktime_t *offs_boot,
1915
							ktime_t *offs_tai)
1916
{
1917
	struct timekeeper *tk = &tk_core.timekeeper;
1918
	unsigned int seq;
1919 1920
	ktime_t base;
	u64 nsecs;
1921 1922

	do {
1923
		seq = read_seqcount_begin(&tk_core.seq);
1924

1925
		base = tk->tkr.base_mono;
1926
		nsecs = timekeeping_get_ns(&tk->tkr);
1927

1928 1929
		*offs_real = tk->offs_real;
		*offs_boot = tk->offs_boot;
1930
		*offs_tai = tk->offs_tai;
1931
	} while (read_seqcount_retry(&tk_core.seq, seq));
1932

1933
	return ktime_add_ns(base, nsecs);
1934 1935 1936
}
#endif

1937 1938 1939 1940 1941
/**
 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
 */
int do_adjtimex(struct timex *txc)
{
1942
	struct timekeeper *tk = &tk_core.timekeeper;
1943
	unsigned long flags;
1944
	struct timespec64 ts;
1945
	s32 orig_tai, tai;
1946 1947 1948 1949 1950 1951 1952
	int ret;

	/* Validate the data before disabling interrupts */
	ret = ntp_validate_timex(txc);
	if (ret)
		return ret;

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
	if (txc->modes & ADJ_SETOFFSET) {
		struct timespec delta;
		delta.tv_sec  = txc->time.tv_sec;
		delta.tv_nsec = txc->time.tv_usec;
		if (!(txc->modes & ADJ_NANO))
			delta.tv_nsec *= 1000;
		ret = timekeeping_inject_offset(&delta);
		if (ret)
			return ret;
	}

1964
	getnstimeofday64(&ts);
1965

1966
	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1967
	write_seqcount_begin(&tk_core.seq);
1968

1969
	orig_tai = tai = tk->tai_offset;
1970
	ret = __do_adjtimex(txc, &ts, &tai);
1971

1972 1973
	if (tai != orig_tai) {
		__timekeeping_set_tai_offset(tk, tai);
1974
		timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1975
	}
1976
	write_seqcount_end(&tk_core.seq);
1977 1978
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);

1979 1980 1981
	if (tai != orig_tai)
		clock_was_set();

1982 1983
	ntp_notify_cmos_timer();

1984 1985
	return ret;
}
1986 1987 1988 1989 1990 1991 1992

#ifdef CONFIG_NTP_PPS
/**
 * hardpps() - Accessor function to NTP __hardpps function
 */
void hardpps(const struct timespec *phase_ts, const struct timespec *raw_ts)
{
1993 1994 1995
	unsigned long flags;

	raw_spin_lock_irqsave(&timekeeper_lock, flags);
1996
	write_seqcount_begin(&tk_core.seq);
1997

1998
	__hardpps(phase_ts, raw_ts);
1999

2000
	write_seqcount_end(&tk_core.seq);
2001
	raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2002 2003 2004 2005
}
EXPORT_SYMBOL(hardpps);
#endif

T
Torben Hohn 已提交
2006 2007 2008 2009 2010 2011 2012 2013
/**
 * xtime_update() - advances the timekeeping infrastructure
 * @ticks:	number of ticks, that have elapsed since the last call.
 *
 * Must be called with interrupts disabled.
 */
void xtime_update(unsigned long ticks)
{
2014
	write_seqlock(&jiffies_lock);
T
Torben Hohn 已提交
2015
	do_timer(ticks);
2016
	write_sequnlock(&jiffies_lock);
2017
	update_wall_time();
T
Torben Hohn 已提交
2018
}